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ABSTRACT bearings haye a substant.ial nged for condition toong.

o . . ) ) ] The most typical damage is flaking. Because of athge of
Flaking is typical failure mode in rolling bearingherefore,  ipration measurement, e.g. higher SN ratio, coetbao
flaking diagnos!s plays a.critical role in conditimonitoring  gther measurement methods, vibrating velocity and
of general rotating machinery. In recent yeargetias been  5cceleration are the widely used for detectingibgdiaking.
an increasing interest in deep learning techniquééaring | the bearing diagnosis using vibration, highlycurate
flaking diagnosis, because it can learn the flakimduced  giagnosis is possible if appropriate features adeaeted
vibration features with no information of bearing from data, and also threshold is set using infolenatuch as
specifications nor that of rotating speed. Howeveost of  heqring specifications and rotational speed (Réretal.,
the studies have only focused on laboratory daftegusne 2011). However, since vibration is affected by trangfey
testrig as well as a small da_ltaset ynder thedniperating path from the source to sensor positions and other
condition. Accordingly, no discussion has been tban the components of vibrations, it is difficult even fexperts to

gen_eral_i_zation performan_ce of the_z diag_nostit_: _modj_el, extract common features from vibration data of mangting
availability for actual rotating machinery, in whigibration machinery.

feature is affected by various operating conditicarsl
unknown disturbance. In this study, more than 21 @@e- In recent years, many studies have been reportididep
series waveforms of normal and bearing flaking gmtli learning can extract the features and can achiégh h
machine vibration were prepared from three typestfrig ~ diagnostic accuracy by training using data of ot
and three bearing types under various operatingliton. ~ machinery without information of bearing specifioat nor
And deep learning such as Convolutional Neural etw  that of rotating speed. In case of image classifinamodel
Long Short-Term Memory (CNN-LSTM) models were in deep learning, it is known that common featufetsaining
applied to recognize flaking bearing vibration. Taplied data can be extracted by models trained with safitc
models trained with various condition data showeghér  quantity data (Le et al., 2013). Various deep le@rmethods
accuracy of various condition test data diagndsas tother have been applied for diagnosis of machinery ireorto
models trained using single condition data. Furtiwee, the  extract features appropriately that can distinguishmal
applied diagnostic models also showed less accuraggibration waveform and damaged vibration wavefoZiao
degradation for test data in which additional eitd noise et al. 2016). Convolutional Neural Network (CNM}jich is
was imposed, than the models trained with singtediton @ representative method of deep learning, can axiwaal

data. features by convolutional kernels and pooling ofiena
However, one of the features of flaking vibratismperiodical
1. INTRODUCTION phenomena due to repetitive impact when rollingelsts of

. o . . i bearing passing through flaking spalls. The amgétand the
Condition monitoring of rotating machinery in many jyierya| of these features depend on bearing spatiin and
industrial fields is important for reducing opeesial Costs  ,harating condition. It is hard for CNN to recognizarious
and avoiding sudden accidents. In particular,mglbearings  gequential change of these vibrational featuresrdfbre,
are often used under severe operating conditionss t c\N would be insufficient for diagnosis of bearifieking.
Osamu Yoshimatsu et al. This is an opegess article distributed un In case of a previous study (Zhao et al. 2017ggression
the terms of the Creative Commons Attribut®f United States Licen: model Combining CNN and Long Short-Term Memory
which permits unrestricted use, distribution, aegroduction in ar - - o
medium, provided the original author and sourcecasdited. (LSTM)_ has b_een applled to Prec_"Ct wear conditiérool.

LSTM is a kind of deep learning method that enables
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classification and regression of time-series date aim of
their model was to recognize local robust featuaesl

temporal information, and their model showed bette

prediction accuracy than the conventional modé.thought
that similar approach may be effective to enhanagnibsis
accuracy for the case of flaking induced vibratidmolling

bearings.

In this study, deep learning models such as CNN,ML.&nd

2.2. Long Short-Term Memory (LSTM)

J_STM is a type of Recurrent Neural Network (RNN}ieh

is a deep learning method that can classify andessgime-

series data such as natural languages and voices in

consideration of feature changes at each time E®pM is

an improvement of RNN in order to capture long-term

dependencies (Hochreiter et al. 1997; Graves €08ab).

CNN-LSTM(combined model CNN and LSTM) were 2.3. CNN-LSTM

applied to recognize flaking bearing vibrationatiees as

described above. CNN extracts various types of ahpa
recognizes periodical

vibration waveform and LSTM
phenomena featuring bearing flaking.

On the other hand, the diagnosis using deep leginithe
field application has a various problem. Firstlyaghosis
would be difficult when conditions of training daad those
of diagnostic target data are different includihg structure
of machines to which bearings are mounted. Wheieas
many previous studies, the performance of diagnostidels
is evaluated using data of a single test rig, thinigs not been
verified that the trained diagnostic model was &ggpto the
other test rigs (Zhang et al. 2018; Feng et al828lao et al.
2016; Chen et al. 2017).

Secondly, it is quite usual in the field that vifioa signal
contains not bearing originated component, i.e.sao0i
Therefore, it is hard to diagnose bearing flakirging a
simple exceeding detection method. But almost ngtlis
discussed on the robustness of the trained bediamgmosis
model for noise-containing data in previous reports

In this study, in order to make clearer on the abmentioned
problems, training and evaluation of the diagnasels
were carried out using three kinds of datasets michv
bearing type and/or test rig were different, iniddd to that
the artificial noise was imposed to the test data.

2. APPLIED MODELS

2.1. Convolutional Neural Network (CNN)

CNN is one of the deep learning methods originatbyposed
for image processing (Le Cun et al. 1990; Krizhgvskal.
2012). In our applied models, CNN consists of naygrs,
and each layer has its function, i.e., a convohaidayer or
a pooling layer. Operations of the convolutiongkls are a
summation of multiplications between the vectoranpiut
data and weight coefficients of convolutional kérne
Operations of pooling layers are extractions ofuiess and
fixture length of the vectors. Also, time-seriegadauch as
acceleration waveforms are processed in 1-D cotioolal
layers and average pooling layers. Additionallypider to
avoid overfitting of model training, batch normalion
(loffe et al. 2015) is performed on each outputhefpooling
layers.

The applied CNN-LSTM consists of three major pairts,

the multi-layered CNN, LSTM layer and Fully-Conrextt
(FC) layer. The whole structure of the CNN-LSTMlown

in Figure 1. The subject of bearing flaking diagnoisis
defined as a binary classification of normal anakifig

vibration, in other words an input of the modetiise-series
acceleration waveform and output of the model @a8ses
labels. The labels, which are 2-D one-hot vectapresent
normal bearing and fault bearing. Firstly, in CNiyérs, the
8192 points waveform are processed to data of Itps

256 ch, via 9 sets of convolution layer and averagaing

layer. Next, the output of the last CNN layer igidiéd into

16-time steps, and led to the LSTM layer each ttep. In
addition to its input, the LSTM also receives tlupait of the
LSTM layer at previous time step as an input. Atldst time
step, the output of the LSTM layer is input to ZD layer.

In the FC layer, outputs present diagnostic resfulte input
waveform as “normal” or “fault”.

In this study, CNN-LSTM model, which is presumedb®
suitable for the diagnosis of bearing flaking, vagsplied
mainly. However, in order to compare the generdbra
performance, model consisting of 3-CNN layers arelC2
layers (CNN model), and model consisting of 2-LSIByers
(LSTM model) were applied for the training and test. For
the training and the test of these models, the Sdatesets
described in next chapter were used.
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Figure 1. Diagram of the applied CNN-LSTM.
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3. TRAINING METHOD

As previously mentioned, three kinds of datasetsew
prepared both for the training and the test. hdteworthy
that, bearings were damaged artificially, i.e. tawere not
actual flaking. Such kind of alternatives is widelgiopted
from the viewpoint of saving the time of preparatiof a
number of failed bearings. Further, as the trgimmethod
applied by the authors, the data of normal (not atged)
bearings are added as training data. This is thelation of
the case, especially in the field, that the traidedynostic
model is applied to new machinery and/or beariagghich
getting failure data due to the damage are quifieuli.

3.1. Description of Datasets

In order to evaluate generalization performancettaf
applied diagnostic models, three types of data@dsaset
A, B, C) were prepared. These were acquired w
accelerometers, mounted on the test rigs to obstree
conditions of the bearings in operation. Tabledvahdetails
of the acquisition conditions of the datasets. Aaredion
waveforms were picked up from each dataset usiffigreint
test rig. Since three test rigs have their own masb
characteristic, suitable frequency band for diagnds
different. Also, differences in operating conditoaffect
amplitude and intervals of impact vibration duerading
element passing through flaking spall. Thereforeseohigh
diagnostic accuracy is achieved using data of wuaric
operating conditions and machinery (test rig), onay
expect the model widely available.

Dataset A includes vibration data of ball bearirvgish
artificial defect. These data are published by CAsstern
Reserve University (Loparo, 2012).
acceleration waveforms were acquired using ballibga
with 12 kinds of artificial defects of differentzeis under 4
kinds of operating conditions (Smith et al. 201Bataset B
consists of acceleration waveforms using cylindricédler

bearings with 4 types of artificial defects undedifierent

operating conditions. Dataset C consists of acatter
waveforms using spherical roller bearings with pety of
artificial defects under 24 different operating ditions. The
tests for acquisition of dataset B and C were edrout using
different test rigs in the authors’ company.

Three types of test data and 15 types of trainiaig avere
arranged using these Dataset A, B and C. Tableo@/sh
contents of test data and training data. In TablBubscript
of An, Bn and Cn mean “normal”, i.e., all waveformae
from not failed bearing. The order of the wavefolwhgach
test data and training data was randomly rearrangadh
acceleration waveform was picked up from datasehabit
became sequential 8192 sampled time series data. tEst
data consists of 2000 waveforms and each trainiag d

consists of 5000 waveforms. There was no duplinatio

between each training data and each test dataraflioeof
normal bearing data to damaged bearing datalsid all the

Table 1. Details of the Datasets.

Dataset A B C
name (CWRU data)
seang | par | Otdrcal | Spterca
type bearing : i
bearing bearing
Bearing | 6205-2RS JEM | NU2228BMMA | 230/750CAME4
number (SKF/NTN) (NSK) (NSK)
Sampling 48000 48000 800
rate [Hz]
Rotational 13030 ltz(?o t%
[‘:’nﬁﬁﬁld 1797 1750 20
(4 types) (3 types) (4 types)
4 6
[tLoae(i] (Motor (Ra:fjial) (Radial +
yp horse power) Axial)
Place Size Place Size Place Size
[types] [types] [types]
None 1 None 1 None 1
Types of
artificial Inner 4 Inner 3 Inner 1
race race race
defect
Outer 4 Outer 1 Outer 4
race race race
Ball 4

In this dataset,

Table 2. List of the combinations of training datel

test data
Test No. Training Data Test Data
1 A
2 B
3 C A
4 B+C
5 B+ C+An
6 A
7 B
8 C B
9 A+C
10 A+ C+Bn
11 A
12 B
13 C C
14 A+B
15 A+B+Cn




ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2018

test data and the training data. Table 3 showsteber of
waveforms included in each training data.

In order to avoid the influence of the amplitude tbé
vibration waveform and focus on the waveform shaaeh
waveform was normalized as preprocessing so trerage
value of each waveform becomes 0 and standard tawvia

4. EVALUATION PROCEDURE

Training and test were performed for deep learning

diagnostic models. Each training was iterated 10ckp
saving trained diagnostic models at each epoch.epoeh
was defined as one cycle of training using theningi data
consist of 5000 waveforms. After that, test dataevweput to

becomes 1. Figure 2 shows examples of the norndalizethe trained diagnostic models. In each traininthefmodel,

waveforms obtained from each dataset. As showigare
2, each example of fault waveform includes periadic
phenomena of impact vibration.

Table 3. Number of waveforms in the training data.

the order of training data and initial value of gl
coefficient in each layer were set randomly, thituenced
the training results. Therefore, each combinatibtrasning
and test were performed 100 times and the evatluatisults
are shown later in this paper are the averageeskthalues.

Test Data A Data B Data C As a performance indicator of the trained diagmostodel,
Neos F-score (a.k.a. F measure) was calculated in aanoedwith
" | Normal | Fault| Normal | Fault | Normal | Fault Table 4 and Eqg. (1). When diagnostic accuracy g,hiF-
score is close to 1. On the other hand, F-sconedses with
L 2500 | 2500 0 0 0 0 the increase of diagnostic error. If training ofbanary
2 0 0 2500 | 2509 O 0 classification fails completely, all outputs of thined
3 0 0 0 0 2500 | 250 model are the same class. In such a state, F-degreases
4 0 0 1250 125d 1250 1250 to about 0.33 in this case.
5 834 0 833 1250 833 1250 In addition, in order to evaluate the robustnessthd
6 2500 2500 0 0 0 0 diagnostic model for noise, which might be impottahen
the model is applied to the field, five levels @iise signals
’ 0 0 2500 2500 0 0 were added to each normalized waveform of test ddta
8 0 0 0 0 2500 | 250 noise signals were generated simulating Gaussian
9 1250 | 1250, O 0 1250 | 1250 distribution. Numpy, which is the package with Rythwas
10 833 | 1250| 834 0 833 | 1250 used to generate the noise signals. An average wéleach
T 2500 | 2500 o o o 0 goslsi glir;]zélszvg)as 0 and standard deviattonere 0.1, 0.2,
12 0 0 2500 | 2500 0 0 o o
The trainings and tests as described above weriedarut
181 90 | 01 0 | 9] 2500] 2508 45 cNN-LSTM model, CNN model and LSTM model.
14 1250 12501 1250 1250 0 0
15 833 1250 833 1250 834 0
Data A Normal Data B Normal Data C Normal
2.5 2.5 2.5
0.0 0.0 0.0
-2.5 -25
I T 1 I T 1 =25 I T 1
o Data A Fault Data B Fault Data C Fault
g 5 5 _
2 4 S VTTTRTECTVVRNTTCST e AT NTNIAIY
£ s S AR ALHARALA! T
< I T 1 T T
Data A Fault Data B Fault Data C Fault
5 Pl i .
0 o J T 0
I T T I T 1
0 4096 8192 0 4096 8192 0 4096 8192

Dimension of the waveforms
Figure 2. Examples of normalized acceleration wawve$ of Data A, B and C.
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Table 4. Classification of prediction results.
(Confusion matrix).

Actual class
Normal Fault
TN FN
2 Normal (True ( False
k3] @ Negative ) Negative )
bk FP TP
o Fault ( False (True
Positive ) Positive )
F-score =
TP % TP TN % TN 1
TP+ FP*TP+FN , TN +FP “TN + FN @)
TP TP TN TN

+

TP+FP Y TP+ FN +

TN+ FP " TN+ FN

5. RESULTSOF EVALUATION

In this section, generalization performance ofdlagnostic
models is described from evaluation results unaitweénces
of various training data. First, the results of @&N-LSTM

model are described, followed by comparison withrésults
of CNN model and LSTM model.

5.1. Results of CNN-LSTM model

Figure 3 shows test results using single datacsdtdining

(Test No.1,2,3,6,7,8,11,12,13). It is quite obviofuem

Figure 3 that high F-scores are achieved whenitigidata
and test data were selected from the same daftasethe
other hand, when the training data and the test datre
different, F-scores remarkably deteriorated. Thésult
showed that it is easy to achieve high diagnostitieacy as
long as the training data and the test data angir@ctjunder
the same condition. These results also suggesttchiph

accuracy of trained diagnostic model does not nidgh

generalization performance under the state thiitigadata
and test data are acquired in the same condition.

Figures 4, 5 and 6 show the test results when rdiife
datasets were used for training and test. Genediliz

performance of the trained diagnostic models can be

improved by adding only normal, i.e., not failedtaldao
training data from the test target data when usiifigrent
data in training and test.

Figure 4 shows results of tests using test data @éases that
training data does not include fault data of datérést No.

2, 3, 4, 5). F-scores were improved when using chixe
training data than when using single conditiomiiray data.

Test Data:
Il Data B

Il Data A Data C

F-score

Data A Data B

Train Data

Data C

Figure 3. Test results of the model
trained with single condition data.

Figure 5 is almost same as Figure 4, but for datanB
excluded training data is fault data of data B {T¢s. 6, 8,

9, 10). F-score of the diagnostic model usingrhi@ing data

A + C + Bnachieved the maximum score of 0.9, which was
the highest in this figure.

Figure 6 is almost same as Figures 4 and 5, bulsiar C and
excluded training data is fault data of data C {Nes 11, 12,
14, 15). F-score of the diagnostic model usingtth&ing
data A + B + Crwas a maximum score in this figure.
However, F-score of the diagnostic model usingttaiming
data A + B were lower than F-score of the diageastbdel
using only the training data B.

From these results, it is revealed that gener@izat
performance of diagnostic model tends to be imptobe
using training data of various conditions datgpdrticular, it
is effective for improvement of generalization peniance
to add only normal data of a test target to trgjrdata.

Figures 7, 8 and 9 show the evaluation results hen t
influence of noise on diagnostic accuracy. The eaidded
test data were diagnosed by using each trainechol&tig
model at epoch 10.

Figure 7 shows results of tests using test datdest(No. 1-
5) with a noise component. In the case ef 2.0, F-score of
the models trained with the single condition datardased
to the level of the failed model, about 0.33. Hoer\the
model trained with data B + C + An maintained thecBre
over 0.4.
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Figure 8 shows results of tests using test dafaeBt(No. 6-
10) with a noise component. In the case ef 2.0 added, F-
scores decreased to the level of the failed maddielvever,
F-score of the diagnostic model trained with tragndata A
+ C + Bn provided a little bit better F-score thha others.

Figure 9 shows results of tests using test dafBeSt(No. 11-
15) with a noise component. In the case ef 2.0, F-score
of the diagnostic model trained with training data B + Cn

provided about 0.45, better F-score than the athers

These results showed that the accuracy of the dsdign
model was kept almost same as no noise level éondise
intensity was 0.5 or less. In addition, loss ofgdiastic
accuracy was less for the noise intensity is 1.@are, if the
model was trained with various conditions includihg same
condition data as those of test target.

Train Data:
® DataB B Data B+C
A DataC Data B+C+An
1.0
0.8 = =i = ===
”(‘?“_“—5‘-—“-“.“
) ) A
£ 0.6 7
8 p
I 0.4 —?‘-
0.2
0.0 T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10

Epoch

Figure 4. Test results of the CNN-LSTM model fotada
trained without fault data of data

Train Data:

® DataA B Data A+C

A DataC Data A+C+Bn
1.0
0.8
£ 0.6
b
0.2 ——H—AL—EHA-W‘—:..r
0.0 T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10

Epoch

Figure 5. Test results of the CNN-LSTM model fotadB
trained without fault data of data

1.0
0.8
0.6
0.4

F-score

0.2
0.0

Figure 6. Test results of the CNN-LSTM model fotad@

Train Data:
® DataA B Data A+B
A DataB Data A+B+Cn

—’AI' '—.'$’—t$=—.

1 2 3 4 5 6 7 8 9
Epoch

trained without fault data of data C.

Train Data:
® DataA & DataB+C
A DataB Data B+C+An
m DataC

1.0 —4.—.—.——1
o

0.8 Q.’;;Q.’_;Q'_—u‘—"i{'r.’.
2 0.6 A—-—A-—-ﬁ-._A\ N
[&] .\\
: \
04 S

0.2

0.0 T T T T : .

0.0 0.1 0.2 0.5 1.0 2.0

Figure 7. Test results of the CNN-LSTM model for

o of gausian noise

data A with noise component.
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Train Data:
® DataA @ Data A+C
A DataB Data A+C+Bn
B DataC

0.0 0.1 0.2 0.5 1.0 2.0
o of gausian noise

Figure 8. Test results of the CNN-LSTM model fotada
B with noise componer

Train Data:
® DataA ¢ Data A+B
A DataB Data A+B+Cn
m DataC

0.0 0.1 0.2 0.5 1.0 2.0
o of gausian noise
Figure 9. Test results of the CNN-LSTM model for
date C with noisecomponen

5.2. Comparison with other models

Generalization performance was improved in mangsasg
the CNN model and the LSTM model, as in case oN&|-

LSTM model, by training with mixed data includingrmal

data. Also, even loss of F-score were small fdrdeta noise
added. However, the evaluation results for paresf data
showed a tendency different from that for the CNSIFM

model.

Figures 10 and 11 show the part of evaluation tesding

Train Data:
® DataA & Data A+B
A DataB Data A+B+Cn
B DataC
1.0 — = ]
\
\
0.8 N
S N N
o 4 Py - \A .
5 0.6 T B,
o N R
P X
0.4 o ~ . :\3—
0.2
0.0 T T T T T T

0.0 0.1 0.2 0.5 1.0 2.0
o of gausian noise
Figure 10. Test results of the CNN model for data C
with noise componer

Train Data:

@® DataA ¢ Data A+B

A DataB Data A+B+Cn

B DataC
1.0 ——WT
0.8 N

\
\

0.6 |

F-score

E
g
!
t
I
{s

e
)

0.0 I I I I I I
0.0 0.1 0.2 0.5 1.0 2.0
o of gausian noise
Figure 11. Test results of the LSTM model for data
with noise componer

Figure 10 shows results of test using the CNN madditest
data C (Test No.11-15). Unlike in the case of CNSIFM
model, there were no improvement of generalization
performance by training using mixed data. In additiwhen
the noises = 0.5 or more, the loss of F-score due to test dat
noise were the same level as the evaluation resulhe
model trained using single condition data.

Figure 11 shows results of test using the LSTM rhade
test data C (Test No.11-15). Like in the case oNAMNSTM
model, there were improvement of generalization

the CNN model and the LSTM model on the influenée o performance by training using mixed data with ndrda.

noise on diagnostic accuracy. The noise addedl#atwere
diagnosed by using each trained diagnostic modepath
10.

Also, the loss of F-score due to test data noise weall
when the noise = 0.5 or more. However, the F-score in the
case of CNN-LSTM model (figure 9) were higher tlathe
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case of LSTM model when noigewas less than 2.0 and Feng, J., Yaguo, L., Liang, G., Jing, L., & Sail0,(2018).

training data were mixed data include normal det@refore,
it is inferred that more general features wereagtéd in the
case of CNN-LSTM model.

These results show that in the diagnostic modelgudeep

learning, not only the CNN-LSTM model, can be imprd

of generalization performance by training with nuixéata

including normal data. In addition, the CNN-LSTM deb

can obtain generalization performance improvemeotem
stable than the CNN model or the LSTM model.

6. CONCLUSIONS

In this study, the CNN-LSTM diagnostic models héezn
applied, which are combined with two methods, CNi a
LSTM. The applied models are designed to detedidkéng
occurred in bearings. The binary classificationcpss is
adopted to detect the fault from the vibration weaxms of
the accelerometers. The training method is propdkatl
using data of various test rigs and various bearimigh an
artificial defect. Generalization performance of eth
diagnostic models has been investigated with théows
combinations of the training datasets acquired fitbnee
types of test rigs.

The models trained with single condition datasetstd low
diagnostic accuracy for test data which were differfrom
the data for training. If training data consisttioé normal /
fault data provided from other test rigs and ordymal data
from the target test rig, it was found that thegdiastic
accuracy was improved. It is suggested that dardagge of

diagnostic target would be unnecessary for comditio

monitoring in the field. The effect of the noisengmonent
included
investigated. When the value of noiswvas 0.5 or less, the

diagnostic accuracy of the models did not decrease

substantially. When the value of noisavas 1.0 and 2.0,
however, the diagnostic accuracy of all models \oager
than in case of no noise, diagnostic accuracy ess likely
to decrease of the models trained with proposetiodethan
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A neural network constructed by deep learning teghen
and its application to intelligent fault diagnosis
machinesNeurocomputing. vol. 272, pp. 619-628.

Graves, A., & Schmidhuber, J. (2005). Framewisenghte
classification with bidirectional LSTM and otherumnel
network architecturedNeural networks. vol. 18, no. 5-6,
pp. 602-610.

Hochreiter, S., & Schmidhuber, J. (1997). Long shem
memory.Neural Computation. vol. 9, no. 8, pp. 1735-
1780.

loffe, S., & Szegedy, C. (2015). Batch normalizatio
accelerating deep network training by reducingrirdaé
covariate shiftarXiv: 1502.03167.

Krizhevsky, A., Sutskever, I, & Hinton, G. E. (21
ImageNet classification with deep convolutional rau
networks. InProceedings of the 2012 advancesin neural
Information processing systems. December 3-6, Lake
Tahoe, NV. pp. 1097-1105

Laparo, K. A. (2012). Case Western Reserve Unityersi
Bearing Data Center:
http://csegroups.case.edu/bearingdatacenter/home

Le Cun, B. B., Denker, J. S., Henderson, D., HowRrcE.,
Hubbard,. L. D., & Jackel, L. D. (1990). Handwrnitte
digit recognition with a back-propagation netwobhk.
Advances in neural information processing systems,
November 26-29, Denver, CO.

Le, Q. V. (2013). Building high-level features ugitarge
scale unsupervised learning. IEEE international
conference on acoustics, speech and signal processing,
May 26-31, Vancouver, BC.
doi:10.1109/ICASSP.2013.6639343

Mao, W., He, J., Li, Y., & Yan, Y. (2016). Bearirfgult

diagnosis with auto-encoder extreme learning machin

A comparative studyProceedings of the Institution of

Mechanical Engineers Part C: Journal of Mechanical

Engineering Science. vol. 231, no. 8, pp. 1560-1578.

Randall, R. B., & Antoni, J. (2011). Rolling elemdrearing
diagnostics—A tutorialMechanical systems and signal
processing. vol. 25, no. 2, pp. 485-520.

other models. The CNN-LSTM models gained thesesmith W. A & Randall. R. B. (2015). Rolling elent

advantages more stable than the CNN models aridSthis!

models. From these results, CNN-LSTM models could

diagnose bearing flaking with high accuracy andusthess
by using the proposed training method.

In future work, it would be necessary to verify, etter the
essential features of the vibration waveforms du#taking
would be extracted correctly through the appliethoé, and
how it changes as training progress.

REFERENCES
Chen, Z., Deng, S., Chen, X., Li, C., Sanchez, R&\Qin,

University data: A benchmark studyMechanical
systems and signal processing. vol. 64, pp. 100-131.

Zhang, W., Li, C., Peng, G., Chen, Y., & Zhang(Z018).

A deep convolutional neural network with new tragi
methods for
environment and different working load¥lechanical
systems and signal processing. vol. 100, pp. 439-453.

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., 8GR.

X. (2016). Deep learning and its applications taihiae
health monitoring: A survey. arXiv preprint
arXiv:1612.07640.

H. (2017). Deep neural networks-based rolling legri Zhao, R., Yan, R., Wang, J., & Mao, K. (2017). lréag to

fault diagnosisMicroelectronics Reliability. vol. 75, pp.
327-333.

monitor machine health with convolutional bi-
directional LSTM networksSensors. vol. 17, no. 2, 273

bearing diagnostics using the Case Western Reserve

bearing fault diagnosis under noisy



