
A Machine Learning Approach to Diesel Engine Health Prognostics
using Engine Controller Data

Steve Nixon, Ryan Weichel, Karl Reichard, James Kozlowski

Applied Research Laboratory, Pennsylvania State University, State College, PA, 16801, USA

sxn5077@arl.psu.edu, rtw141@arl.psu.edu, kmr5@arl.psu.edu, jdk173@arl.psu.edu

ABSTRACT

Many military assets such as surface ships and ground
vehicles use diesel engines as their prime movers, and
accurately estimating remaining useful life has a high value
for enabling predictive maintenance and improving fleet
logistics. Most of these diesel engines are already equipped
with an array of sensors and digital data busses to support the
function of the integrated electronic control module (ECM).
There are cost advantages to developing predictive analytics
and prognostics using existing embedded sensors. This paper
describes a hybrid approach to predictive capabilities that
utilizes multiple techniques for the implementation of
embedded prognostics using existing sensors. One of the
challenges is the fidelity of the data. This paper describes an
automated approach to feature and classifier selection for
hybrid prognostics. Maintenance records with associated
diesel engine sensor data for several different engine classes
were acquired, which enabled the training data sets to be
organized by failure modes. To help prevent false positives,
some filtering of the maintenance logs was required to only
include those records likely to be associated with the selected
failure mode sensor data sets. The classifier-based, data-
driven approach essentially maps multiple channels of the
sensor data into subspaces trained to classify multiple distinct
failure modes. The intent of this step is to enable fault
isolation by quantitatively determining which failure mode
class the data best fits statistically. The remaining useful life
estimate is provided by tracking the temporal path of the data
from the healthy engine classification to one of the known
failure mode classes using engine load-hours as the metric for
the prognostics.

1. BACKGROUND AND DATA ANALYSIS APPROACH

A recent study of trends in prognostics research showed a
significant increase in the use of machine learning
techniques, particularly deep learning techniques, starting in
about 2007 (Bernardo, 2017). Neural networks (NN) and
other techniques which can be classified as machine learning
(ML) have been applied in system health monitoring since
the 1990s. Japkowicz, Meyers and Gluck (1994) reported on
the use of neural network techniques for novelty detection,
and the technique was applied to the detection of faults in
helicopter gearboxes. While there are many references to the
use of neural network techniques in the literature, the
connectionist models referenced in the paper are forerunners
of today’s deep learning techniques. In 2006 Hinton,
Osindero, & Teh (2006) introduced deep learning techniques
that changed the way neural networks are structured and
trained. Further advancements were made in the late 2000s
(Deng et al., 2009) with significant demonstrations and
applications beginning to appear in 2011. A recent trend has
been to focus on the development of prognostic algorithms
using low bandwidth sensor data (Grosvenor et al., 2014),
such as that available on vehicle control and sensor busses.

The primary objective of this work was to evaluate the
feasibility of using existing health monitoring data, originally
intended for consumption by physics based models and
subject matter experts, for machine learning based
prognostics algorithms. The discussed techniques, however,
are not specific to diesel engines. Data logs from engine
management sensors leading up to specific component failure
events are grouped together to form a collection of
Unscheduled Maintenance Events (UMEs). These data
histories are used to train a ML classifier with the goal of
identifying trends in the sensor data that can be correlated
with engine component health. The hypothesized ML
classifier can then recognize similar trends in new data from

Steve Nixon et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

2

operational engines, and provide prognostic estimates on
engine component health.

As a means for accomplishing this, a secondary objective was
established to implement a software framework that enables
the ingestion, preparation, and processing of maintenance
records and sensor data through a variety of machine learning
techniques. The result is automated generation and validation
of classifiers that predict the health of the system relative to
the state in which maintenance is required. The subsequent
evaluation of these techniques’ performance is reported.

1.1. Data Sources

The data used in the following approach originates from two
independent databases – one storing engine maintenance
records, and one storing control and monitoring system
sensor measurements.

The sensor measurements used by the engine management
computer are logged by a third party data acquisition system
for the purpose of traditional sensor based diagnostics and
fault detection. These logs are periodically uploaded from
the engine’s location to a separate database for record
keeping. The sensor data used in this approach is periodically
captured, low-bandwidth (sample rate) data, intended to be
representative of steady-state engine operation.

1.2. Data Analysis Framework

The framework is a group of scripts developed in Python 3.6
that automates the process of natively interfacing with the
database servers, preparing the data, training the classifiers,
and scoring their performance. The program accepts
configuration files that describe database connection
information, a list of UMEs to use for training/test, and a list
of preprocessing parameter and ML classifier parameter
configurations to be evaluated.

1.3. Limitations and Scope

The training approach described in this paper attempts to
correlate multiple engine sensor data trends with each other,
according to known points in time where engine component
failures occur. It is understood, if not expected, that there
may be more than one component demonstrating detectable
degradation at any given time. This approach assumes the
fault signatures of each failure mode are sufficiently
independent from one another such that a ML classifier
trained to detect a specific failure mode’s trend will not be
sensitive to an alternate failure modes’ trend. Coupling
between trends is the subject of planned future efforts.

2. DATA PREPARATION

Supervised ML-based classifiers require labeled data for
training, where each data observation has an associated class
label. In this case, each observation is a vector in the n-
dimensional space defined by a combination of n-sensors,

and the class label corresponds to how severely degraded the
engine is believed to be. To obtain labeled training data for
a specific failure mode, first a group of similar UMEs must
be identified from the maintenance records. This list of
UMEs represents specific dates in which a component of
interest failed. Next, sensor data histories ending with the
failure date are extracted from the database. The resulting
observations are then split into discrete degradation classes
according to how close in the data history each observation is
to the failure point. Finally, the data undergoes
normalization, missing value handling, and additional feature
engineering, before it is finally ready for ingestion by the ML
training algorithm.

2.1. Maintenance Record Fault Identification

UME list generation for building training data began with
analysis of numerous maintenance records collected from the
population of engines in consideration, and followed a similar
process to that used to develop the system reliability and
condition based maintenance strategy for the platform (Banks
et al., 2008). First, an appropriate approximation to “failure
mode” was created by combining several fields among the
maintenance records in a database, allowing records to be
grouped by failure mode. After grouping records in this
manner, a degrader analysis could be performed. Using
Pareto analysis principles, the most damaging failure modes
were determined based upon numerous metrics. The resulting
list identified the failure modes which, if predicted, would
make the most significant impact in increasing engine
uptime. These became the focus of the effort. The goal then
became finding ways to group UMEs together for the purpose
of constructing training data sets comprised of sensor data
associated with component failures that occur in a similar
fashion.

2.1.1. Maintenance Record Fault Mode And Pareto
Analysis

The maintenance records provided for the purposes of
creating datasets contained engine identification information,
maintenance action details, and other tracking information.
The primary challenge was to extract the specific failure
mode which prompted the maintenance action recorded, if it
existed. In addition to maintenance actions corresponding to
equipment breakdown, the population of maintenance
records included inspections, repairs due to human error, and
minor maintenance actions unrelated to the operation of the
engines in question which all needed to be filtered out. All
maintenance records also included an opened date, a closed
date, and a field describing the criticality of the maintenance
action. The criticality field broadly defined whether the
engine was operational or not until the maintenance could be
completed. Records coded “Critical” or “Major” accounted
for 5% of all maintenance actions – only these maintenance
actions resulted in engine downtime. After confirming with
the customer that this was a valid approach, the opening and

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

3

closing dates were combined to create a “repair time” field.
By further combining this repair time field with the criticality
description field, “downtime” could be calculated.

All maintenance records were coded by the maintainer into
one or more of 95 possible work breakdown structure codes.
Also obtained was a text description of each work breakdown
code used, allowing these codes to be human-interpretable.
See Figure 1 for a Pareto analysis of the downtime associated
with these different work breakdowns, and Figure 2 for a
Pareto analysis of the number of occurrences of various work
breakdown structures.

Figure 1: Pareto Chart, Maintenance Event Code vs
Downtime

Figure 2: Pareto Chart, Maintenance Event Code vs Counts

Further analysis of records within specific codes revealed that
many of the work breakdown structure codes were not
specific enough for our purposes if used alone. For example,
while UMEs associated with the code for main bearings are
sufficiently similar, there were several significantly

dissimilar failure modes represented by the fuel injection
nozzle code. This field was also prone to misclassifications
and false positives.

Records also list the specific parts consumed by the
maintenance actions, which offers another dimension of
comparison in addition to the work breakdown structure
codes. Many records listed several parts consumed, while
some listed dozens of parts as consumed. This is reasonable
to expect, as even simple repairs may require multiple
consumables. This does, however, create issues in grouping
records, as the same failure mode may require slightly
different low value consumables depending on the exact
details of the failure, including how far it had progressed. One
solution to this is to find a “primary” or “source” part number,
ideally the part number corresponding to the part originally
responsible for the maintenance action. This kind of
information regarding a specific maintenance action most
likely is impossible to gather and was not recorded in the
maintenance records available. As a substitute, cost data was
acquired from another source and merged with each record,
allowing the identification of the most expensive part
consumed during a maintenance action. Following the
assumption that repairs would require one significantly
expensive part and zero or several less expensive auxiliary
parts, the most expensive part number consumed for each
record was recorded as the primary part number. Figure 3
gives one trivial and theoretical example of this analysis with
fabricated costs for the different parts.

Part Number Part Description Cost

015623 Main Bearing $1,100

023654 Seal $60

010023 1/4 -20 bolt $1

If a maintenance record only has a single part number
consumed, that part number is obviously recorded as the
primary part number. Pareto analysis of the downtime
associated with different primary part numbers can be seen in
Figure 4. This analysis revealed that only 86 unique primary
part numbers were associated with engine downtime in the
population of maintenance records, and 16 of those part
numbers were associated with 80% of all recorded downtime.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

M
ai

n
B

ea
ri

ng
s

Se
ns

or
s

Cr
an

kc
as

e
V

ac
uu

m

D
ra

in
 H

ea
de

r/
T

an
k

Sp
ee

d
Se

ns
or

s

Fu
el

 L
in

es

E
ng

in
e

Co
nt

ro
lle

r

Co
nt

ro
l P

an
el

G
ov

er
no

r
A

ss
em

bl
y

Pn
eu

m
at

ic
 G

ov
er

no
r

E
ng

in
e

B
lo

ck

Lu
be

 O
il

Li
ne

s

Lu
be

 O
il

Co
nt

ro
l V

al
ve

Pi
st

on
 R

in
gs

Lu
be

 O
il

Pu
m

p

H
ou

rs
 o

f D
ow

nt
im

e

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0

50

100

150

200

250

300

350

Se
ns

or
s

Fu
el

 In
je

ct
io

n
N

oz
zl

es

Fu
el

 In
je

ct
io

n
Pu

m
ps

Fu
el

 L
in

es

T
he

rm
oc

ou
pl

es

V
al

ve
 T

ra
in

 C
ov

er
s

D
ra

in
 H

ea
de

r/
Ta

nk

Pn
eu

m
at

ic
 G

ov
er

no
r

Ja
ck

et
 W

at
er

 L
in

es

En
gi

ne
 B

lo
ck

Ex
ha

us
t L

ea
ks

In
ta

ke
 L

ea
ks

Lu
be

 O
il

Fi
lt

er

Pl
an

ne
d

A
ct

iv
it

y

G
ov

er
no

r
A

ss
em

bl
y

St
ar

ti
ng

 A
ir

 F
ilt

er

En
gi

ne
 C

on
tr

ol
le

r

Co
nt

ro
l S

ys
te

m

Sp
ee

d
Se

ns
or

s

Lu
be

 O
il

Li
ne

s

W
at

er
 L

in
es

N
/A

Ex
ha

us
t M

an
if

ol
d

A
ir

 F
ilt

er

Cy
lin

de
r

H
ea

d

B
ar

ri
ng

 C
om

po
ne

nt
s

R
oc

ke
r

Lu
be

 O
il

V
al

ve
s

R
oc

ke
r

Lu
be

 O
il

Li
ne

s

Co
un

t

Primary Part Number - 015623

Figure 3: Primary Part Number Determination (part
numbers randomly generated to demonstration concept)

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

4

Figure 4: Pareto Chart, Primary Part Number vs Downtime

Ultimately, a combination of the codes used by the
maintainers, specific part numbers consumed while
preforming the maintenance actions, and several plain text
descriptions of the maintenance action were used to classify
the maintenance records into different failure modes.

Having classified the maintenance records into different
failure modes, and establishing down time as the metric for
UME severity, the failure modes found to be responsible for
large percentages of total downtime were then analyzed by a
diesel engine subject matter expert to determine if that
specific failure mode was a good candidate for prediction.
Good candidates were failure modes which satisfied the
following criteria:

1. Expected to follow a reasonably continuous failure
progression

2. Expected to change the operation of the engine in
question

3. Not expected to be visible to engine operators until
the failure had significantly progressed

The purpose of this filtering was to remove failure modes
which would have a low chance of successful modeling, or
failure modes where even the best predictive analytics
modeling would offer little new information to the operator.

2.1.2. Maintenance Record Final Cleaning and
Preparation

Having determined which failure modes significantly impact
engine availability, have a potential for successful prediction,
and are not immediately obvious to operators, there was some
necessary final data cleaning and analysis to be done. Failures
which commonly surfaced were main bearing failures,
various sensor failures, and fuel system faults.

Having concurrently developed some understanding of the
schema of the parametric databases which were to be queried,
some fields in the maintenance record database were
reformatted for agreement between the two different
databases. This relatively simple step significantly simplified
downstream work.

Certain automatically generated failure modes were deemed
too broad, and required some manual cleaning and further
classification. This accounted for a small fraction of the total
maintenance record population and was not a surprise.

2.2. Parametric (Sensor) Data Preprocessing

2.2.1. Degradation Class Labeling

We assume that as engine operational hours accumulate, the
expected remaining life of its components decreases - the
components degrade. It has been established that sensor data
observations are assigned a degradation class according to
how far away they are in the history from the failure event.
As such, a method for establishing this distance is required.
A similar approach was explored by Roemer (2017) to
examine faults in flow valves.

A simple metric of elapsed time does not work well in
practice due to the fact that the engines of the population do
not see identical usage patterns. Instead, fuel consumption
was used as the measurement for expended life. Fuel
consumption effectively represents “load-hours” and
accounts for periods of shutdown as well as normalizing light
vs. heavy engine load. An example fuel history vs. time and
how degradation classes are defined is shown in Figure 5. It
is seen here that various engines burn through fuel at differing
rates when all engine’s fuel histories are aligned at the point
of the Unscheduled Maintenance Event.

Figure 5: Example fuel history vs time showing fault
classification levels.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Pa

rt
 1

Pa
rt

 2
Pa

rt
 3

Pa
rt

 4
Pa

rt
 5

Pa
rt

 6
Pa

rt
 7

Pa
rt

 8
Pa

rt
 9

Pa
rt

 1
0

Pa
rt

 1
1

Pa
rt

 1
2

Pa
rt

 1
3

Pa
rt

 1
4

Pa
rt

 1
5

Pa
rt

 1
6

Pa
rt

 1
7

Pa
rt

 1
8

Pa
rt

 1
9

Pa
rt

 2
0

Pa
rt

 2
1

Pa
rt

 2
2

Pa
rt

 2
3

H
ou

rs
 o

f D
ow

nt
im

e
 C

lass 4
 C

lass 3
C

lass 2
C

lasss 1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

5

2.2.2. Missing Value Handling, Additional Processing

Many ML algorithms are unable to handle missing data.
Linear Discriminant Analysis, in particular, requires a fully
dense observation matrix for determining the subspace
transformation mapping. As such, a method was developed
for paring down the sensor data to remove incomplete
observations.

Procedure for handling missing data:

1) Resample data by averaging each N-minute span
into a single data observation. This averages
neighboring data observations into a single vector
that may have more non-missing values than each of
the individual source vectors.

2) Calculate the percentage of missing values in each
row, and determine the maximum value

3) Calculate the percentage of missing values in each
column, and determine the maximum value

4) If the row maximum percentage is greater than the
column maximum percentage, delete all rows
having that percentage score. Else, remove the first
column having that percentage score

5) Loop back to step 2 until no missing values remain

The framework includes flexibility to add further subject
matter expert defined preprocessing/feature engineering
steps as well. An example of this would be starting with a
list of engine bearing temperature measurements, and using
them to derive a new feature representing the maximum
differential bearing temperature.

2.3. Machine Learning

Upon completion of the previously described process, we
arrive at a set of engine operating point observations labeled
with degradation classes corresponding to fuel history
distance from failure. This is the form required for training a
ML classifier. As the data processing framework was
developed in Python, the scikit-learn toolbox was used for
ML functions. To make the trained classifiers and preprocess
results portable for classifying new data, a high-level, custom
classifier object is defined. This object encapsulates a list of
the specific sensor channels used for training after conducting
the missing values handling, sensor data normalization
coefficients, and the scikit-learn ML classifier objects
themselves (i.e. Linear Discriminant Analysis (LDA)
transform coefficients, Bayesian weights, decision trees, etc.)
(Pedregosa, et al., 2011). The framework is intended to be
flexible, enabling any classifier that accepts labeled data
observations to be evaluated for use with little additional
integration effort.

2.3.1. Linear Discriminant Analysis-Naïve Bayes

Many standard classifiers are available for use in the scikit-
learn toolbox, which is one of the strengths of Python for data
science. One of the modeling architectures proposed
throughout this effort is a combination classification model
which uses LDA for subspace creation and dimensionality
reduction in combination with a Naïve Bayes classifier
trained on the transformed data. At a conceptual level, LDA
calculates the subspace transformation of labeled data that
maximizes Fisher’s discrimiant ratio, which can be thought
of as the scatter between classes divided by the scatter within
classes. While simple, hard decision boundaries can be
formed based on these transformations, a Naïve Bayes model
was fit to the subspace features to further improve the model
and to provide more information about how likely each class
is for a given observation. The Naïve Bayes classifier
estimates the most likely normal distribution for each input
dimension for each classification level. New data is classified
by calculating the likelihood that each different observation
belongs to each different classification level, variable by
variable – the class with the highest combined likelihood is
then the predicted class.

Used in combination, LDA maximizes the separation
between classes in an optimized subspace, and Naïve Bayes
then learns the details of where each different degredation
class is most likely to be found within this subspace. New
observations are first transformed into the subspace learned
by the LDA model, and then the likelihood of membership to
each class is calculated based upon the distributions
estimated by the Naïve Bayes model.

3. EXAMPLE: INJECTOR PUMP FAULTS

To test the approach and associated framework, a UME list
was generated focusing on Fuel Injector Pump faults. A list
of 7 UMEs was used for this testing. Several ML classifiers
were evaluated. Details of the UMEs used in this example
can be seen in Table 1.

Table 1: Maintenance Events Used for Section 3 Example

UME Total
Observations

Class 1
Obs

Class 2
Obs

Class 3
Obs

Class 4
Obs

1 178 0 0 63 115

3 802 267 224 192 119

4 650 100 264 130 156

5 806 141 240 186 239

6 580 18 23 152 387

7 956 213 334 201 208

8 927 96 290 265 276

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

6

3.1. Grid-search of learning algorithms

Following identification of the UMEs to be used,
configuration scripts defining a grid search of ML techniques
were developed and executed by the Framework. Two
holdout methods were used for testing, one where a
percentage of each UME’s data was held out to form a testing
set, and one where entire UMEs were held out to form a
testing set. The combined LDA-naïve bayes classifier was
compared to both a Random Forest Classifier and a Support
Vector Machine (SVM) classifier. After extensive
experimentation, a third order polynomial kernel function
was found to provide the best results during use of the SVM.
The results are shown in Table 2 and Table 3.

Table 2: Prediction Accuracy of testing data by various
algorithms when randomly selecting 25% of data as testing
data, 20 replications.

Prediction
Accuracy
Mean

Prediction
Accuracy
Standard
Deviation

LDA-Naïve Bayes 0.687498 0.006862

Random Forest 0.95582 0.002835

SVM 0.913857 0.002695

Since the deployment of the model will require accurate
prediction of degredation classes on new maintenance events
rather than assigning the correct class when filling in the gaps
of a maintenance event, a different strategy for creating
training and testing datasets was required.

Table 3: Prediciton accuracy of various algorithms when
randomly assigning 2 of 7 maintenance events as testing
data, 20 replications.

Prediction
Accuracy
Mean

Prediction Accuracy
Standard Deviation

LDA-Naïve Bayes 0.251868 0.118754

Random Forest 0.311276 0.086861

SVM 0.165678 0.068346

The significant dropoff in scores for all three modeling
algorithms suggests that overfitting to specific failure events
is a significant concern for all modeling architectures used.

The decision was made to move forward with the LDA-Naïve
Bayes model despite it’s lower mean predictive accuracy
after significant, manual examination of predictions made by
all three models. For certain combinations of maintenance
events, LDA-Naïve Bayes models demonstrate significantly
more predictive power than similarly trained SVMs and
random forests, while remaining robust to overfitting and
easily interpretable.

3.2. Analysis GUI tool in R/Shiny

The way in which fuel history is split into degradation classes
is a crucial part of the algorithm tuning process. To improve
the efficiency of this process, a Shiny web application was
developed using the R statistical computing language, which
provides users with an easy, graphical interface to upload
different datasets, experiment with different class labeling
schemes, and receive immediate feedback (Chang et al.,
2018). Available tuning parameters within the app are:

 Number of Classes (integer, 2-10)

 Class Division Units (gallons until failure and days
until failure)

 Individual Class starting point (individual slider
inputs for classes 2 and up)

 Maintenance events to include in training data
(checkboxes which set inclusion in training set)

 Maintenance events to include in the testing data
(Checkboxes which set inclusion in testing set)

The application responds to user input by altering the class
label vector based upon the users chosen number of different
classes, class label division units, and specific class label
parameters. Having generated a class label vector, the
application partitions the data into training and testing data
per the user’s choices, and performs linear discriminant
analysis on the selected training data. Using the
transformation matrix generated from the training data, the
training data and the testing data are plotted in the feature
space (up to the first three features), with color determined by
the actual class label of the data point. A confusion matrix is
also calculated and displayed, as well as the percentages of
correctly and incorrectly predicted values in the testing
dataset. Several figures demonstrating this application (with
discussion) as applied to the degraded fuel pump example,
will follow.

As each of the different algorithms from section 3.1 was
tested using 4 evenly divided classes, this is the starting point
for this tuning exercise.

Figure 6: Screen shot from the algorithm tuning app showing
Injector Pump Data, plotted in feature space.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

7

Figure 6 demonstrates the bunching of all the various classes
of data using the default settings. There is very little visible
of the first class of degradation, as it appears to be very
similar with class two. By changing the slider value of “Class
2 start”, the user can choose to combine these two groups by
covering roughly the first 150,000 gallons before failure
together and further dividing the final 150,000 gallons of
failure. Another option is to reduce the total number of fault
classes from 4 to 3, or to select one or more maintenance
records to remove from the training dataset. After some
experimentation, the following settings were considered –
maintenance events 3, 5, and 6 were used for training data,
while the classes were set to the following start and stop
points:

Table 4: Intermediate step and experimentation, class
definitions, Fuel Injector Pump Data example

Class 1 2 3 4
Start (gallons until failure) 299549 195000 90000 30000
End (gallons until failure) 195000 90000 30000 0

The class definitions in Table 4 produced the training data
plot in Figure 7, which displays 4 fairly distinct clusters. This
leaves maintenance events 1, 4, 7, and 8 as optional testing
dataset components, and maintaining these settings shows
poor results when predicting the failure progression of these
maintenance events.

Figure 7: Training data associated with intermediate
experimentation step

More interesting is how the fault mapping changes when
removing one of the three events which currently make up the
training data, and testing on this.

Figure 8: Training (Events 5 and 6) and Testing (Event 3)
mapping and results

When event 3 is removed from the training set and added to
the testing set, a new model is trained, and the data from UME
3 is transformed and plotted according to the new LDA
transformation (Figure 8). The predictive accuracy is very
low (11% correct), but the failure progression follows a
similar but shifted pattern through subspace. Investigating the
confusion matrix shows that a large portion of the data which
is actually class 1 has been misclassified as class 3, while a
very large portion of data which is class 2 has been
misclassified into class 4. Similar analysis can be done by
separating events 5 and 6, drawing different conclusions
regarding the similarity between different maintenance
events. After some more tuning and experimentation, a
training dataset is created from events 3 and 7, and a
prediction is made on event 4 producing the results in Figure
9Error! Reference source not found.. The model in Figure
9 has a much higher overall prediction accuracy, mostly due
to strong performance predicting class 2 (86% correct) and 4
(72% correct). Most of the data for class 4 is separated by
high values of feature 1 (LD1 in the graph).

Figure 9: Training (Events 3 and 7) map and Testing (Event
4) map and results

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

8

The user can decide to further tweak the number of classes,
try to more effectively split classes 1-3 apart, or move onto a
completely different selection of maintenance events if not a
whole different failure mode. The application provides
tremendous flexibility to experiment with the tuning
parameters available to this machine learning technique.

3.3. Sensitivity correlations of UMEs

The analysis from section 3.2 should provide some sense of
how complex the interactions between different maintenance
events can be within the linear discriminant analysis
framework, even in very similar fault groupings. One way to
further explore these subtleties is to test the predictive power
of a model trained on a single maintenance event on the
dataset constructed for a different maintenance event within
a specific failure mode, and to repeat this methodology for all
given maintenance events. This procedure allows quick
analysis of how similar the progression through feature space
is between two or more different maintenance events. Results
of this strategy are presented in
Table 5.

The bottom row is the average of all scores that are not the
model scoring on itself, or the cross validated (CV) score for
that model. The diagonal, where the model is scored only on
the training data, is shaded grey as this is not a valid score for
this methodology. Valid scores over 0.5 are highlighted green
to make patterns visually clear. Looking at the averaged
scores, models trained on maintenance events 1, 5, and 7 are
marginally more accurate than others while models trained
on event 8 are fairly weak.

Table 5: UME sensitivity matrix, fuel injection pumps

Model
1.0

Model
3.0

Model
4.0

Model
5.0

Model
6.0

Model
7.0

Model
8.0

data 1.0 0.98 0.05 0.40 0.56 0.13 0.43 0.12

data 3.0 0.25 0.84 0.39 0.15 0.23 0.12 0.34

data 4.0 0.24 0.41 0.94 0.13 0.22 0.53 0.11

data 5.0 0.33 0.35 0.20 0.96 0.19 0.25 0.28

data 6.0 0.66 0.05 0.67 0.66 0.98 0.66 0.03

data 7.0 0.25 0.22 0.11 0.26 0.32 0.87 0.12

data 8.0 0.43 0.28 0.26 0.38 0.19 0.21 0.93

CV
Score 0.36 0.23 0.34 0.36 0.21 0.37 0.17

Most interestingly, event 6 is predicted either very strongly
(nearly 66% correct) or very weakly by the other events
grouped as degraded fuel injector pumps. Other combinations
of model-data which scored well include model 5 on data 1
and model 7 on data 4, indicating that each of these pairs of

maintenance events has a similar path to failure and are worth
further investigation.

4. DISCUSSION

4.1. Data Sparsity and Performance

The datasets which formed the basis for the training data were
extremely sparse throughout this project – for example, only
12.9% of the dataset originally constructed for the example
used throughout section 3 were real values - the remaining
87.1% were missing when originally flattened for this
analysis. After the final resampling and cleaning the final
dataset contained 0.476% of the original entries, and 38% of
the original sensor columns. Given this level of data density,
a large part of the preprocessing is primarily concerned with
creating a full dataset for the algorithm to work with.

Much of this has to do with the fact that the database holding
the parametric data was never intended to be flattened in this
way or used for this purpose. Adapting this data to
algorithms that are sensitive to missing values makes the
dataset cleaning, preparation, and selection even more critical
than originally anticipated. Much of the strength of
dimensionality reduction machine learning algorithms rests
on the ability to combine different data channels, and this
power is significantly inhibited when the data is this sparse.
One possible option is to create an ensemble model, built on
models reliant only on single data streams – this approach
would disregard the data interactions, however, and would
lose much of the power discussed above. Significant feature
engineering is one other possible avenue to combat this issue.

4.2. Classifying Multiple failure modes

Up until this point, all discussion has been focused on training
a classifier to detect a specific failure mode. In practice, it is
useful to be able to discern multiple failure modes from each
other, as well as a normal state from an abnormal state. A
proposed approach is shown in Figure 10, where a
hierarchical classification structure is presented. Raw sensor
data is first classified into either normal or abnormal status.
If it is abnormal, another classifier determines which fault is
most probable to cause the abnormaility, at which point the
degradation classifier can be used to assess level of
degradation and subsequently remaining useable life
(prognostics).

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

9

Figure 10: Processing flowchart for use with multiple failure
modes

5. CONCLUSION

The results presented in this paper demonstrate the possibility
for certain datasets and models to map similarly in feature
space, and therefore perform well for both
classification/diagnostics and prediction. The techniques
applied here to diesel engines are also applicable to other
complex engineering systems, such as drive trains and
transmissions, for which operational and sensor data are
collected by control and monitoring systems.

The classification results described in this paper show the
effect of data sparsity in both the engine sensor data and the
maintenance record data. The algorithm’s requirement of a
fully dense data matrix leads to the removal of a substantial
amount of sensor data. For the data used in this study, the data
collection system was not designed with the intention of
providing fully dense data tables, and many other prime
mover systems with data collection systems designed before
the advent of big data will present similar issues. This is
common in many industrial plant and vehicle health
monitoring and control systems.

Future work will focus on investigating the possibility that
more complete data, either through improved data collection
processes or better data cleaning, will yield explainable,
practical, and useful machine learning classifiers for failure
prediction on large diesel engines.

None of the progress or findings from this effort would be
possible without subject matter expertise in the engines
which are the topic of classification. Understanding of the
engine’s operation and associated maintenance practices is
crucial to the construction of useful datasets when using
maintenance records to label training data. This is in

accordance with accepted best practice for machine learning
team development, where subject matter experts in the topic
of interest play a critical role in goal setting, feature
extraction, dataset creation, and model validation.

ACKNOWLEDGEMENT

This work was supported under NAVSEA Contract Number
N00024-12-D-6404. The content of the information does not
necessarily reflect the position or policy of NAVSEA, and no
official endorsement should be inferred. This publication has
been approved for unlimited public release

REFERENCES

Banks, J., Reichard, K., & Drake, M. (2008), System
Reliability and Condition Based Maintenance, IEEE
Reliability and Maintainability Symposium (pages 423-
427), January 28-30, Las Vegas, NV. doi:
10.1109/RAMS.2008.4925833

Bernardo, J. T., & Reichard, K. M. (2017). Trends in

Research Techniques of Prognostics for Gas Turbines
and Diesel Engines. Annual Conference of the
Prognostics and Health Management Society 2017,
October 2-5, St. Petersburg, FL.

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J.,

(2018). shiny:Web Application Framework for R. R
package version 1.1.0. https://CRAN.R-
project.org/package=shiny

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei,

L. (2009). Imagenet: A large-scale hierarchical image
database. Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on (pp. 248–255).
IEEE.

Grosvenor, R. I., Prickett, P. W., Frost, C., & Allmark, M. J.

(2014). Performance and condition monitoring of tidal
stream turbines.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast

learning algorithm for deep belief nets. Neural
computation, 18(7), 1527–1554.

Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty

detection approach to classification. International Joint
Conferences on Artificial Intelligence (Vol. 1, pp. 518-
523).

Pedregosa, F., et al., (2011). Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research. pp.
2825-2830.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

10

Roemer, M. R., (2017). Fuzzy Logic, Neural Networks and
Statistical Classifiers for the Detection and
Classification of Control Valve Blockages. Master of
Science Thesis. The Pennsylvania State University,
University Park, PA.

BIOGRAPHY

James D. Kozlowski received his B.S. and M.S. in
Engineering in 1993 and 1996 from Temple University,
Philadelphia, Pennsylvania and received his Ph.D. in
Electrical Engineering in 2002 from the Pennsylvania State
University, State College, Pennsylvania. His primary area of
research is machine condition monitoring, diagnostics and
prognostics. Specifically, data collection, sensor
optimization, data fusion and component failure prediction
and precursor detection. The types of systems that has been
his focus in the last ten years include electrochemical systems
(batteries, fuel cells, etc.) and drivetrain components (gears,
bearings, etc.). He is currently employed by the Applied
Research Laboratory at the Pennsylvania State University,
supporting programs sponsored U.S. Department of Defense
and NASA.

Steven R. Nixon received his B.S. Mechanical Engineering
from the Pennsylvania State University in 2015. He spent
two years working in industry on wireless vibration analysis
and joined the Pennsylvania State University Applied
Research Laboratory in 2017 where he is a research engineer.
His areas of research include failure prediction of mechanical
systems, statistical analysis, condition based maintenance

Ryan T. Weichel received his B.S. and M.S. in Electrical
Engineering in 2008 and 2010 from the Pennsylvania State
University, State College, Pennsylvania. His areas of
research include power electronics and control systems,
machine learning applications and techniques, robotics, and
embedded sensing and control. He is currently employed by
the Applied Research Laboratory at the Pennsylvania State
University.

Karl M. Reichard received the Ph.D., M.S. and B.S. degrees
in Electrical Engineering from the Virginia Polytechnic
Institute and State University (Virginia Tech). Dr. Reichard
is an Associate Research Professor with the Pennsylvania
State University Applied Research Laboratory, and the Penn
State Graduate Program in Acoustics. His research
experience includes the development of embedded and
distributed sensing and control systems for prognostic health
management, robotics, noise cancelation, and acoustic
monitoring and classification.

