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ABSTRACT

Uncertainty quantification and propagation form the founda-
tion of a prognostics and health management (PHM) system.
Particle filters have proven to be a valuable tool for this rea-
son but are generally restricted to state-space damage mod-
els and lack a natural approach for quantifying model pa-
rameter uncertainty. Both of these issues tend to inhibit the
real-world application of PHM. While Markov chain Monte
Carlo (MCMC) sampling methods avoid some of these re-
strictions, they are also inherently serial, and, thus, MCMC
can become intractable as model fidelity increases. Over the
past two decades, sequential Monte Carlo (SMC) methods, of
which the particle filter is a special case, have been adapted
to sample from a single, static posterior distribution, eliminat-
ing the state-space requirement and providing an alternative
to MCMC. Additionally, SMC samplers of this type can be
run in parallel, resulting in drastic reductions in computation
time. In this work, a potential path toward real-time, high-
fidelity prognostics using a combination of surrogate mod-
eling and a parallel SMC sampler is explored. The use of
SMC samplers to enable tractable parameter estimation for
full-fidelity (i.e., non-surrogate-assisted) damage models is
also discussed. Both of these topics are studied in the context
of fatigue crack growth in a geometrically complex, metallic
specimen subjected to variable amplitude loading.

1. INTRODUCTION

Uncertainty quantification and propagation are essential to
the implementation of prognostics and health management
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(PHM) systems. By acquiring periodic diagnoses of struc-
tural health via non-destructive evaluation or an on-board
structural health monitoring system, Bayesian inference can
be used to quantify the uncertainty in a predictive model.
Propagating this uncertainty via simulation enables proba-
bilistic predictions of a quantity of interest (e.g., remaining
useful life, residual strength, mission readiness). As more
data is acquired, predictions can be updated to reflect the
change in uncertainty over time. Two approaches to un-
certainty quantification are commonly used in prognostics.
The first involves the quantification of model state uncer-
tainty over time, commonly referred to as Bayesian filtering
or Bayesian tracking. The second approach involves estimat-
ing model parameter uncertainty as a static, joint distribution
where uncertainty is reduced as more data is acquired. This
latter approach is referred to as model calibration or parame-
ter estimation.

Particle filters, a particular sub-class of sequential Monte
Carlo (SMC) methods, have been used extensively for
Bayesian filtering and Bayesian tracking problems (Doucet,
Godsill, & Andrieu, 2000; Arulampalam, Maskell, Gordon,
& Clapp, 2002; Theodoridis, 2015). Particle filters work
by estimating a model’s state probability distribution as it
evolves in time via Bayesian inference. Upon the receipt of
new data, the state distribution is updated recursively using a
form of sequential importance sampling (SIS). SIS requires
a state transition relation that predicts the subsequent state
distribution based on the current state. In practice, this is
accomplished by propagating the uncertainty in the current
estimated state through the model to the time at which new
data will be acquired. This predicted probability distribution,
which, by definition, does not incorporate the new data, is
updated via importance sampling and Bayes’ Theorem when
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new data is observed. At any given time, non-deterministic
predictions of a quantity of interest can be attained by prop-
agating uncertainty in the current model state to a given time
or until a stopping criterion is met.

Numerous examples of particle filter implementations can be
found in the PHM literature; see, for example, (Cadini, Zio,
& Avram, 2009; Orchard & Vachtsevanos, 2009; Saha &
Goebel, 2009; Zio & Peloni, 2011). Studying these works
yields two observed shortcomings. First, particle filtering al-
gorithms have generally been restricted to state-space rep-
resentations. Second, particle filters lack a method for esti-
mating uncertainty in static model parameters (e.g., material
properties) (Liu & West, 2001), the values of which are of-
ten unknown and uncertain. Researchers have attempted to
address the latter issue by introducing methods such as ar-
tificial dynamics (Daigle & Goebel, 2011) and through a hy-
brid approach in which parameter uncertainty is estimated via
Markov chain Monte Carlo (MCMC) at each resampling step
in a standard particle filtering algorithm (Corbetta, Sbarufatti,
Manes, & Giglio, 2015).

MCMC sampling methods are an alternative to particle filters
for uncertainty quantification that are generally less restric-
tive of model class and are naturally suited for static parame-
ter estimation (Andrieu, De Freitas, Doucet, & Jordan, 2003;
Kaipio & Somersalo, 2006; Smith, 2014; Theodoridis, 2015).
These methods involve constructing a Markov chain through
the model parameter space, for which the stationary distribu-
tion is an approximation of the parameter posterior distribu-
tion of interest. The chain is built sample by sample, where
a new sample is randomly proposed based only on the pre-
vious sample (i.e., a Markov process). A set of simple rules
based on Bayes Theorem dictate whether or not proposals are
accepted into the chain or rejected. This approximation ap-
proaches the true distribution as the number of total samples
in the chain approaches infinity. The primary disadvantage
of MCMC methods is that they are computationally intensive
due to the Markovian nature in which samples are drawn and
the model is evaluated (i.e., these methods are difficult to par-
allelize).

Depending prognosticator’s choice of model, the state-space
requirement of particle filters or the serial nature of MCMC
methods may be prohibitive. This is especially the case for
high-fidelity models which involve solving large systems of
equations numerically (e.g., finite element analysis) in or-
der to simulate damage progression. Flexibility in model fi-
delity is critical to the continued adoption of PHM method-
ologies for real-world applications, as engineering structures
are often complex and might necessitate higher fidelity mod-
els. The statistical methods used to form non-deterministic
predictions should not restrict the breadth of available mod-
els. While particle filtering can be computationally efficient
in certain cases, MCMC is relatively slow, even when using

quick-to-evaluate analytical models. In addition to facilitat-
ing model flexibility, statistical approaches used for static pa-
rameter estimation in a PHM system need to be, in general,
faster than current MCMC methods.

A potential solution to all of the aforementioned issues is the
parallel SMC sampler, which is a generalization of the parti-
cle filter. Over the past two decades, SMC methods have been
adapted to sample from a single, static posterior distribution
(Peters, 2005; Del Moral, Doucet, & Jasra, 2006; Peters, Fan,
& Sisson, 2012). As a result, the state-space restriction of par-
ticle filtering is removed and SMC becomes an attractive al-
ternative to MCMC. A key advantage of SMC samplers over
their MCMC counterparts is that model evaluations are in-
dependent and can be run in parallel, potentially improving
parameter estimation times by orders of magnitude.

The work presented here focuses on the efficiency and perfor-
mance of a generalized parallel SMC sampler for static pa-
rameter estimation in the context of non-deterministic prog-
nostics. In particular, two critical benefits provided by SMC
to the PHM field are discussed. First, a potential path to-
ward real-time, high-fidelity prognostics using a combination
of surrogate modeling and a parallel SMC sampler is demon-
strated. Second, the use of SMC samplers to enable tractable
parameter estimation for full-fidelity (i.e., non-surrogate-
assisted) damage models is discussed. Both of these topics
are explored in the context of fatigue crack growth in a ge-
ometrically complex metallic specimen. Three introductory
sections precede the results and conclusions. These sections
include discussion of (i) the relevant SMC theory, (ii) the case
study used to demonstrate the proposed method, and (iii) an
MCMC-based benchmark for method evaluation.

2. ADAPTING SEQUENTIAL MONTE CARLO FOR
STATIC PARAMETER ESTIMATION

The theory presented in this section is based on work by
Nguyen et al. (Nguyen, Septier, Peters, & Delignon, 2016),
and an attempt was made to maintain consistency in notation.
The review here is brief, and the reader is encouraged to refer
to (Nguyen et al., 2016) for more detail.

Assume that the relationship between a predictive damage
model, M and a set of available damage diagnoses, or ob-
servations, is given by

Y =M(θθθ) + ε, (1)

where Y , θθθ, and ε are random variables representing the
measurements, model parameters and measurement errors,
respectively. The goal of parameter estimation is to quan-
tify the uncertainty in θθθ given realizations y. In the context
of prognostics, this amounts to a non-deterministic calibra-
tion of model parameters using noisy diagnostic information
obtained throughout the life of the monitored component or
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structure. Probabilistic predictions of some quantity of inter-
est are obtained via propagation of the quantified parameter
uncertainty through the model to some failure condition.

According to Bayes’ Theorem, the parameter posterior distri-
bution of interest is

p(θθθ|y) =
p(y|θθθ)p(θθθ)∫

Θd
p(y|θθθ)p(θθθ)

=
p(y|θθθ)p(θθθ)

Z
, (2)

where p(y|θθθ) is the likelihood expression, which defines the
probability of observing y given θθθ, and p(θθθ) is the prior dis-
tribution, which aggregates any knowledge that is available
a priori regarding the parameter probability distributions. A
direct solution to Equation 2 is typically intractable, partic-
ularly when considering the normalizing constant, Z, which
requires integration over the entire d-dimensional parameter
space Θd. However, making the assumption that the errors
are normally distributed, ε ∼ N (0, σ2), allows for the point-
by-point evaluation of the unnormalized posterior distribu-
tion; i.e., p(θθθ|y) ∝ p(y|θθθ)p(θθθ).

In general, the goal of Sequential Monte Carlo (SMC) meth-
ods is to approximate Equation 2 via sequential importance
sampling (Theodoridis, 2015). One of the keys to successful
importance sampling is selecting an importance distribution,
η(θθθ), that produces samples in the region(s) where the target
distribution, π(θθθ), exhibits high probability density. That is,
if the two distributions are vastly different, estimators con-
structed using importance sampling will exhibit high vari-
ance. This issue is exacerbated when sequentially sampling
in this manner because the effects of poor sampling distribu-
tions are propagated to each subsequent step.

The base SMC sampler used herein is designed to reduce
the effect of selecting a η(θθθ) that differs significantly from
π(θθθ) = p(θθθ|y). This is accomplished by using what is re-
ferred to as a likelihood tempered sequence of target distribu-
tions, or cooling schedule. This sequence is defined as

πt(θθθ) =
p(θθθ)p(y|θθθ)φt

Zt
=
γt(θθθ)

Zt
, (3)

where {φt}Tt=1 is a non-decreasing sequence with boundaries
φ0 = 0 and φT = 1. Defining the sequence in this man-
ner means that the sampler begins by estimating what is typ-
ically a known distribution – the parameter prior probabil-
ity distribution, p(θθθ) – which can be accomplished by setting
η1(θθθ) = p(θθθ). In a monotonic manner, the target distribution
is then gradually transitioned to the final target distribution of
interest, πT (θ), which is equal to Equation 2. This transition
helps to ensure that, at each sampling step, the importance
distribution is similar to the target distribution. As with any
Bayesian inference procedure, it is thus important to make
a judicious choice of prior distribution, particularly one that
encompasses potential regions of high posterior probability
density.

Leveraging the existing maturity of particle filters, the se-
quential importance sampler (SIS) (Doucet et al., 2000; Aru-
lampalam et al., 2002) can be applied to the likelihood tem-
pered sequence. To do so, the sequence of target distributions,
{π̃t}Tt=1, is defined on the path-space which emits πt(θθθ) as
marginals. The dimension of the joint distribution support in-
creases with time; i.e., supp(π̃t) = Θd × Θd × . . . × Θd =
(Θd)t. The target distribution in path-space at time t is thus
the joint distribution of the parameters at all times along the
path,

π̃t(θθθ1:t) =
γ̃t(θθθ1:t)

Zt
=
γt(θθθt)

Zt

t−1∏
k=1

Lk(θθθk+1, θθθk), (4)

where 1 : t represents all times along the path up to time t,
and {Lk(θθθk+1, θθθk)}t−1

k=1 are backward Markov kernels rep-
resenting the probability density of a backward move from
θθθk+1 to θθθk.

Recast as a particle method, the estimate of each target distri-
bution πt is given by

πNt (θθθt) ≈
N∑
m=1

W̃
(m)
t δ(θθθt − θθθ(m)

t ), (5)

where the particle system consists of N particles with
corresponding normalized weights that form the set
{θθθ(m)

1:t , W̃
(m)
t }Nm=1 and where δ denotes the Dirac delta

function. An estimate of the expectation of any integrable
function ϕ(·) with respect to this distribution is

EπNt [ϕ(θθθt)] =

N∑
m=1

W̃
(m)
t ϕ(θθθ

(m)
t ). (6)

The transition to each subsequent target distribution is carried
out via recursive importance sampling. In traditional parti-
cle filtering, the particles are transitioned to the next target
through a two step process: (i) predict the future state us-
ing the state-space model, and (ii) correct the prediction by
reweighting the particles given new data. The method used
here is similar, except that the target being approximated is
static, requiring a different approach to transitioning the par-
ticles. To propagate the particles from π̃t to π̃t+1, the follow-
ing proposal distribution is used:

ηt(θθθ
(m)
1:t ) = η1(θθθ

(m)
1 )

t∏
k=2

Kk(θθθ
(m)
k−1, θθθ

(m)
k ), (7)

where {Kk(θθθ
(m)
k−1, θθθ

(m)
k )}tk=2 are forward Markov kernels,

representing the probability density of a forward move from
θθθt−1 to θθθt. From importance sampling, the unnormalized im-
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portance weights are

W
(m)
t ∝ π̃t(θθθ

(m)
1:t )

ηt(θθθ
(m)
1:t )

∝ wt(θθθ(m)
t−1, θθθ

(m)
t )W

(m)
t−1 , (8)

where wt is termed the incremental weight function and takes
the form

wt(θθθ
(m)
t−1, θθθ

(m)
t ) =

γt(θθθ
(m)
t )Lt−1(θθθ

(m)
t , θθθ

(m)
t−1)

γt−1(θθθ
(m)
t−1)Kt(θθθ(m)

t−1, θθθ
(m)
t )

. (9)

The optimal choice for Kt(θθθt−1, θθθt) = πt(θθθt), which is only
known up to some proportionality. While computationally
intensive, Markov chain Monte Carlo (MCMC) methods are
excellent tools for approximating probability distributions of
this type. Thus, Kt is chosen to be a MCMC kernel with
invariant target πt(θθθt). The maturity of MCMC methods in
the literature can be leveraged to choose the specific MCMC
sampling algorithm that is most appropriate for a given prob-
lem.

As shown in (Peters, 2005; Del Moral et al., 2006), the choice
of the backward kernel can be arbitrary and still provide
asymptotically consistent estimates, but it can also be opti-
mized for performance. Omitting some detail for brevity, if
the backward kernel takes the form

Lt−1(θθθt, θθθt−1) =
πt(θθθt−1)Kt(θθθt−1, θθθt)

πt(θθθt)
, (10)

then the incremental weight function simplifies to

wt(θθθ
(m)
t−1, θθθ

(m)
t ) =

γt(θθθ
(m)
t−1)

γt−1(θθθ
(m)
t−1)

= p(y|θθθ(m)
t−1)∆φt , (11)

where ∆φt = φt−φt−1. Substituting Equation 11 into Equa-
tion 8, a recursive relationship is obtained to update parti-
cle weights. Note that the update only depends on the par-
ticles from time t− 1; i.e., those yet to be transitioned via
the MCMC forward kernel. In practice, this means that the
weights are actually updated prior to the MCMC step.

As with SIS for particle filtering applications, degeneration
of the particle population is often unavoidable, especially
when the initial proposal distribution, η(θθθ), differs signifi-
cantly from the target distribution. A degenerate population is
one where only a few of the particles have significant weights
and the variance of the weights is large. Resampling with
replacement can alleviate this issue. A common method for
determining when resampling is required is to monitor the
equivalent sample size,

ESSt =

[ N∑
m=1

(W̃
(m)
t )2

]−1

. (12)

If this value falls below a user-defined threshold value, ESS,
then resampling is conducted.

In an effort to increase accessibility for general scientific and
engineering applications, Nguyen et al. produced a general
algorithm for implementation of the SMC theory presented
in this section (Nguyen et al., 2016). Their algorithm was
adapted for parallel computing on distributed memory sys-
tems herein, as outlined in Algorithm 1. This parallel ver-
sion was implemented using the mpi4py module (L. Dalcı́n,
Paz, & Storti, 2005; L. Dalcı́n, Paz, Storti, & DElı́a, 2008;
L. D. Dalcı́n, Paz, Kler, & Cosimo, 2011) in Python 2.7.
Since the particles are independent of one another for a given
iteration, the steps of the algorithm that involve actual model
evaluations – namely those associated with lines 4 and 15 in
Algorithm 1 – can be carried out in an embarrassingly par-
allel fashion across all available processors. While not cur-
rently available, an effort will be made post-publication of
this conference paper to release an open source version of the
software.

Algorithm 1 Parallel SMC Sampler (adapted from (Nguyen
et al., 2016))

1: procedure INITIALIZE PARTICLES, t = 1:
2: Sample {θ(m)

1 }Nm=1 ∼ η1(·).
3: Partition {θ(m)

1 }Nm=1; scatter to available processors.
4: Compute W (m)

1 = p(θ)p(y|θ)φ1
η1(θ

(m)
1 )

for all m in parallel.

5: Gather unnormalized weights on main processor.

6: Compute normalized weights, W̃ (m)
1 =

W
(m)
1∑N

j=1W
(j)
1

.

7: Resample if ESS < ESS.
8: end procedure
9: procedure ITERATE OVER TARGET SEQUENCE:

10: for t = 2, . . . , T do
11: Compute W (m)

t = W̃
(m)
t−1 p(y|θ

(m)
t−1)∆φt .

12: Compute W̃ (m)
t =

W
(m)
t∑N

j=1W
(j)
t

.

13: Resample if ESS < ESS.
14: Partition and scatter {θ(m)

t−1}Nm=1.
15: Mutate particles; sample θ(m)

t ∼ Kt(θθθ(m)
t−1; ·).1

16: Gather θ(m)
t and p(y|θ(m)

t ) on main processor.
17: end for
18: end procedure

As a final note, while not discussed or implemented herein,
Nguyen et al. developed methods for choosing an optimal
cooling schedule, {φt}Tt=0 based on a user-defined T . See
(Nguyen et al., 2016) for more information.

1Kt(·; ·) is an n-step, πt(·)-invariant Markov chain Monte Carlo (MCMC)
kernel.
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Figure 1. Diagram of the fatigue test specimen.

3. CASE STUDY: TEST SETUP AND MODEL DESCRIP-
TION

The specimen used in this work was developed as part of
NASA’s Convergent Aeronautics Solutions (CAS) Digital
Twin project. The specimen design incorporated the primary
geometric features of an experimental aircraft component that
was deemed fatigue-critical. The aircraft was part of the
Subsonic Ultra Green Aircraft Research (SUGAR) Project
(Bradley, Droney, & Allen, 2015; Bradley & Droney, 2015;
Bradley, Allen, & Droney, 2015), a joint effort between Boe-
ing and NASA to develop next-generation aircraft. These fea-
tures were combined to form the tensile specimen shown in
Figure 1, which comprises fourteen potential crack initiation
sites – two at each hole and one at each notch fillet. The spec-
imen was intentionally complex, providing an excellent sand-
box for testing prognostic algorithms and structural health
monitoring techniques. The counter-sunk holes and thickness
changes necessitated the types of high-fidelity crack growth
models that were the motivation of the present study.

A quasi-random-amplitude load spectrum was applied to the
specimen to simulate real-world operation. The load spec-
trum was formed by generating a series of load blocks, each
defined by a randomly selected maximum load and duration,
measured in cycles. Within each load block, the fatigue load-
ing was constant amplitude, and the minimum load was de-
fined by a load ratio,R, of 0.1. When implementing the prog-
nostic system described in this paper, it was assumed that the
load up to the current cycle was known (i.e., it could be mea-
sured with negligible error but future loads were unknown
and had to be predicted).

Table 1. Visual measurements of fatigue crack length with
added noise. The cycles are displayed as offsets relative to
the cycle at which a crack was first observed, which was
2,277,380 cycles.

Relative Cycle Crack length (in)
+0 0.0523

+3,756 0.0884
+10,932 0.1316
+15,325 0.1392
+20,299 0.2113
+26,456 0.2440
+30,686 0.2784
+34,631 0.2985
+36,439 0.3064
+40,778 0.3885
+45,635 0.3995
+48,991 0.4627
+53,222 0.6117

A fatigue crack initiated at the top fillet and grew into the
second hole, as indicated in Figure 1. Two-dimensional mea-
surements of the surface crack tip location were obtained
throughout the test using an optical microscope. These mea-
surements were converted into a one-dimensional surface
crack length. Gathering visual measurements with the op-
tion to manually add noise was preferred for the experiment
over other diagnostic methods as it provided flexibility when
studying the effect of noise. Tests conducted previously as
part of the Digital Twin project (yet to be published) used a
strain-based diagnostic approach to measure the crack length
with quantified uncertainty. The noise was found to be ap-
proximately Gaussian in these tests with average variance,
νavg = 4.83 × 10−4in2. This variance was used to define
the Gaussian white noise added to the visual measurements
in the present study; i.e., ε ∼ N (0, νavg). The noisy data is
included in Table 1.

The damage model used in this work was based on the frac-
ture simulation software FRANC3D (“FRANC3D Reference
Manual, Version 7”, 2016). The code inserts and grows
cracks within an existing finite element model through a lo-
cal/global remeshing scheme. Although it enables arbitrary,
three-dimensional crack growth, FRANC3D is currently lim-
ited to linear elastic fracture mechanics (LEFM). Once a
crack is inserted, the new mesh is passed to any one of a vari-
ety of finite element codes that FRANC3D is compatible with
including commercial codes such as ANSYS and ABAQUS
and government codes such as SIERRA Mechanics (Sierra
Solid Mechanics Team, 2011) and ScIFEN2 (Warner, Bomar-
ito, Heber, & Hochhalter, 2016). ScIFEN, which is a paral-
lel finite element code developed at NASA Langley Research
Center, was used in this work.

In the spirit of the Digital Twin concept, as-built dimensions
were used to create a three-dimensional finite element model

2Scalable Implementation of Finite Elements by NASA
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of the test specimen. Before testing, the specimen was out-
fitted with an optimized pattern for digital image correlation
(DIC); see (Bomarito, Hochhalter, Ruggles, & Cannon, 2017;
Bomarito, Hochhalter, & Ruggles, 2017) for more details on
the optimization and pattern application. DIC data was ob-
tained during the initial fatigue cycle and the results were
used to calibrate the boundary conditions of the model to cap-
ture any test stand misalignment or twist during testing.

The specimen geometry and the nature of the applied load-
ing resulted in fourteen highly-localized regions of elevated
stress concentration in the specimen, located at the left and
right sides of each of the six holes and at each of the two
notch fillets. It was assumed that the crack would start at one
of these fourteen locations, and, thus, fourteen crack growth
simulations were run in advance of testing. The bolt hole
cracks were all placed at the shoulder formed between the
countersink and the hole. These cracks were semicircular in
nature with a radius of 0.02 inches.3 The cracks inserted at
the fillet were through-cracks with a length of 0.02 inches.
All initial cracks were planar and oriented perpendicular to
the loading direction. The simulated fatigue crack growth was
non-planar.

Due to the variability in load amplitude, it was expected that
near-threshold driving forces would be observed. Therefore,
the NASGRO equation (version 3) (Mettu et al., 1999) was
chosen to define the crack growth rate within the FRANC3D
simulation,

da

dN
= C

[(
1− f
1−R

)
∆K

]n(1− ∆Kth
∆K

)p
(

1− Kmax
KC

)q . (13)

Here, da is the infinitesimal crack extension at a particular
point along the front, and dN is the infinitesimal number of
cycles consumed during the extension. The crack driving
force, ∆K, is the difference in stress intensity factor at the
maximum and minimum load of a given fatigue cycle; i.e.,
∆K = Kmax −Kmin. The threshold stress intensity factor is
denoted as ∆Kth. The parametersC, n, p and q are empirical
constants, R = Kmin/Kmax = 0.1 for each load cycle, f is
the Newman crack closure term, and KC is the critical stress
intensity factor beyond which unstable crack growth ensues.

At each crack growth step, the displacements in the cracked
finite element model are computed by ScIFEN. These dis-
placements are then used by FRANC3D to compute the stress
intensity factors along the three-dimensional crack front. The
crack front is advanced at the ith point along the discretized

3Initial crack radius was chosen based on the crack size at which microscale
fatigue crack growth simulations were terminated; this multi-scale model-
ing is not discussed in this paper. See (Leser, 2017) for more detail.

crack front based on a user-defined median extension size,

∆ai = ∆amedian

[ da
dN i

da
dN median

]
, (14)

taking into account any out-of-plane kinking due to mode
II driving forces and defining da

dN median as the crack growth
rate induced by the median stress intensity factor along the
crack front. The user-defined crack growth rate equation
(e.g., Equation 13) is then integrated over the computed crack
extension to determine the number of cycles consumed by the
step. The process is iterated until a failure condition is met.

On average, the FRANC3D-based crack growth simulations
took approximately 11 minutes to complete under constant
amplitude fatigue loading. For probabilistic parameter esti-
mation, for which most methods typically require thousands
to millions of model evaluations, a simulation time of 11 min-
utes could result in months or even years of analysis. Surro-
gate modeling or reduced order modeling is commonly used
to increase the speed of high-fidelity simulations while main-
taining the primary features of the original, full-fidelity model
response. Examples of surrogate modeling for high-fidelity
fracture simulation can be found in (Li & Lee, 2005; Hom-
bal, Ling, Wolfe, & Mahadevan, 2012; Hombal & Mahade-
van, 2013; Leser et al., 2017).

In this work, a fairly simple surrogate approach was adopted.
Since the loading direction was invariant throughout testing
(i.e., only amplitude was random), it was assumed that a finite
set of fourteen potential crack paths existed, {Ci}14

i=1, corre-
sponding to the aforementioned initiation sites. The median
a vs. Kmax curve was stored for each simulated Ci. Given a
known load ratio, R, these curves defined ∆K as a function
of crack length in Equation 13.

Assuming the set of potential crack paths was fixed, all re-
maining uncertainty about fatigue life, the prognostic quan-
tity of interest, was attributed to the parameters describing
the linear region of the crack growth rate curve, C and n, and
the initial crack length at the zeroth4 cycle, a0. These were
the random variables to be estimated via Bayesian inference.
The remaining model parameters were fixed at the calibrated
values found in the NASGRO database. Evaluating the surro-
gate model thus involved re-integrating Equation 13 given a
realization θ = [a0, C, n]T and a crack initiation location. In
this particular study, the crack initiation location was known
and fixed at the observed initiation coordinates.

4. MARKOV CHAIN MONTE CARLO BENCHMARK

Markov chain Monte Carlo (MCMC) sampling is a widely
accepted method for parameter estimation in the case of a
single, static posterior distribution (i.e., estimating the in-
4Note that the zeroth cycle is reported as an offset from the cycle at which
a crack was first detected, which was 2,277,380 cycles. This definition is
consistent with the data in Table 1.
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Table 2. Prior distribution definitions

Parameter a0 (in) log10 C n

Distribution Trunc. Normal Uniform Uniform
Mean 5.3× 10−2 - -
Variance 4.8× 10−4 - -
Lower limit 0.0 -50.0 0.0
Upper limit 1.0 0.0 50.0

verse solution to Equation 2). In this study, MCMC sam-
pling served as a benchmark with which to evaluate the per-
formance of the proposed parallel SMC implementation. The
comparison was focused on both total simulation time and
posterior sample statistics.

To approximate the posterior parameter distribution, the data
set shown in Table 1 was used along with the model described
in Section 3. The marginal prior distributions are defined in
Table 2. It was assumed that these parameters were indepen-
dent from one another, thus giving a full definition of the joint
prior distribution, p(θθθ). Noninformative distributions were
used for log10 C and n, while a truncated normal distribution
was used for a0. The mean of the a0 prior distribution was
set equal to the first-available diagnosis of the crack length,
while the variance was assumed to be 1.5νavg. For simplicity
of the demonstration, the measurement noise variance, νavg,
was assumed to be deterministic and known, and was thus
fixed during MCMC sampling; i.e., νavg = 4.83× 10−4in2.

The Delayed Rejection Adaptive Metropolis (DRAM) algo-
rithm (Haario, Laine, Mira, & Saksman, 2006) was used to
generate a Markov chain with 50,000 samples. The first
10,000 were discarded as burn-in (i.e., the period during
which it was assumed the chain had yet to reach a station-
ary condition and was still exploring the parameter space).
For adaptive sampling within the DRAM algorithm, the co-
variance of the proposal distribution was updated every 1,000
samples based on the current state of the Markov chain. Chain
convergence was diagnosed by monitoring the Geweke scores
(Geweke et al., 1991). The MCMC sampling took 52,524
seconds, or 14.6 hours, to complete.

In Bayesian prognostics, parameter probability density func-
tions (PDFs) are estimated from MCMC-derived chains us-
ing methods such as kernel density estimation. Samples are
drawn from the PDFs and propagated through the model via
Monte Carlo simulation to provide probabilistic predictions
of some quantity of interest (e.g., remaining useful life). This
process is typically referred to as uncertainty propagation. In
practice, the samples in the chain can be used directly as long
as they are independent. Low autocorrelation is commonly
used as a measure of sample independence. Sub-sampling, or
thinning of the chains, can be conducted when the autocor-

Figure 2. Autocorrelation of the n trace of the parameter
chain (a) before thinning and (b) after thinning.

Table 3. Statistics estimated by the MCMC-based sampler.

Parameter Mean Variance

a0 4.877× 10−2 9.752× 10−5

log10 C −7.546 0.1925
n 3.005 0.2436

relation is high.5 Depending on the computational expense
associated with the forward simulation, the chains may also
be sub-sampled to reduce workload.

Autocorrelation of the sampled parameters in the present
benchmark study was in fact high, as shown in Figure 2 (a).
This is typically a sign of sub-optimal mixing. To reduce this
autocorrelation and to simulate a sub-sampling for prognostic
purposes, the chains were thinned by discarding all but ev-
ery 10th sample. Parameter estimation results for the thinned
chain are shown in Figure 3. The resulting autocorrelation of
the chain after thinning is shown to have been reduced sig-
nificantly in Figure 2 (b). The thinned chains will be used
to compare this benchmark with the SMC results in Section
5. Statistics obtained using the thinned chains are shown in
Table 3.

5See (Link & Eaton, 2012) for more discussion on thinning chains and when
it is appropriate in practice.

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Figure 3. Benchmark multi-dimensional parameter chain
sampled via MCMC and the kernel density estimates of the
associated marginal PDFs.

5. SMC STATIC PARAMETER ESTIMATION AND COM-
PARISON WITH BENCHMARK

The goal of the present study was to use the parallel imple-
mentation of the sequential Monte Carlo (SMC) methodology
presented in Section 2, Algorithm 1, to produce results simi-
lar to the benchmark of Section 4. The expected outcome was
a parameter estimation process that could match the perfor-
mance of an MCMC benchmark while expending a fraction
of the computation time.

To facilitate a fair comparison of computation time, both the
parallel SMC code and the MCMC code were implemented
on the Pleiades supercomputer, which is housed at the NASA
Advanced Supercomputing (NAS) facility at Ames Research
Center. All sampling procedures were executed on Sandy
Bridge nodes with two eight-core, 2.6 GHz Intel Xeon E5-
2670 processors. The three primary tuning parameters of the
SMC sampler were set as shown in Table 4 such that the total
number of model evaluations required, N ×T ×Z = 50, 000
evaluations. This was equivalent to the minimum number of
model evaluations required for the MCMC benchmark in the
ideal case (i.e., assuming perfect mixing and that all proposed
samples were accepted). This assumption was conservative in
favor of MCMC. As was the case for the MCMC benchmark,
it was assumed that the measurement error ε ∼ N (0, νavg)
with νavg = 4.83× 10−4.

When distributing the workload of the SMC sampler on a
high-performance computing platform, a theoretical maxi-

Table 4. SMC Tuning Parameters

Tuning Parameter Value
Number of particles, N 1,000
Number of cooling steps, T 10
Number of MCMC steps, Z 5

Figure 4. Theoretical and observed computation times for
parameter estimation using the parallel SMC sampler of Al-
gorithm 1 and the surrogate model with an increasing number
of CPUs.

mum exists on the number of processors used, P , such that
P ≤ N , the total number of particles. This limit is due to
the fact that the parallelization is being carried out over the
particle population, meaning processors exceeding this limit
would not have a corresponding particle to evaluate. The
model evaluation itself could be sped up with additional cores
via a nested parallel operation, but this is outside the scope of
this work.

By assuming an average surrogate model evaluation time of
0.5 seconds, a theoretical scaling curve was be generated.
The time to complete an SMC sampling procedure is approx-
imately equal to the product of the evaluation time and the
total number of non-parallel model evaluations, as defined by
the SMC tuning parameters. The scaling behavior of the par-
allel algorithm presented in this study was examined by re-
peating the SMC-based parameter estimation process using
the tuning parameters in Table 4 and varying the number of
processors used, P . The theoretical scaling and true scaling
results are shown in Figure 4. At the maximum number of
processors, P = 1, 000, the SMC sampling took 32 seconds,
three orders of magnitude less than the MCMC benchmark
time (52,524 seconds).

Qualitatively, the SMC results can be compared to the bench-
mark through examination of the joint sample plots in Fig-

8
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Table 5. Statistics estimated by the SMC-based sampler using
1,000 particles.

Parameter Mean Variance

a0 4.798× 10−2 5.678× 10−5

log10 C −7.492 9.515× 10−2

n 2.946 0.1229

Table 6. Percent relative difference (PRD) in estimated statis-
tics (SMC vs. MCMC)

1,000 particles 4,000 particles
Parameter Mean Variance Mean Variance

a0 1.65% 0.08% 0.59% 0.08%
log10 C 0.71% 1.30% 0.73% 1.31%

n 1.98% 4.06% 2.22% 4.11%

ure 5. Correlation and spread appear to be similar between
the two sampling methods. The estimated means from each
method are plotted as dotted lines, and general agreement is
observed.

Quantitatively, the SMC-based estimates of mean and vari-
ance are displayed in Table 5, and the percent relative dif-
ference (PRD) of those estimates with respect to the MCMC
benchmark are shown in Table 6 under the “1,000 particles”
heading. The PRDs for mean and variance were calculated
according to the equations

PRDµ =
2 |µSMC − µMCMC|
µSMC + µMCMC

× 100% (15)

and

PRDσ2 =
2
∣∣σ2

SMC − σ2
MCMC

∣∣
µSMC + µMCMC

× 100%, (16)

where, µ and σ2 represent an estimated mean and variance,
respectively, and the subscripts indicate whether the estima-
tor was built using SMC or MCMC sampling. As shown,
all of the PRDs are less than 5%, indicating good agreement.
It should be noted that, although serving as the benchmark,
both methods are approximations of an unknown quantity,
and there is no guarantee that the MCMC estimator is any
more correct than the SMC estimator in this case. Instead,
the focus here was on verifying the SMC approach and com-
paring performance with a commonly used method.

According to Equation 6, expectations of some function of
the model parameters (e.g., the model itself) can be estimated
directly using the final particle system, {θθθ(m)

T , W̃
(m)
T }. This

provides a means of predicting expectations of a quantity of
interest, such as remaining useful life. Perhaps of more use
in fatigue crack growth prognostics is the ability to obtain
an estimate of the parameter joint PDF. Propagating the un-
certainty represented by this PDF via Monte Carlo sampling

enables calculation of credible and prediction intervals,6 and
increases the information available for decision making.

For MCMC sampling, this PDF is typically obtained by gen-
erating a sample histogram and using kernel density estima-
tion. In SMC, particles can be resampled with replacement
to produce a set of equally likely samples; however, it is not
uncommon for the number of particles chosen for SMC to be
less than the desired number of samples for histogram con-
struction, as was the case for the 1,000 particle example pre-
sented previously. One solution would be to use a stochastic
reduced order model for uncertainty propagation with limited
samples (Warner, Grigoriu, & Aquino, 2013; Warner, 2018),
an approach that will be left for future work. Instead, a brute
force approach was adopted here in which the number of par-
ticles was increased to the desired sample size and the paral-
lel SMC implementation was used to maintain sampling effi-
ciency, albeit at the expense of more processors.

Using N = 4, 000 particles (i.e., the same number of sam-
ples in the thinned set of MCMC benchmark samples) and
P = 4, 000 processors, the weighted samples shown in Fig-
ure 6 were obtained. Compared to the 1,000 particle system,
the variance of the weights in the 4,000 particle system was
reduced,7 which was expected due to the asymptotic conver-
gence properties of SMC estimators as the number of parti-
cles N → ∞. However, the PRDs in Table 6 are largely
unaffected. Again, it is important to note that the true poste-
rior distribution is unknown and the MCMC and SMC results
are approximations.

The sampling was completed in 70.5 seconds, over twice the
32 seconds achieved for the 1,000 particle case. This increase
in sampling time may be due to the increased single-processor
workload between parallel operations in Algorithm 1, ineffi-
ciencies in the implementation of the algorithm, or communi-
cation overhead. On the topic of efficient implementation, the
gather operations in Algorithm 1 are blocking, meaning that
all particle evaluations must be completed before proceeding
with the next step in the cooling schedule. This is an inherent
source of inefficiency that will be hard to avoid. In this partic-
ular case, a larger number of particles meant that the param-
eter space was explored more thoroughly in the early cooling
steps. It is likely that samples were drawn from regions where
simulations took longer to complete than the anticipated av-
erage simulation time. Regardless, the results of this study
suggest that SMC is a valid alternative to MCMC, capable
of significantly faster sampling. The parallel SMC sampler
can approach real-time capabilities when coupled with rapid
modeling techniques such as the surrogate-based approach to
high-fidelity modeling presented herein.

6Credible intervals are a measure of model fit; prediction intervals are a range
of values within which the next observation is expected to reside, with some
probability (Smith, 2014).

7The variance of particle weights were 1.440×10−8 and 1.712×10−8 for
the 1,000 particle and 4,000 particle samples, respectively.
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Figure 5. Joint sample points generated from (a) the MCMC benchmark and (b) the SMC samplers (number of processors used,
P = 1, 000; the dotted lines represent the estimated parameter means.

Figure 6. Joint sample points generated from the SMC sam-
pler (number of processors used, P = N = 4, 000); the dot-
ted lines represent the estimated parameter means.

6. POTENTIAL OF SMC SAMPLERS FOR FULL-
FIDELITY PROGNOSTICS

While not demonstrated in this work, there is significant po-
tential for the proposed parallel SMC implementation to yield
full-fidelity prognostics – that is, those that do not require sur-
rogate modeling to achieve computational efficiency. Com-
putation times will certainly increase compared to those re-
ported in Section 5 if using a full-fidelity fatigue crack growth
simulator. However, SMC can provide tractability to analy-
ses that are otherwise intractable with MCMC. This is true for
high-fidelity fatigue simulations as well as many other appli-
cations of interest to the prognostics community.

To further argue this point, a brief thought experiment is pre-
sented. The theoretical simulation time shown in Figure 4
was based on the average time required to complete a single,
deterministic fatigue crack growth simulation using the sur-
rogate model, which was 0.5 seconds. Replacing this value
with the average simulation time required to complete a sim-
ulation using the full-fidelity, FRANC3D model, which was
11 minutes on a single processor, provides a reliable predic-
tion of SMC performance. As shown in Figure 7, maximizing
the number of processors (i.e., setting P = N ) would yield
a total parameter estimation time of 9 hours and 10 minutes.
In comparison, the approximate minimum time to generate
50,000 samples via MCMC based on the average FRANC3D
evaluation time of 11 minutes is, conservatively, 9,167 hours,
or 382 days.
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Figure 7. Theoretical computation times for parameter esti-
mation utilizing the parallel SMC sampler of Algorithm 1 and
FRANC3D to simulate fatigue crack growth.

7. SUMMARY AND CONCLUSION

A parallel sequential Monte Carlo (SMC) algorithm was
developed and implemented using the mpi4py module in
Python 2.7. The algorithm was applied to prognosis of crack
growth in a geometrically complex, metallic specimen sub-
jected to variable amplitude fatigue loading. A surrogate
model was developed for crack growth simulation, and the
uncertainty in model parameters was quantified using the par-
allel SMC sampler. The results were compared to parameters
estimated via Markov chain Monte Carlo (MCMC) methods
for verification and performance evaluation. The SMC sam-
pler provided estimates of mean and variance within a relative
percent difference of 5% when compared to the MCMC re-
sults and decreased total computation time by three orders of
magnitude.

Uncertainty propagation was not explicitly demonstrated in
this work. Future work should demonstrate methods for prop-
agating parameter uncertainty obtained from SMC static sam-
pling. Some methods worth investigating include: (i) Monte
Carlo sampling using a brute force approach where the num-
ber of particles is set equal to the desired number of samples
and (ii) smart Monte Carlo methods such as stochastic re-
duced order modeling (SROM). Efforts will also be made to
release an open source version of the parallel SMC code used
in this study and to implement some of the other self-tuning
methods available in the literature.

In conclusion, parallel SMC sampling was shown to be a le-
gitimate tool for real-time prognostics and health manage-
ment (PHM) when coupled with a rapid model. For applica-
tions requiring expensive high-fidelity models, SMC can be
coupled with a surrogate modeling approach to maintain this
real-time capability. Based on preliminary study, the parallel

SMC framework could also enable parameter estimation for
the full-fidelity models as well, without the need for a surro-
gate. This is in contrast to MCMC sampling, which would
be intractable in many of these cases. Based on these ben-
efits and the flexibility of the algorithm, parallel SMC sam-
plers have the potential to make a lasting impact on the field
of PHM and could be instrumental in accelerating the main-
stream adoption of PHM methodologies.
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