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ABSTRACT 

This paper presents a prognostic algorithm with low 
computational requirements that was implemented on an 
embedded system. The health of components such as shafts, 
bearings, and gears, is estimated based on a paradigm where 
condition indicators (CIs) are mapped into a health indicator 
(HI) for detecting and identifying faults based on vibration 
data. For estimating the time evolution of the HI along with 
remaining useful life (RUL) and its evolution, an alpha-beta 
and alpha-beta-gamma trackers are prosed. The estimator 
assumes that the plant noise is converging to a steady state 
over time. The advantage of the proposed filters is 
considerably less memory usage and computational load 
than a Kalman filter. The efficiency of the proposed method 
is demonstrated with a known fault case based on real-world 
data. The demonstration shows that the state observer is 
capable of tracking the evolution of the HI and estimates the 
RUL with sufficient robustness and performs favorably to 
previous results based on the Kalman filter. The method is 
well suited to computing on lower cost smart sensors. 

1. INTRODUCTION 

An embedded system is a computer system with a dedicated 
function within a larger mechanical or electrical system, 
often with real-time computing constraints. Condition 
monitoring is the process of determining the condition of 
machinery using vibration, acoustic emissions, lubrication 
analysis, motor current, model-based current systems, etc. 
Condition monitoring processes generally measure features 
of the component under analysis, then uses algorithms or 
heuristics to generate condition indicators (CIs). Remaining 
useful life (RUL) is the time until it is appropriate to 
perform maintenance. There are several applications where 

an embedded calculation of RUL can be used for logistic 
support and asset planning. This intern will allow for the 
system to be operated at lower risk for unscheduled 
maintenance. 

As noted, the process of condition monitoring generally 
measures some features related to wear or damage of a 
component. The features, CIs, are statically representation 
of the condition of the component under analysis (Vercer, 
2005). For a rotating shaft, a CI might be the measure of the 
first, second and third order harmonics. The first harmonic 
(Shaft Order 1, or SO1) is used to measure imbalance. The 
second harmonic (SO2) indicates a bent shaft, while the 
third harmonics (SO3) is indicative of a coupling failure. 
Sometimes both SO2 and SO3 are excited by a coupling 
failure. Using the additional a priori configuration items, a 
decision can be made as to when to recommend 
maintenance based on the measured CIs. This a priori 
configuration describes a threshold. Threshold setting is 
used, again, to allow CIs to recommend a maintenance 
event.  

For many components, no single CIs can determine the 
condition of the component. As noted, for a shaft, there are 
at least three CIs, which can be used to determine the shaft 
condition. Further, as measured acceleration is the second 
derivative of displacement, the CIs threshold for one shaft 
likely will be different for a shaft with a different mass or 
rotation rate (as acceleration is a function of shaft rate, 
squared). As such, for systems that only use CIs, a great 
deal of expertise is needed to interpret these CIs.  

The a priori configuration, if appropriately modeled, can 
give a representation of the component's health using a 
health indicator (HI, see Bechhoefer, He, Dempsey, 2011). 
The HI is a mapping from 1 to n CIs that scales the CIs into 
a common threshold nomenclature.  Typically, the HI is 
modeled such that the HI ranges from 0 to a positive value, 
where the probability of exceeding an HI of 0.5 is the 
probability of false alarm (PFA). A warning alert is 
generated when the HI is greater than or equal to 0.75. An 

Eric Bechhoefer et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

2 

HI greater than 0.75 indicates that maintenance should be 
planned, by estimating the RUL until the HI is 1.0. An HI 
greater then 1 indicates an alarm situation, where the 
continued operation will result in a lower reliability of the 
system, and potential collateral damage to other components 
within the system.  

This HI nomenclature defines that an alarm alert is 
generated when the HI is greater than or equal to 1.0. Note 
that this nomenclature does not define a probability of 
failure for the component within a system, or that the 
component fails when the HI is 1.0. Instead, it suggests a 
change in operator/maintainer behavior to a proactive 
maintenance policy: perform maintenance prior to the 
generation of collateral or cascading faults. For example, by 
performing maintenance on a bearing prior to the bearing 
shedding extensive material, costly gearbox replacement can 
be avoided. 

1.1. Component Health: Failure, Reliability, and RUL 

In application, an HI greater than 1.0 is indicative of a 
component fault where it would be appropriate to do 
maintenance. That said, it is difficult to determine when 
actual failure might occur. For example, a cracked inner 
race ring on a bearing is a fault. It is clearly appropriate to 
do maintenance. Yet this bearing might run for 10’s if not 
100’s of hours prior to seizing. The crack has reduced the 
reliability of the system. 

For aircraft or other critical systems, the design reliability is 
typically "six-nines," e.g., the probability of failure of the 
part under design loads is less than 10!! per hour. For the 
damaged part, the reliability may be reduced to three-nines 
or a probability of failure of 10!!. The appropriateness to 
repair the faulty component, then, can be seen as an action 
to restore the designed reliability of the system as a whole. 

The estimation of RUL requires five pieces of estimation:  

• An estimate of the current component health. 
• An estimate of when it is appropriate to do 

maintenance. 
• An estimate of the future component load. 
• A model of the component degradation process, 

which takes the current component health, the 
estimated future load, and calculating the 
time/cycles to when it is appropriate to do 
maintenance. 

• Some measure of the confidence in the RUL. 

The confidence in the RUL estimate is likely more useful 
than the RUL itself. A low confidence model suggests to the 
maintainer that the RUL should be ignored, while a high 
confidence model should give motivation to implementing a 
maintenance action. Further, various alerting or reporting 
processing can be implemented based on RUL confidence. 

In the extreme, the RUL is not reported if it is of low 
confidence. 

2. EMBEDDED RUL APPLICATIONS 

There are a large number of applications where an 
embedded calculation of RUL will be of great use for 
logistic support and asset planning.  

Consider a satellite system, were the attitude control uses a 
reaction wheel.  The type of control device is useful because 
it uses no fuel or rockets for reaction. Such devices are 
particularly useful for aligning an antenna or a camera. The 
reaction wheel, being a type of flywheel, is a rotating 
device, which uses bearings. An embedded RUL estimation 
of the bearing life could be of great use to the satellite 
mission planner, as it indicates when the spacecraft needs to 
be replaced. This knowledge is vital for a mission-critical 
system where continuous coverage is essential, such as for 
communication or weather satellite.    

In another scenario, consider a boiler circulator pump (BCP) 
in a power plant. Such pumps are critical for the power plant 
operation. A failure of a BCP typically causes the power 
plant to be taken offline, resulting in fines and higher 
operating cost for the power plant operator. The installation 
of a condition monitoring system on a BCP can indicate 
shaft imbalances, wear on the pump bearings, and detect 
faults within the motor, such as rotor bars, shorts, 
eccentricity, etc.  

Any of the faults as mentioned earlier can cause the BCP to 
fail, resulting in the power plant being taken offline. An 
embedded RUL calculation could be used to trigger 
maintenance on the BCP opportunistically (e.g., when the 
plant is offline for scheduled maintenance) or allowing the 
operator time to bring other power plants online to take over 
the power generation. Further, an embedded RUL capability 
would allow plant maintenance personnel in their daily 
routine of visual inspection, to see the RUL displayed on the 
BCP. This is advantageous as often part of the expense of a 
condition-monitoring program is the installation cost (e.g., 
wiring to a remote server) and the software maintenance 
cost of hosting the condition monitoring on a server for 
display.   

While helicopter designs are inherently safe, including an 
embedded RUL capability improves reliability, and 
therefore, safety. As an example, there have been several 
helicopter mishaps (CHC, 2015, Bond, 2009, Cougar, 2009, 
and CHC, 2016) of aircraft equipped with health and usage 
monitoring systems (HUMS), which is a general term for 
condition monitoring system on helicopters. The lack of an 
embedded RUL to notify the crew of impending failure 
resulted in the loss of life to crew and passengers in two of 
the references, and the loss of an asset in (CHC 2016). 
While an on-board condition monitoring system is a 
valuable safety tool, if the data is not processed and viewed 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

3 

routinely, or if the fault propagates in a time period less than 
turnaround time of server/desktop based condition-
monitoring systems, the system provides little value to 
improve safety.  

3. THRESHOLD SETTING AND THE HI CALCULATION  

All CIs have a probability distribution functions (PDFs). 
Any operation on the CI to form a health index (HI) is then 
a function of distributions. The HI function is defined as 
The norm of n CIs (which is normalized energy). The 
function is valid if and only if the distributions (CIs) are 
independent and identical.  

As an example, for Gaussian distribution, subtracting the 
mean and dividing by the standard deviation will give 
identical Z distributions. The issue of ensuring 
independence is much more difficult.  In general, the 
correlation between CIs is non-zero. For instance, Table	 1 
shows the correlation coefficients for 6 CIs used for gear 
fault analysis, many of which are non-zero (Bechhoefer, He 
& Dempsey, 2011). 

Table	1:	Correlation	Coefficients	 for	 the	 Six	CIs	Used	 in	
the	Study	

ρij CI 1 CI 2 CI 3 CI 4 CI 5 CI 6 

CI 1 1 0.84 0.79 0.66 -0.47 0.74 

CI 2  1 0.46 0.27 -0.59 0.36 

CI 3   1 0.96 -0.03 0.97 

CI 4    1 0.11 0.98 

CI 5     1 0.05 

CI 6      1 

 
This correlation between CIs implies that for a given 
function of distributions to have a threshold that 
operationally meets the design PFA, the CIs must be 
whitened (de-correlated). A whitening process can be found 
using Cholesky decomposition. The Cholesky 
decomposition of a Hermitian, positive definite matrix 
results in  

A = LL*,        (1) 

Where L is a lower triangular, and L* is its conjugate 
transpose. The inverse covariance is a positive definite 
Hermitian matrix.  It then follows that if: LL* = Σ -1, then Y 
= L x CIT. The vector CI is the correlated CIs used for the 
HI calculation, and Y is 1 to n independent CI with unit 
variance (one CI representing the trivial case). The 
Cholesky decomposition, in effect, creates the square root of 
the inverse covariance. This, in turn, is analogous to 
dividing the CI by its standard deviation (the trivial case of 
one CI). It can then be shown that Y = L x CIT creates the 

necessary independent and identical distributions required to 
calculate the critical values for a function of distributions.  

As an example of the importance of correlation on, consider 
a simple HI function HI = CI1 + CI2. The CIs will be 
normally distributed with mean 0 and standard deviation of 
1. The standard deviation of this HI is: 

𝜎!" = 𝜎!!!! + 𝜎!"!! + 2𝜌!"!,!"!𝜎!"!𝜎!"!               (2)  

Where ρCI1, CI2 is the correlation between CI1 and CI2. If one 
assumes ρCI1,CI2 is 0.0, then 𝜎!"  =  2. For a PFA of 10-6, 
the threshold is then 6.722. Consider the case in which the 
observed correlation is closer to 1 (e.g., ρCI1, CI2 is 1.0), then 
the observed 𝜎!"  =  2 . For a threshold of 6.722, the 
operational PFA is 4 x 10-4. This is 390 times greater than 
the designed PFA. This illustrates the effect of correlation 
on the threshold setting. 

The CIs used for condition monitoring have Rayleigh like 
PDFs (i.e., heavily tailed, Byington et al., 2003). For 
magnitude based CIs, it can be shown that for the nominal 
case, the CI PDF is Rayleigh. For Gear CIs, and Bearing CIs 
(which have magnitudes that are biased by RMS), a 
transform is used by making the CI more Rayleigh like. The 
transform "left shifts" the CI such that the 0.05 cumulative 
distribution function (CDF) is assigned to 0.0. 

Consequently, the HI function is designed using the 
Rayleigh distribution. The PDF for the Rayleigh distribution 
uses a single parameter, β, defining the mean  

µ = β*(π/2)0.5,             (3) 

and variance  

σ2 = (2 - π/2) * β2 .  (4) 

The PDF of the Rayleigh is  

pdf = x/β2exp(x/2β2).      (5) 

Note that when applying these equations to the whitening 
process, we have σ2 = 1, and thus the β value for each CI 
will then be  

β = σ / (2 - π/2)1/2 = 1.5264.         (6) 

As noted, the HI function is the norm of n CIs. This 
represents the normalized energy of the CIs. If the CIs are 
IID, it can be shown that the function defines a Nakagami 
PDF. The statistics for the Nakagami are η = n, and ω = 
1/(2-π/2)*2*n, where n is the number IID CIs used in the HI 
calculation (Bechhoefer, Bernhard, 2007).   

3.1. Procedure for Calculating Threshold 

Guidance for the appropriate CIs can be found in the 
Aeronautical Design Handbook (McCall, 2013). For 
Bearing or Gear components, calculate the offset. 
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1. The offset is calculated using the empirical CDF. 

2. Sort the CI values. The offset is the CDF value that 
is indexed from round(50*number of aircraft 
*0.05) 

For Shafts, the offset index is zero. The CIs used for Shaft 
will generally be SO1, SO2, and SO3.  

The CIs used for roller element Bearing will typically be 
Cage, Ball, Inner and Outer Race Energy.  

The CIs used for Gear will generally be Residual RMS, 
Residual CF, Energy Operator RMS, FM0, AM RMS, FM 
RMS (See McCall 2013). Gears are complicated, and CI 
performance can be affected by externalities, such as 
changes in gear-to-gear contact angle, which is effect by 
torque/twist on the drive train (FM0, in particular, is 
sensitive to this). This may require selecting other CIs, or 
reduce the number of CIs used in the HI calculation. 

For fleet statistics, under nominal load (> 30% torque) 
randomly pull 50 acquisitions for a minimum of 5 aircraft. 

Thresholds can be set for fewer aircraft, at the risk of 
increasing the fleet level PFA 

Typically, One should plan on three threshold releases. 

• The prototype release. This is used to capture raw 
data, find gearing resonance, check kinematics 

• The initial release, ideally with five aircraft 

• The final release with 20+ aircraft. 

In general, an operator should develop a condition 
monitoring plan. Development of the configuration, e.g., 
thresholding is not static. As feedback from depot level 
repairs/inspections is gathered, the thresholds should be 
updated to reflect operator/maintainer appropriateness for 
maintenance. In general, the development of the a priori 
configuration requires: 

• Calculate the mean value and covariance for the 
component. 

• Calculate the inverse of the covariance.  

• Calculate the Nakagami critical value and on η and 
ω 

• Set PFA: 10!!. 

• Critical Value T = Nakagami Inverse CDF for 1-
PFA, η, ω. 

• Calculate L, the Cholesky Decomposition value of 
the inverse covariance. 

• Calculate the Scale values: S = L * (0.5/T)2. This is 
an upper triangular matrix, which is stored as an 
array as configuration, along with the offset values. 

The procedure defines the a priori data needed by the 
embedded system to calculate health in situ.  

4. CALCULATION OF RUL IN AN EMBEDDED SYSTEM.  

Because of the limited resources available, both regarding 
computation speed and memory (RAM), a fast and efficient 
method is needed to calculate the RUL of a component. The 
goal is to calculate and store an RUL state vector on the 
embedded system, which incorporates all of the data needed 
to update the next estimate of RUL. This is done in near real 
time. Such a system would be very efficient, as there is no 
need to process the entire history of the component health to 
estimate the RUL.   

Paris’s Law (Paris, 1961) relates the stress intensity factor to 
sub-critical crack growth under a stress regime. It is a 
popular fatigue crack growth model for homogeneous 
material. The basic model is: 

!"
!"

 =  𝐷 Δ𝐾 !            (7) 
where  

• da/dN is the rate of change in the half crack length 
per cycle 

• D is a material constant 

• ΔK is the range of strain, and 

• m is the crack growth exponent. 

The range of strain, ΔK, is defined as 2σα(πa)1/2, where 
• σ is the gross strain, generally unknown but 

proportional to torque,  

• α is some geometric correction factor, again 
generally unknown, and  

• a is the half crack length, which is proportional to 
component health. 

These variables are usually specific for some given material. 
Simplifying the model by assuming a crack growth 
exponent as 2 (which is typical for steel), and collapsing the 
geometric correction factor (an unknown constant) into D, 
then:  

da/dN = D4σ2πa      (8) 

Where N is the number of cycles. For constant rate 
machines, such as a helicopter gearbox, N is proportional to 
time. Taking the inverse, one now has:   

!"
!"

 = 𝐷4𝜎! 𝜋𝑎 !!     (9) 

Integrating gives the number of cycles (e.g., time) from the 
current state a0, to the remaining useful life state, af:  

𝑁 =  𝑑𝑁/𝑑𝑎 ×𝑎!×(ln 𝑎! − ln(𝑎!))      (10) 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

5 

If it is assumed that the current health is proportional to the 
crack length ao, and, as noted early that the RUL is the 
estimated time from the current HI to an HI of 1 (e.g., af = 
1), then the RUL is:   

𝑅𝑈𝐿 =  −𝑑𝐻𝐼/𝑑𝑡 ×𝐻𝐼× ln(𝐻𝐼)   (11) 

4.1. Model validation and confidence in the RUL.  

Clearly, the operator or maintainer needs a level of 
confidence in the RUL. Conceptually, confidence relates to 
model validation. As such, a process needs to be 
implemented that in an automated way, validates the RUL 
model performance.  

Consider that the RUL value for some given time is 100 
hours. One hour into the future, the new RUL value is 
calculated as 100 hours. In this case, the rate of change of 
the model is 0, and subjectively, the confidence in the model 
is low as the model has not accounted for consuming one 
hour of life.  

Consider another case, where one hour into the future, the 
RUL value is 90. Hence, the rate of change in the RUL is -
10. Again, this is a poor model. The confidence in the RUL 
is low because only one hour of life has been consumed, but 
the model is suggesting it should be 10 hours.  

Finally, consider a case where the model initially estimates 
an RUL of 100. Say that one hour in the future, the RUL is 
measured as 99. The rate of change in the RUL is -1.0, e.g. 
dRUL/dt = -1. Further, given one additional hour in the 
future, the RUL measurement is 98. Again the rate of 
change in the RUL is -1. As important, the rate of change of 
the rate of change (e.g., the second derivative) is zero. This 
gives insight into model validation and confidence. The 
model is indicating that the rate of change is consuming one 
hour of life, each hour. Conceptually, this is a valid model.  

The estimation of dHI/dt, dRUL/dt, and d2RUL/dt2 are a 
typical class of problems solved using a state observer. A 
state observer is a model that provides an estimate of the 
internal state of a given system. While a Kalman filter is one 
type of state observer, it may not be the most appropriate 
solution for an embedded system.  

In an embedded system using a microcontroller, there are 
limited computation recourses and constraints on RAM. It is 
well known in a Kalman filter that, along with estimating 
the state (e.g., HI, dHI/dt), an estimate of the a posteriori 
covariance is needed (Bar-Shalom, 1992). This will increase 
the computation and memory load on an embedded system. 
For a complex installation, the additional resources may 
exceed the embedded system resources.  

The Kalman filter can be dynamic in the sense that the 
measurement noise, plant noise, and a posteriori covariance 
can be updated based on real time measurement. In most 
implementation the state gains quickly approach a steady 
state. If the assumption of stationarity is made (i.e., 

measurement noise, plant noise, and update rate are 
constant), then the performance of a Kalman filter can be 
obtained using an α-β tracker, (an “alpha-beta” tracker). 
Using an α-β tracker, two states the filtered estimate or HI, 
and dHI/dt are derived, or an α-β-γ tracker, (an “alpha-beta-
gamma” tracker), where the three states represent RUL, 
dRUL/dt, d2RUL/dt2.  

Given the assumption of stationarity, in effect, the α-β and 
α-β-γ, trackers are treated as steady-state Kalman filters. As 
such, assuming the limit as time moves toward infinity, the 
filter coefficients for the α-β tracker (used for HI, and 
dHI/dt) can be calculated as (Bar-Shalom, 1992)- 

𝜆 = !!!"!

!!
,             (12) 

 𝑟 = !!!! !!!!!

!
,                               (13) 

Where the process variance is σw
2, and plant noise variance 

is  σv
2. The filter gains are 

𝛼! = 1 − 𝑟!,                (14) 

𝛽! = 2 2 − 𝛼 − 4 1 − 𝛼.        (15) 

The coefficients for the α-β-γ tracker (needed for RUL, 
dRUL/dt, and d2RUL/dt2) are 

𝜆 = !!!"!

!!
,         (16) 

𝑏 = !
!
− 3,           (17) 

𝑐 = !
!
+ 3,        (18) 

𝑝 = 𝑐 − !!

!
,        (19) 

𝑞 = !!!

!"
− !"

!
− 1,            (20) 

𝑣 = 𝑞! + !!!

!"
,            (21) 

𝑧 = − 𝑞 + !
!

! ,           (22) 

𝑠 = 𝑧 −  !
!!
− !

!
,            (23) 

so the filter gains are  

𝛼! = 1 − 𝑠!,          (24) 

𝛽! = 2 1 − 𝑠 !,                (25) 

𝛾! =
!!

!!
 .         (26) 

Procedurally, if the component state file is empty, initialize 
the filtered HI (fHI), its derivative (dHI) to zero, the filtered 
RUL (fRUL) and its first and second derivative (dRUL, 
d2RUL) to zero, or read the component state from the 
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component state file. Then, if the first RUL estimation is 
from startup  

• Initialize the 𝛼!  and 𝛽!coefficients based on the 
measurement noise, the plant noise, and the update 
rate, dt, or retrieve from memory.  

• Initialize the α2, β2, γ2 coefficients based on the 
measurement noise, the plant noise and the update 
rate, dt. 

It is assumed that the coefficients α1 β1, α2, β2, γ2 are 
initialized at startup and persisted throughout the operation. 

For each HI update: 

Recover fHI,dHI, fRUL, dRUL, d2RUL for 
the component state file. 

  fHI = fHI + dHI * dt; 
  rk = HI - fHI;      //rk is innovation 
  fHI = fHI + alpha1*rk; 
  dHI = dHI + (beta1*rk)/dt; 

Calculate the RUL 

    rul =  -1 / dHI * fHI * log(fHI); 

Note that in application, it is assumed that parts/components 
do not “heal” or improve over time. Hence dHI is always 
greater than zero. In general, the minimum value of dHI is 
1/mean time between failure or 1/design life. 

Filter the RUL 

  fRUL = fRUL + dRUL*dt + d2RUL*dt*dt/2; 
  rk = RUL - fRUL; 
  fRUL = fRUL + alpha2 * rk; 
  dRUL = dRUL + beta2 * rk / dt; 
  d2RUL = d2RUL+gamma2 * rk / (2*dt*dt); 
 //update the component state file. 
end 
 
Further note that this series of calculation is run for each 
component, for each acquisition. After each component 
update, the component file (i.e., the component state file) is 
updated with HI, fHI, dHI, RUL, fRUL, dRUL and d2RUL. 
Additionally, similar to a CI file, an HI/RUL file entry is 
appended with the current component state. The 
computational load for each update is then 11 
multiplications, nine additions, and a call to log.  

In this way, the component health and RUL can be viewed, 
along with component CI values, on a user interface or 
browser user interface, during the mission, or after the 
mission, or after periodic download. 

5. EMBEDDED RUL FOR A HIGH-SPEED BEARING  

Example: A bused smart sensor system was installed on a 
2.1 MW wind turbine. A six-second acquisition was made 
every 10 minutes, with periodic (24 hour) data download. 
The HI methodology for thresholding, as outlined, was 

utilized and maintenance was performed when the HI was 
greater than 1.0 (the inspection was made when the HI was 
at a value of 1.1, Figure 1, which indicated an inner race 
crack that spanned the width of the race).  

 
Figure 1 Damaged High-Speed Bearing, HI 1.1  

Figure 2 depicts approximately 55 days of data. Note that 
the fault starts to propagate at approximately time -700, 
which corresponded to high loads from a winter storm.  
 

 
Figure 2 Measured and Filtered HI for a High-Speed 

Bearing  
The state dHI/dt is given in Figure 3.  
 
The RUL estimate and filtered RUL estimate are given in 
Figure 4. Note that before -700 hours, the RUL is 
effectively infinite. Once the fault starts to propagate, the 
RUL reduces quickly. Additionally note that the filtered 
RUL is subject to phase lag, which is a phenomenon of all 
recursive filters (seen from hour –600 to -400). This can be 
mitigated using a forward/backward, zero phase filter, such 
as a Kalman Smoother, at the expense of increased memory 
and computational burden.  
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Figure 3 Estimated dHI/dt for the High-Speed Bearing  

 
The computational burden of using a Kalman Smother or 
particle filter method may exceed the resources available on 
an embedded system. In this application, the effect of the 
phase lag, as will be shown, is minimal, justifying the use of 
the α-β-γ tracker. 

 
Figure 4 Linear "Life," RUL and Filter RUL of the Bearing 

 
Note that the RUL and Filtered RUL converge to the linear 
“Life” at approximately 300 hours before the component 
bearing is removed. Figure 5 gives the first derivative of 
RUL. The upper subplot rectangle is from -400 to 0 hours, 
while the lower subplot shows the zoomed dRUL/dt, with a 
value approximately -1 dRUL/dt. 
 
The second derivative of RUL is given in Figure 6. The 
upper subplot rectangle is from -400 to 0 hours, while the 
lower subplot shows the zoomed d2RUL/dt2, with a value 
approximately -.002 d2RUL/dt. Figures 5 and 6 suggest that 
the model does not converge to high confidence/validated, 
until after the phase lag becomes nominal in the RUL (i.e., 
filtered RUL is consistent with raw RUL). 
 

 
Figure 5 dRUL/dt 

 
Ideally, the second derivative of RUL should be zero. The 
fact that it is not likely indicates that m, the crack growth 
exponent in (7) is not exactly 2. 

 
Figure 6 d2RUL/dt2 

 

6. RULES FOR AUTOMATED REPORTING 

Because an operators’, pilots’, or maintainers’ time is 
constrained, only relevant and pertinent data should be 
alerted to draw their attention. As such, while the system 
may monitor many components, with the health and RUL 
being often updated, only data that is of concern (e.g., 
components in warning or alarm) and/or with valid RUL, 
should be displayed or alerted. A number of rules can then 
be developed which can automate this reporting. Some 
suggested rules would be: 

• A valid/high confidence RUL is when the dRUL/dt 
is between 0 and -2 (near 1) and when the 
d2RUL/dt2 is small, with an absolute value less 
than 0.01. 
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• Display a warning alert when the HI is greater than 
0.75 and the RUL is valid and less than some 
nominal alerting time, say 100 hours.   

• Display an alarm alert if the HI is greater than 1. 

This alert can be extinguished if acknowledged by the 
operator/maintainer/pilot, as per effective human factors 
engineering requirements. 

As seen in Figures 5 and 6, the dRUL/dt and d2RUL/dt2 
meet the criterion for a valid model approximately 450 
hours before the HI of 1. That said, the warning alert does 
not trigger until 138 hours prior the HI of 1.0, as seen in 
Figure 7.  

Note that given (10) and (11), other analyses are now 
possible. While the RUL is calculated based on the mean 
load measured over the prior sample period, the actual RUL 
is a distribution function, which is based on projected load 
(greater or lesser) and the measurement error of the HI. In 
Figure 7 confidence limits (high load health RUL of 105 
hours, and low load health RUL 174 hours) are displayed, as 
based on the +/- one standard deviation of the estimated HI, 
and a +/- 10% in mean load. 

 
Figure 7 Warning and alert for valid RUL model with 

confidence limits 
 

It can be shown that from any estimated RUL, the rate of 
change in the HI can be calculated as 

!"#
!"

= !!"# !"
!"#$

.           (27) 

Then the estimate for any future HIt is simply 

𝐻𝐼! = 𝑒𝑥𝑝 𝑡𝜋 !"#
!"
+ 𝑙𝑜𝑔 𝐻𝐼            (28) 

To estimate the confidence interval, it is a matter of 
accounting for the distribution of the HI and the change in 
load. For example, given that the one standard deviation for 
the HI is calculated as 0.03, and for a scenario where the 

load is 10% higher than average (e.g., an aggressive flight 
regime), the future HIt  would be: 

𝐻𝐼! = 𝑒𝑥𝑝 𝑡𝜋 !"#
!"
1.10 + 𝑙𝑜𝑔 𝐻𝐼 + 0.03         (29) 

7. CONCLUSION 

As has been demonstrated, simple α-β and α-β-γ trackers 
implementation on an embedded system allow estimation of 
the remaining useful life. The advantages of embedded RUL 
calculation is that the operator/maintainer of the asset would 
have decision support tools that allow them to protect the 
asset under analysis better. For a helicopter, this would 
allow the pilot, in the most extreme case, to land before 
mission completeness to avert a mishap. For other 
applications, it facilitates a proactive maintenance policy 
that ensures the reliability of the system.  

The computation load of the analysis is 11 multiplications, 
nine additions, and a call to log, for each update. Given that 
for most systems, an acquisition is usually taken once every 
one to ten minutes, this can be implemented on even the 
most modest embedded system. 
 
As of equal importance, methods for validating and 
reporting the RUL were demonstrated. Further, even for a 
computationally lightweight embedded system, the quality 
of the resulting analysis compares favorably with Kalman 
smoother or particle filter technique. 
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