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ABSTRACT 

This paper aims to develop an integrated shipboard 

condition prognostics system that integrates sensing, data 

processing, feature extraction, and fault diagnostic and 

prognostic algorithms with applications to rotating 

machinery. The proposed system is designed and 

implemented with an application case of a number of 

bearing systems of seeded faults at different fault 

dimensions. The overall system design, experimental design 

and platform, bearing fault modes analysis, feature 

extraction, fault dynamics modeling, diagnostics and 

prognostics design, and human-machine interface are 

discussed with details. The proposed effort aims to provide 

effective assessment of the condition of shipboard rotating 

machinery systems and lower the overall operation and 

maintenance (O&M) cost. The proposed work is tested on 

data of bearings with various fault modes, models with 

multiple interactive faults, and experimental testbed as a 

whole system. The proposed condition prognostics system is 

scalable, generic, easy-to-implement, and mathematically 

rigorous, which can be applied to a variety of Navy 

applications. 

1. INTRODUCTION 

Navy shipboard machinery systems are crucial components 

to accomplish critical military missions safely and reliably. 

Traditional maintenance practices rely on breakdown or 

schedules that are not only labor intensive, but also lead to 

unexpected downtime and increased operation and 

maintenance (O&M) cost (Leger and Iung, 2012). More 

recently, condition-based maintenance (CBM) adopts a 

paradigm shift for maintenance of complex machines and 

large-scale assets.  Fault diagnosis and prognosis (FDP) and 

nondestructive evaluation/structural health monitoring 

(NDE/SHM) are fundamental enabling technologies for 

CBM. However, traditional approaches are facing 

challenges with requirements in terms of scalability and 

real-time implementation.  

First, traditional FDP algorithms focus on a single 

component. Although multiple faults from multiple 

components are considered in some existing approaches, 

they treat each fault individually as an isolated case. In real 

applications, a fault or degradation on a component or 

subsystem is often interacting with or has influence on 

faults (or degradations) on other components or subsystems, 

resulting in cascading failure. These interacting faults form 

a multidimensional FDP problem that challenges the 

traditional approaches, both in theory and implementation.  

Second, most techniques found in literature only use 

diagnostic information to react to faults (Zhang et. al, 2011; 

Yu et. al, 2013; Flett and Bone, 2016; Zhou et. al, 2016, 

Zhao et. al, 2017).  These techniques cannot overcome the 

fact that they are reactive paradigms. That is, these 

techniques are only activated by the detection of faults and 

maintenance is only optimized based on current health 

condition without consideration of prognostic information, 

which predicts the fault state in a future time instant and 

estimates the remaining useful life (RUL) (Orchard et. al, 

2013; K. Singleton et. al, 2015). As a result, these strategies 

may not be optimal over a long period of time. By 
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integrating RUL in maintenance, it improves the reactive 

CBM strategies to prognostics-enhanced proactive 

strategies, making systems more reliable, operationally 

available, and economically maintained. In addition, the 

utilization of information about fault state and RUL enables 

the evaluation of the effects of faults on system performance 

and risk of mission failure. This can be used to avoid 

undesirable states and operating modes to defer potential 

failure through optimal use strategies and planning. 

Third, real-time FDP is always a challenge especially when 

distributed FDP is widely accepted in which FDP functions 

are deployed on local microprocessors and embedded 

systems. The distributed FDP has advantages of low-cost 

and high reliability. However, due to their low capabilities 

in computation, storage, and communication, these local 

processors cannot afford traditional FDP algorithms with 

high computational complexity. Only very simple FDP 

functions, such as limit checking, trend analysis, etc. can be 

applied, which sacrifice performance in terms of accuracy, 

precision, and robustness. To address this problem, we 

propose a particle filtering based FDP algorithm for 

distributed real-time implementation.  

To overcome these challenges, under the sponsor of Navy 

Engineering Education Consortium (NEEC), this paper 

proposes a low-cost distributed shipboard condition 

prognostics system (SCPS) that is enabled by sensing, data 

acquisition and analysis, feature extraction, fault dynamic 

modeling, particle filtering-based diagnosis and prognosis, 

operation risk evaluation, and decision-making to reduce 

O&M cost and assure critical Navy mission 

accomplishment, as shown in Fig. 1. The research goals are 

to accommodate the growing demands of distributed Navy 

shipboard machinery systems in aspects of economy, 

optimality, reliability, and safety. The proposed condition 

prognostics system is scalable, generic, easy-to-implement, 

and mathematically rigorous, which can be applied to a 

variety of Navy applications. The proposed solution is 

verified with laboratory possessed data, models, and a 

rotating machine test bed. Since it is the first year of the 

project, the focus of this paper is mainly on data acquisition, 

processing, feature extraction and fault diagnosis and 

prognosis.  

The paper is organized as follows: Section 2 discusses the 

bearing system and bearing testbed; Section 3 provides the 

diagnosis and prognosis structure; Section 4 develops a case 

study of bearing fault diagnosis and prognosis, which is 

followed by concluding remarks given in Section 5.  

2. THE BEARING DATA AND TESTBED 

Since bearings are widely used in machinery, bearing 

failures are common causes for system breakdowns, which 

typically result in a catastrophic event or costly downtime if 

such failures are not detected correctly in time. Factors that 

determine the useful life of bearings include material 

properties, lubricant properties, bearing size, number of 

rolling elements, load/speed of bearing, installation, etc. 

(Howard, 1994; Grill, 2017, Zhang et al. 2008). Health 

monitoring or condition-based maintenance of bearing 

includes anomaly detection, fault diagnosis, and failure 

Figure 1 The scheme of the proposed SCPS 
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prognosis. Anomaly detection is used to determine the 

occurrence and existence of a fault in the machine bearing 

whereas diagnosis localizes the fault and determines the 

type of fault. Finally, failure prognosis estimates the 

remaining useful life (RUL) of the damaged bearing.  

2.1. Bearing Testbed 

A rolling element bearing usually consists of an inner ring, 

outer ring, a number of rolling elements (balls or rollers), 

and a cage. The inner and outer rings have raceways that 

form a path, which allows the rolling elements rotating 

along to provide minimal friction for rotational movement. 

The rolling elements are designed to allow them contacting 

the raceways at a single point. The cage maintains an even 

and consistent spacing of rolling elements in the raceways 

during movement.  

 

Figure 2. The rotating machine test bed 
 

A rotating machine test bed is necessary in order to simulate 

shipboard bearing conditions and collect vibration data for 

algorithm development. This machine in Fig. 2 is designed 

to provide maximum control over the test bearings load and 

speed while allowing easy access for instrumentation and 

bearing replacement. The tested bearings have an inner 

diameter 25mm, outer diameter of 52mm, and are rated for a 

maximum radial load of 3200 pounds. To simulate an 

overload scenario at different speeds, the machine is capable 

of applying variable load of up to 4000 pounds and variable 

speed up to 1200 rpm. During experiments, acoustic 

emission sensors and accelerometers collect data from the 

bearing housing that is processed and used to test the 

diagnosis and prognosis algorithm. 

The test bed includes several major components including a 

3-phase motor, variable frequency drive (VFD), and 

hydraulic system. To simulate the bearing environment, the 

test bed uses a 3-phase 2 horsepower motor to rotate the 

shaft at speeds up to 1200rpm while testing various loads up 

to and beyond the bearings rated capacity. A hydraulic 

system is used to apply load rather than a weight-based 

system for safety and ease of use. To power the motor, a 

VFD is used that can be programed to automatically cycle 

through speeds and can be controlled by external signals 

sent from the computer running the prognosis algorithm. An 

acrylic shield is also used for safety when the machine is 

running to protect the operator in the event of mechanical 

failure. 

2.2. Test Plan  

The primary wear conditions in the experiments are 

overload, lack of lubrication, and introduction of abrasive 

materials to the bearing. Although rotational speed is a 

contributing factor to the rate of bearing wear, over-speed is 

not currently being tested as a primary source of failure 

since the bearings are rated up to 10000rpm. Speed is varied 

while testing the wear conditions to ensure the accuracy of 

the prognosis algorithm in a dynamic system and across a 

range of speeds. 

Bearings are subjected to 8-hour tests at 600lb load to 

establish a baseline of bearing noise characteristics and then 

are tested at 2800, 3200 and 3600 pounds for 8 hour each. 

During tests, rotational speed is cycled through 1-minute 

periods of 600, 900, and 1200rpm (Fig. 3) to simulate a 

variable speed system and sample vibration data at different 

speeds. The same test is performed for various lubrication 

scenarios including under-lubrication, no lubrication, and 

incorrect lubricant. Future tests are adapted based on these 

results. If needed, tests can be repeated until a bearing 

shows signs of degradation. The progression of the bearing 

condition from healthy to failure is record and used to 

develop the diagnosis and prognosis algorithm. After the 

test is completed and the bearing is sufficiently degraded, it 

is disassembled and inspected for inner race, outer race, and 

rolling element faults. Comparison between recorded data, 

algorithms prognosis, and physical inspection are being 

made to improve the algorithms effectiveness. 

 

Figure 3. Speed cycling during experiments 

2.3. Bearing Fault Modes 

When bearings are under load, the bearing operation related 

parameters are shown in Fig. 4, where 𝑃 is the load, ∅ is the 

extent of load zone, 𝜑 is the angle of load on the rolling 

element, and 𝑃𝑚𝑎𝑥  is the maximum radial load.  

The rotating component could be either the inner ring or the 

outer ring. For a bearing in most motors, the outer ring can 

be assumed stationary since it is generally locked on the 

stator. Therefore, we focus on this operating condition. The 
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loading type could be either radial or axial. In the case of 

axial loading, the load on any rolling element at any 

arbitrary position is constant as shown in Figure 4(a). 

Therefore,  

𝑃(𝜔𝑠𝑡) = 𝑃 (1) 

with  𝜔𝑠 being the rotating frequency of shaft.  

For radial loading, the load of a certain rolling element 

changes with its angular position, as shown in Figure (b). 

The load on the rolling element at an angle 𝜑 can be written 

as: 

𝑃(𝜑) = {
𝑃𝑚𝑎𝑥[1 − 0.5휀(1 − cos 𝜑)]𝑞 −∅ ≤ 𝜑 ≤ ∅

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where 𝑞 = 10/9 for roller bearings. he load zone ∅ and 

the maximum load 𝑃𝑚𝑎𝑥  are given by: 

∅ = cos−1(1 − 2휀); 𝑃𝑚𝑎𝑥 = 5𝑃/𝑍 cos 𝛼 (3) 

where 휀, 𝑍, and α are the load distributor, number of rolling 

elements, and contact angle, respectively.  

P

 
Pmax

Ф

φ

P(φ)

P

 
(a) Axial loading     (b) Radial loading 

Figure 4. Different loading types 
 

The rotating speed is often given by rpm and denoted as 𝑓𝑚, 

from which, the angular velocity of the shaft in unit 

rad/second (𝜔𝑠) can be calculated as 𝜔𝑠 = 𝑓𝑚/(60 × 2𝜋).  

The angular velocity of the cage (𝜔𝑐), or the fundamental 

train velocity is: 

𝜔𝑐 =
𝜔𝑠

2
(1 −

𝑑

𝑑𝑚

cos 𝛼)                                          (4) 

The frequency of rotation of the rolling elements about their 

own axes, i.e., ball spinning frequency (𝜔𝑏), is given by the 

cage rotating frequency multiplied by the ratio of the inner 

race to the ball diameter. 

𝜔𝑏 =
𝜔𝑠𝑑𝑚

2𝑑
(1 − (

𝑑

𝑑𝑚

cos 𝛼)
2

)                             (5) 

When a fault occurs, assuming no slip, every time the 

rolling elements contact the defect, an impulse force is 

generated at the fault characteristic frequency. For a defect 

on the inner raceway, outer raceway, and rolling elements, 

the fault characteristic frequencies are given by 

𝜔𝑖𝑑 , 𝜔𝑜𝑑 , 𝑎𝑛𝑑 𝜔𝑏𝑑 , respectively and are calculated as 

follows (Onel et. al, 2005): 

𝜔𝑖𝑑 =
𝑍𝜔𝑠

2
(1 +

𝑑

𝑑𝑚

cos 𝛼)                                     (6)  

𝜔𝑜𝑑 =
𝑍𝜔𝑠

2
(1 −

𝑑

𝑑𝑚

cos 𝛼)                                    (7) 

𝜔𝑏𝑑 =
𝜔𝑠𝑑𝑚

𝑑
(1 − (

𝑑

𝑑𝑚

cos 𝛼)
2

)                          (8)   

Apart from this main defect characteristics frequency, 

sidebands around these frequencies also appear in the 

spectra. The sidebands of different fault characteristic 

frequencies are shown in the Table below: 

Table 1 Fault characteristic frequencies and sidebands 

Fault Inner race  Outer race  Rolling element  

Main 𝜔𝑖𝑑  𝜔𝑜𝑑 𝜔𝑏𝑑 

Sideband 𝜔𝑠, 𝜔𝑐 𝜔𝑠, 𝜔𝑠 − 𝜔𝑐 𝜔𝑐 , 𝜔𝑠 − 𝜔𝑐 , 𝜔𝑏  

2.4. Bearing Vibration Data 

Rolling element bearings are the most essential parts in 

shipboard rotating machinery. For navy mission operations, 

the bearings are often subject to high loading, corrosive 

environment, and severe conditions. Under such severe 

condition, defects can easily occur and degrade the 

performance of the system or even damage the system if 

such defects are not detected and actions are not taken. It is 

therefore of prime importance to accurately detect and 

estimate the severity the defects, especially at the early 

stages to prevent sequent damage and reduce the costly 

downtime. Vibration signal is the mostly commonly used 

signals for bearing defects detection and identification 

because the vibration signals from accelerometers providing 

a wide dynamic range and wide frequency range (Howard, 

1994; El-Thalji and Jantunen, 2015).  

For a healthy bearing without a fault, the vibration signal 

shows a regular signature. When a defect occurs, the 

interaction between the raceway and rolling elements with 

defects generates time-varying discontinuous forces that 

change the regular signature. However, this change of 

regular signature is not obvious in its early stage and need 

advanced signal processing and detection algorithms.  

In general, the bearing defects are classified into local 

defects and distributed defects (Meyer et. al, 1980; C. M. N. 

Leite et. al). The former one includes pits, spalls, cracks, 

while the later one includes misalignment, surface 

roughness, eccentric raceway, etc. When the bearing 

operates with distributed defects, it generates a specific 

vibration signature, increases friction, and eventually leads 

to local defects.  
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Vibration data was acquired from a bearing with a naturally 

occurring spall at a sampling frequency of 204,800 Hz and 

is measured at different bearing service times. Each segment 

contains data of 8 second periods. Since bearing lifespans 

can last for millions of revolutions, there should not be a 

significant change in condition within a short time. To 

reduce unnecessary computation and data storage, data can 

be recorded for short periods of 8 seconds once per minute 

or every few minutes.  During the bearings lifespan, the 

bearing is disassembled after a certain number of services 

hours to investigate the health condition of the bearing. The 

data and health conditions are listed in Table 2. 

Table 2 Vibration data and fault dimension 

Service time Data length Spall area (mm
2
) 

0  0 

1.5 hours 8 seconds  

3.5 hours 8 seconds  

8 hours  0.3×0.2 

12 hours  0.4×0.2 

13 hours 8 seconds  

15.5 hours 8 seconds  

16 hours  05×0.2 

2.5. Bearing Fault Feature Extraction 

As the vibration signal does not indicate fault directly, 

features need to be extracted from vibration signals as an 

indicator to reveal the characteristics of bearing fault.    

 

Figure 5. Bearing fault contributing factors and feature 

extraction 
 

The fault feature extraction can be illustrated in Fig. 5. It is 

understood that part geometry, material property, loading 

profile, lubricant condition, and environmental factors are 

all contributing factors of bearing fault. From the bearing 

geometry, the fault characteristic frequency can be 

identified. Then envelope analysis can be conducted and, by 

investing the spectra of envelope signal in the frequency 

domain, feature can be extracted for fault diagnosis. More 

details are provided as follows.  

Envelope analysis (Howard, 1994), as one of the most 

prominent vibration signal processing techniques, has 

shown success in diagnosis of rolling element bearing faults 

because it is able to separate the vibration generated by a 

defective bearing from the vibration generated by other 

machine components.   

When a defect occurs in the bearing, the contact between 

rolling elements and raceway at the defect area generates an 

impulse force in the operation. This impulse has a very short 

time duration compared to the interval between impulses.   

This short impulse causes energy to spread over a wide 

range of frequencies in the spectrum. The periodic impulse 

also leads to repetitive excitation of resonance. The 

frequency of the impulse is also called the characteristic 

bearing defect frequency, which is related to the location of 

fault, bearing rotating speed, and geometric dimension of 

bearing. By demodulating the vibration signals at the 

resonance, envelope analysis can detect and locate a fault.  

The procedure of envelope analysis is as follows.  First, the 

vibration signal is processed through a band-pass filter. The 

cutoff frequencies of the band-pass filter are selected such 

that the filtered signal reverse the component around the 

resonant frequencies excited by the impulse and, at the same 

time, remove all other components. Second, the analytical 

signal of the band-pass filtered signal is built by adding an 

imaginary part given by the Hilbert transform of the band-

pass filtered signal. The absolute value of the analytic signal 

gives the envelope of the vibration signal, as shown in Fig. 

6. Then, the spectrum of the envelope signal shows the 

components of the fault characteristic frequency via Fourier 

transform and facilitates the process of feature extraction.  

 

Figure 6. An example of envelope analysis (blue is the 

original vibration signal and red is the envelope signal). 
 

After the spectrum of the envelope signal is obtained, the 

energy ratio of components at the fault characteristic 

frequencies to components at other frequencies are 

calculated. For robustness, the sum of the first three 

harmonics is taken. The procedure is described as follows: 

First, identify the fault characteristic frequencies up to three 

harmonics for each fault mode (inner raceway fault, outer 

raceway fault, and rolling element fault). Since the fault 

location is not yet determined, all potential frequencies are 

calculated. Then, identify the sidebands associated with 

these fault characteristic frequencies and its harmonic 
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frequency. The energy in these frequencies are summed for 

inner raceway fault, outer raceway fault and rolling element 

faults, respectively.  The accumulation of energy can be 

denoted as 𝐸𝑖𝑟𝑑 , 𝐸𝑜𝑟𝑑 , and 𝐸𝑟𝑒𝑑  for fault characteristic 

frequencies, harmonics, and sidebands of inner raceway 

fault, outer raceway fault, and rolling element fault, 

respectively.  Note that as the fault becomes more severe, 

the energy on these frequency components increases.  

 

Figure 7. Spectra of envelope signal and identification of 

fault characteristic frequency (middle blue components), 

sidebands (two components circled by brown ovals) and 

background components (other components circled by red 

ovals) 

 

Second, the energy for all other frequency components 

(background vibration components), from the sideband with 

the lowest frequency to the sideband with the highest 

frequency, are summed, denoted as 𝐸𝑖𝑟𝑏 , 𝐸𝑜𝑟𝑏 , and 𝐸𝑟𝑒𝑏  for 

frequencies on background vibration components around the 

fault characteristic frequencies of inner raceway fault, outer 

raceway fault, and rolling element fault, respectively.  Note 

that, since these frequency components are not related to 

fault impulse, they should theoretically remain unchanged 

when the fault becomes more severe.  

Third, the ratio of  𝐸𝑖𝑟𝑑/𝐸𝑖𝑟𝑏 , 𝐸𝑜𝑟𝑑/𝐸𝑜𝑟𝑏 , and 𝐸𝑟𝑒𝑑/𝐸𝑟𝑒𝑏 are 

then used as conditional indicator for inner race fault, outer 

raceway fault, and rolling element fault.  These frequency 

components are shown in Fig. 7.  

 

Figure 8. Nonlinear mapping of fault dimension as a 

function of time obtained from interpolation. 

Since only limited data at different service time are 

available, the data are interpolated for diagnosis and 

prognosis purpose. Fig. 8 shows the interpolated fault 

growth curve as a function of time. Note that noises are 

added to reflect the real system situation. The data in this 

interpolated curve is used for verification of the proposed 

algorithm.  

3. DIAGNOSIS STRUCTURE 

When the bearing is in operation, effective online bearing 

fault diagnosis and prognosis are challenging, mainly 

because of the complexity of shipboard environment. After 

feature or fault indicator is extracted, advanced algorithm 

for statistical analysis and estimation is needed. To solve 

this problem, many fault detection algorithms were 

developed with successes. In this research, Bayesian 

estimation method is employed as it integrates the modeling 

of fault dynamics and measurement to achieve estimation of 

fault state. Fig. 9 shows the chart with information flow. 

 

Figure 9. Diagnosis and prognosis with information flow 

3.1. Fault dynamic modeling 

In this paper, a particle filtering algorithm is used for fault 

state online monitoring and estimation. For particle filtering 

based method, a fault degradation model is needed to 

describe the fault dynamics.  

The fault growth in the bearing can be modeled by cyclic 

loads acting on the rolling surface. Paris law (Paris, 1963) is 

often used for this purpose, which is given as: 

𝑑𝑎

𝑑𝑅
= 𝐶(∆𝐾)𝑛 (9) 

This model describes the fault dimension growth increment 

da per cycle dR, a is the fault dimension, R is the number of 

rotating cycles, C and n are material constants, and K is the 

stress intensity factor.  

Note that a relationship representing the stress intensity 

factor as a function of the loading profile and fault 

dimension can be difficult to get. To develop a simple, 

model, Eq. (1) is modified as 
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𝑑𝐷

𝑑𝑡
= 𝐶(𝐷)𝑛 (10) 

that is the rate of fault growth under the instantaneous fault 

dimension D, which is the area of spalling, under a steady 

operating condition in a given time interval.  

Based on this equation, a fault growth model in the discrete-

time form can be written as:   

𝐷(𝑘 + 1) = 𝐷(𝑘) + 𝐶(𝐷(𝑘))𝑛 (11)  

Since fault dimension cannot be measured directly, it is 

assumed that the extracted feature and fault dimension has a 

one-to-one mapping. Therefore, the extracted feature can be 

used for diagnosis purpose.  

The performance of this model and the overall approach 

presented here were assessed using data from different 

bearings and with model parameters adaptation (Zhang et. 

al, 2010).  

3.2. Particle filtering for diagnosis and prognosis 

In the past decades, many diagnosis and prognosis 

algorithms were developed (Berecibar et. al, 2016). Bayes 

theory based algorithms, including Kalman filter, Extended 

Kalman filter, particle filter are very suitable for the 

problem of real-time state estimation (Bangjun et. al, 2017; 

Orchard and Vachtsevanos, 2007) . The advantages of these 

methods are that they incorporate process data into an a 

priori state estimate by considering the likelihood of 

sequential observations. Moreover, the noise term in the 

model can be adjusted to reflect the confidence on the mode. 

If a well-designed model is developed, the noise can be 

selected as a very small value. On the other hand, if a rough 

model is used, the noise needs to be set to a sufficiently 

large value. The trade-off is that the estimated results tend to 

be noisy when large noises are used. 

In this work, particle filtering is used due to its capabilities 

in dealing with nonlinear and non-Gaussian systems. In 

particle filter, real-time diagnosis aims to estimate 

recursively the current fault state by taking into account 

available measurements. It involves two steps: prediction 

and filtering. Prediction is to estimate the priori probability 

density function (PDF) of the state by using the process 

model: 

𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1, 𝑢𝑘−1, 𝜔𝑘−1) (12)  

where 𝑥𝑘, 𝑢𝑘, and 𝜔𝑘 are the state, input, and noise at time 

𝑘, respectively, 𝑓𝑘 is a nonlinear function as the one shown 

in Eq. (11) for bearing. Note that the input can be any 

factors that affect the fault growth such as loading profile 

and environmental factors. Here, 𝑓𝑘  is used to make the 

description concise and generic.   

The filtering step updates the priori PDF generated from 

prediction with the measurement to get the posterior PDF 

through the use of the measurement model: 

𝑦𝑘 = ℎ𝑘(𝑥𝑘 , 𝑣𝑘) (13)  

where 𝑦𝑘 is the measurement given by the features extracted 

from the raw data, ℎ𝑘 is a nonlinear function that denotes 

the nonlinear mapping from fault state to feature, and 𝑣𝑘 is 

measurement noise. As mentioned early, if such a mapping 

is not available, feature values can be used as fault state for 

diagnosis directly. In that case, Eq. (13) reduces to 𝑦𝑘 =
𝑥𝑘 + 𝑣𝑘 .  This does not affect the implementation of 

diagnosis.  

In particle filter, the distribution is represented by a set of 

particles. Each particle is a sample in the state space with a 

weighting factor {𝑥0:𝑘
(𝑖)

, 𝑤𝑘
(𝑖)

}
𝑖=1,⋯,𝑁

, 𝑤𝑘
(𝑖)

> 0  and ∑ 𝑤𝑘
(𝑖)

=

1. This set of 𝑁  particle can be used to approximate the 

behavior of a desired probability distribution, i.e. the fault 

state distribution, {𝜋𝑘}. For the posteriori fault state PDF 

given by {𝑥0:𝑘−1
(𝑖)

, 𝑤𝑘−1
(𝑖)

}  at time instant 𝑘 − 1 , diagnosis 

aims to generate a new set of particles {𝑥0:𝑘
(𝑖)

, 𝑤𝑘
(𝑖)

}  from 

process model and measurement such that the fault state 

PDF at time instant 𝑡 can be accurately approximated.  

According to particle filter, the posterior PDF can be 

approximated by 

𝑝(𝑥𝑘|𝑦1:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)

𝛿(𝑥𝑘 − 𝑥𝑘
(𝑖)

)𝑁
𝑖=1   (14) 

where 𝑤𝑘
(𝑖)

 is the weight of the 𝑖-th particle at time 𝑘 and 

𝛿(∙) is the Dirac delta function. The weights are updated as: 

𝑤𝑘
(𝑖)

= 𝑤𝑘−1
(𝑖)

𝑝(𝑦𝑘|𝑥𝑘
(𝑖)

) (15) 

From above equations, the fault state PDF, 𝑝(𝑥𝑘|𝑦1:𝑘)  at 

time 𝑘 can be calculated. This PDF is then compared with a 

baseline state distribution, which is constructed from the 

data when the bearing is in normal operating condition and 

has no fault, to claim whether a fault is detected. The 

statistical confidence of fault detection can be given by the 

sum of the weights of the particles whose states are larger 

than a threshold, which is defined by false alarm rate.  

 

Figure 10. Particle-filter-based diagnosis. The cyan 

histogram represents the baseline data, while the magenta 

distribution is the particle-filter-based PDF estimate for the 

current bearing fault. The vertical line represents the 

threshold for a 5% false alarm rate. 
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Fig. 10 shows the results from the proposed approach being 

applied to bearing fault detection with fault model (𝑥) and 

500 particles. The cyan histogram is the baseline 

distribution from the bearing with health condition while the 

magenta distribution is the real-time estimation of fault 

state. The blue vertical line is determined by the 5% false 

alarm rate, which is predefined. It must be noted that, in this 

approach, no particular specification about the detection 

threshold has to be made prior to the actual experiment. 

Customer specifications, such as false alarm rate, are 

translated into acceptable margins for false positives and 

false negatives in the detection routine. The algorithm itself 

indicates when the false positives and false negatives have 

decreased to the desired level. 

When fault state is estimated, prognosis is triggered to 

project the current fault state PDF into future time instants. 

Then these fault state distributions are compared with a 

failure threshold to predict the time to failure or remaining 

useful life. Note that when the current fault state is projected 

into the future time instant, no measurement is available. 

Therefore, only the priori distribution is calculated using the 

model given by Eq. (12). That is, only the prediction step is 

conducted while no filtering step. Because of this, the 

uncertainty associated with the prior PDF will increase as 

the prediction horizon increase. This is one of the major 

challenges in prognosis.  

 

Figure 11. Particle-filter-based prognosis. In the upper 

subfigure, the prediction curve of each particle is shown 

with different colors, the red horizon line is the failure 

threshold, and the vertical dotted lines show the 95% 

confidence interval. In the lower subfigure, the magenta 

histogram shows the time to failure distribution and the 

dotted line shows the mean value of this distribution. 

 

Moreover, since the prognosis calculation involves recursive 

implementation of prediction of each particle, this is a very 

time consuming process especially when the prediction 

horizon is large. This is the second major challenge of 

prognosis. To address this problem, the number of particles 

is reduced to 20 to make real-time implementation possible 

at the cost of reduced accuracy.  Fig. 11 shows an example 

of prognosis started from the 300
th

 minutes, which shows 

the prediction of each particles (given by the prediction 

curves with different colors) and RUL distribution (given by 

magenta histogram).  

4. GRAPHIC USER INTERFACE 

The paper aims to introduce a SCPS, which integrates data 

acquisition, data pre-processing, feature extraction, fault 

dynamics modeling, FDP, system operating risk evaluation, 

and decision-making.  To demonstrate the approach 

described, it is applied to bearing data and integrated into a 

graphical user interface (GUI). The GUI displays the results 

of the integrated algorithms for data processing, feature 

extraction and diagnosing. The GUI shows real-time system 

health information and allows operators to understanding 

the system health condition. It is of interest to incorporate 

information about fault state PDF estimation so that it 

provides not only a deterministic decision but also 

probabilistic and statistical result for decision-making.  

Fig. 12 shows the design GUI, in which area A is for 

component selection as it is assumed that the program can 

be used for multiple components, Area B is the original 

vibration data and the feature extracted, Area C shows some 

performance related information, Area D shows the graphic 

results of diagnosis and prognosis, and Area E shows some 

diagnosis results alarms by using different color codes.  

 

Figure 12. Graphic user interface 

 

The interaction of the GUI with the fault dynamic model is 

conducted through a middle agent, which is in charge of 

ensuring that all communication with the model block is 

performed appropriately. This middle agent conducts the 

following tasks: pass all parameters and variable to the 

model block; execute the model as needed; provide initial 

condition on initial fault state and parameters; and error 

handling. Therefore, the middle agent is a link between the 

simulation or real-time program and the model.  

When an external application or function, which can be 

either a simulation or a real-time program, makes a call to 

the model, the model runs with the parameters and initial 
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condition from middle agent. The outcome from the model, 

which is the fault detection probability and fault state 

estimation are returned to middle agent, which can be 

further sent to GUI for display.  This structure is shown in 

Fig. 13, which shows that middle agent is a connection 

between GUI and model for diagnosis, while the GUI can be 

used for offline simulation or online real-time monitoring.  

The experimental setup has been connected with the GUI to 

monitoring bearings under test. Experimental results on 

available dataset have been tested and verification. With the 

bearing under test on the experimental testbed described in 

Section 2, the research is putting efforts on onboard system 

monitoring and real-time data processing, diagnosis, and 

prognosis. The other functional units, such as uncertainty 

management, risk evaluation, multiple fault modes, 

probabilistic reasoning, and decision-making are being 

added as the project progresses.  

 

Figure 13. The communication of GUI and model 

5. CONCLUSION 

This paper introduces the design of an integrated health 

management approach for shipboard condition prognostics 

system. The case study with application to bearing system 

fault diagnosis and failure prognosis are presented. The 

approach combines a variety of tasks, including data 

acquisition, data analysis, feature extraction, fault dynamic 

modeling and particle filtering based algorithm design to 

enable and enhance the effectiveness of the system health 

assessments. Bearing dataset is used to verify the 

effectiveness of the proposed method and it is integrated 

with a graphic user interface for further development.  

Preliminary results show that the proposed system has 

satisfactory performance in diagnosis and prognosis and has 

advantages such as custom specification to determine fault 

detection threshold, real-time implementation, and statistical 

results for probabilistic analysis. The integrated algorithm 

can accurately detect faults, predict the remaining useful 

life, and is of a generic design which can be extended to 

other systems.  
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