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ABSTRACT 

Flaking is typical failure mode in rolling bearings. Therefore, 
flaking diagnosis plays a critical role in condition monitoring 
of general rotating machinery. In recent years, there has been 
an increasing interest in deep learning technique for bearing 
flaking diagnosis, because it can learn the flaking induced 
vibration features with no information of bearing 
specifications nor that of rotating speed. However, most of 
the studies have only focused on laboratory data using one 
test rig as well as a small dataset under the limited operating 
condition. Accordingly, no discussion has been found on the 
generalization performance of the diagnostic model, i.e., 
availability for actual rotating machinery, in which vibration 
feature is affected by various operating conditions and 
unknown disturbance. In this study, more than 21,000 time-
series waveforms of normal and bearing flaking induced 
machine vibration were prepared from three types of test rig 
and three bearing types under various operating condition. 
And deep learning such as Convolutional Neural Network - 
Long Short-Term Memory (CNN-LSTM) models were 
applied to recognize flaking bearing vibration. The applied 
models trained with various condition data showed higher 
accuracy of various condition test data diagnosis than other 
models trained using single condition data. Furthermore, the 
applied diagnostic models also showed less accuracy 
degradation for test data in which additional artificial noise 
was imposed, than the models trained with single condition 
data. 

1.   INTRODUCTION 

Condition monitoring of rotating machinery in many 
industrial fields is important for reducing operational costs 
and avoiding sudden accidents. In particular, rolling bearings 
are often used under severe operating conditions, thus 

bearings have a substantial need for condition monitoring. 
The most typical damage is flaking. Because of advantage of 
vibration measurement, e.g. higher SN ratio, compared to 
other measurement methods, vibrating velocity and 
acceleration are the widely used for detecting bearing flaking. 
In the bearing diagnosis using vibration, highly accurate 
diagnosis is possible if appropriate features are extracted 
from data, and also threshold is set using information such as 
bearing specifications and rotational speed (Randall et al., 
2011). However, since vibration is affected by transferring 
path from the source to sensor positions and other 
components of vibrations, it is difficult even for experts to 
extract common features from vibration data of many rotating 
machinery.  

In recent years, many studies have been reported that deep 
learning can extract the features and can achieve high 
diagnostic accuracy by training using data of rotational 
machinery without information of bearing specifications nor 
that of rotating speed. In case of image classification model 
in deep learning, it is known that common features of training 
data can be extracted by models trained with sufficient 
quantity data (Le et al., 2013). Various deep learning methods 
have been applied for diagnosis of machinery in order to 
extract features appropriately that can distinguish normal 
vibration waveform and damaged vibration waveform (Zhao 
et al. 2016).  Convolutional Neural Network (CNN), which is 
a representative method of deep learning, can extract local 
features by convolutional kernels and pooling operation. 
However, one of the features of flaking vibration is periodical 
phenomena due to repetitive impact when rolling elements of 
bearing passing through flaking spalls. The amplitude and the 
interval of these features depend on bearing specification and 
operating condition. It is hard for CNN to recognize various 
sequential change of these vibrational features. Therefore, 
CNN would be insufficient for diagnosis of bearing flaking. 
In case of a previous study (Zhao et al. 2017), a regression 
model combining CNN and Long Short-Term Memory 
(LSTM) has been applied to predict wear condition of tool. 
LSTM is a kind of deep learning method that enables 
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classification and regression of time-series data. The aim of 
their model was to recognize local robust features and 
temporal information, and their model showed better 
prediction accuracy than the conventional model. It is thought 
that similar approach may be effective to enhance diagnosis 
accuracy for the case of flaking induced vibration of rolling 
bearings.   

In this study, deep learning models such as CNN, LSTM and 
CNN-LSTM(combined model CNN and LSTM) were 
applied to recognize flaking bearing vibrational features as 
described above. CNN extracts various types of impact 
vibration waveform and LSTM recognizes periodical 
phenomena featuring bearing flaking. 

On the other hand, the diagnosis using deep learning in the 
field application has a various problem. Firstly, diagnosis 
would be difficult when conditions of training data and those 
of diagnostic target data are different including the structure 
of machines to which bearings are mounted. Whereas in 
many previous studies, the performance of diagnostic models 
is evaluated using data of a single test rig, thus it has not been 
verified that the trained diagnostic model was applied to the 
other test rigs (Zhang et al. 2018; Feng et al. 2018; Mao et al. 
2016; Chen et al. 2017). 

Secondly, it is quite usual in the field that vibration signal 
contains not bearing originated component, i.e. noise. 
Therefore, it is hard to diagnose bearing flaking using a 
simple exceeding detection method. But almost nothing is 
discussed on the robustness of the trained bearing diagnosis 
model for noise-containing data in previous reports. 

In this study, in order to make clearer on the above-mentioned 
problems, training and evaluation of the diagnosis models 
were carried out using three kinds of datasets in which 
bearing type and/or test rig were different, in addition to that 
the artificial noise was imposed to the test data. 

2. APPLIED MODELS 

2.1. Convolutional Neural Network (CNN) 

CNN is one of the deep learning methods originally proposed 
for image processing (Le Cun et al. 1990; Krizhevsky et al. 
2012). In our applied models, CNN consists of multilayers, 
and each layer has its function, i.e., a convolutional layer or 
a pooling layer. Operations of the convolutional layers are a 
summation of multiplications between the vectors of input 
data and weight coefficients of convolutional kernel. 
Operations of pooling layers are extractions of features and 
fixture length of the vectors. Also, time-series data such as 
acceleration waveforms are processed in 1-D convolutional 
layers and average pooling layers. Additionally, in order to 
avoid overfitting of model training, batch normalization 
(Ioffe et al. 2015) is performed on each outputs of the pooling 
layers.  

2.2. Long Short-Term Memory (LSTM) 

LSTM is a type of Recurrent Neural Network (RNN), which 
is a deep learning method that can classify and regress time-
series data such as natural languages and voices in 
consideration of feature changes at each time step. LSTM is 
an improvement of RNN in order to capture long-term 
dependencies (Hochreiter et al. 1997; Graves et al. 2005). 

2.3. CNN-LSTM 

The applied CNN-LSTM consists of three major parts, i.e., 
the multi-layered CNN, LSTM layer and Fully-Connected 
(FC) layer. The whole structure of the CNN-LSTM is shown 
in Figure 1. The subject of bearing flaking diagnosis is 
defined as a binary classification of normal and flaking 
vibration, in other words an input of the model is time-series 
acceleration waveform and output of the model is 2 classes 
labels. The labels, which are 2-D one-hot vectors, represent 
normal bearing and fault bearing. Firstly, in CNN layers, the 
8192 points waveform are processed to data of 16 points × 
256 ch, via 9 sets of convolution layer and average pooling 
layer. Next, the output of the last CNN layer is divided into 
16-time steps, and led to the LSTM layer each time step. In 
addition to its input, the LSTM also receives the output of the 
LSTM layer at previous time step as an input. At the last time 
step, the output of the LSTM layer is input to 2-D FC layer. 
In the FC layer, outputs present diagnostic result of the input 
waveform as “normal” or “fault”.  

In this study, CNN-LSTM model, which is presumed to be 
suitable for the diagnosis of bearing flaking, was applied 
mainly. However, in order to compare the generalization 
performance, model consisting of 3-CNN layers and 2-FC 
layers (CNN model), and model consisting of 2-LSTM layers 
(LSTM model) were applied for the training and the test.  For 
the training and the test of these models, the same datasets 
described in next chapter were used. 

 

 Figure 1. Diagram of the applied CNN-LSTM. 
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3. TRAINING METHOD 

As previously mentioned, three kinds of datasets were 
prepared both for the training and the test. It is noteworthy 
that, bearings were damaged artificially, i.e., faults were not 
actual flaking. Such kind of alternatives is widely adopted 
from the viewpoint of saving the time of preparation of a 
number of failed bearings.  Further, as the training method 
applied by the authors, the data of normal (not damaged) 
bearings are added as training data. This is the simulation of 
the case, especially in the field, that the trained diagnostic 
model is applied to new machinery and/or bearings, at which 
getting failure data due to the damage are quite difficult. 

3.1. Description of Datasets 

In order to evaluate generalization performance of the 
applied diagnostic models, three types of datasets (Dataset 
A, B, C) were prepared. These were acquired with 
accelerometers, mounted on the test rigs to observe the 
conditions of the bearings in operation. Table 1 shows details 
of the acquisition conditions of the datasets. Acceleration 
waveforms were picked up from each dataset using different 
test rig. Since three test rigs have their own resonant 
characteristic, suitable frequency band for diagnosis is 
different. Also, differences in operating conditions affect 
amplitude and intervals of impact vibration due to rolling 
element passing through flaking spall. Therefore, once high 
diagnostic accuracy is achieved using data of various 
operating conditions and machinery (test rig), one may 
expect the model widely available.  

Dataset A includes vibration data of ball bearings with 
artificial defect. These data are published by Case Western 
Reserve University (Loparo, 2012). In this dataset, 
acceleration waveforms were acquired using ball bearings 
with 12 kinds of artificial defects of different sizes under 4 
kinds of operating conditions (Smith et al. 2015). Dataset B 
consists of acceleration waveforms using cylindrical roller 
bearings with 4 types of artificial defects under 9 different 
operating conditions. Dataset C consists of acceleration 
waveforms using spherical roller bearings with 5 types of 
artificial defects under 24 different operating conditions. The 
tests for acquisition of dataset B and C were carried out using 
different test rigs in the authors’ company. 

Three types of test data and 15 types of training data were 
arranged using these Dataset A, B and C. Table 2 shows 
contents of test data and training data. In Table 2, Subscript 
of An, Bn and Cn mean “normal”, i.e., all waveforms are 
from not failed bearing. The order of the waveforms of each 
test data and training data was randomly rearranged. Each 
acceleration waveform was picked up from dataset so that it 
became sequential 8192 sampled time series data. Each test 
data consists of 2000 waveforms and each training data 
consists of 5000 waveforms. There was no duplication 
between each training data and each test data. The ratio of 
normal bearing data to damaged bearing data is 1 : 1 in all the 

Table 1. Details of the Datasets. 
Dataset 
name 

A 
(CWRU data) 

B C 

Bearing 
type 

Ball 
bearing 

Cylindrical 
roller 

bearing  

Spherical 
roller 

bearing  

Bearing 
number 

6205-2RS JEM 
(SKF/NTN) 

NU2228BMMA 
(NSK) 

230/750CAME4 
(NSK) 

Sampling 
rate [Hz] 

48000 48000 800 

Rotational 
Speed 
[min-1] 

1730 
to 

1797 
(4 types) 

1200 
to 

1750 
(3 types) 

8 
to 
20 

(4 types) 

Load 
[types] 

4 
(Motor 

horse power) 

3 
(Radial) 

6 
(Radial + 

Axial) 

Types of 
artificial 
defect  

Place 
Size 

[types] 
Place 

Size 
[types] 

Place 
Size 

[types] 

None 1 None 1 None 1 

Inner 
race 

4 
Inner 
race 

3 
Inner 
race 

1 

Outer 
race 

4 
Outer 
race 

1 
Outer 
race 

4 

Ball 4         

 
 

Table 2. List of the combinations of training data and 
test data 

Test No. Training Data Test Data 

1 A  

2 B   

3 C A 

4 B + C   

5 B + C + An   

6 A  

7 B   

8 C B  

9 A + C   

10 A + C + Bn   

11 A  

12 B   

13 C C 

14 A + B   

15 A + B + Cn   
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test data and the training data. Table 3 shows the number of 
waveforms included in each training data. 

In order to avoid the influence of the amplitude of the 
vibration waveform and focus on the waveform shape, each 
waveform was normalized as preprocessing so that average 
value of each waveform becomes 0 and standard deviation 
becomes 1. Figure 2 shows examples of the normalized 
waveforms obtained from each dataset.  As shown in Figure 
2, each example of fault waveform includes periodical 
phenomena of impact vibration. 

4. EVALUATION PROCEDURE 

Training and test were performed for deep learning 
diagnostic models. Each training was iterated 10 epochs 
saving trained diagnostic models at each epoch. The epoch 
was defined as one cycle of training using the training data 
consist of 5000 waveforms. After that, test data were input to 
the trained diagnostic models. In each training of the model, 
the order of training data and initial value of weight 
coefficient in each layer were set randomly, this influenced 
the training results. Therefore, each combination of training 
and test were performed 100 times and the evaluation results 
are shown later in this paper are the average of these values. 
As a performance indicator of the trained diagnostic model, 
F-score (a.k.a. F measure) was calculated in accordance with 
Table 4 and Eq. (1). When diagnostic accuracy is high, F-
score is close to 1. On the other hand, F-score decreases with 
the increase of diagnostic error. If training of a binary 
classification fails completely, all outputs of the trained 
model are the same class. In such a state, F-score decreases 
to about 0.33 in this case.  

In addition, in order to evaluate the robustness of the 
diagnostic model for noise, which might be important when 
the model is applied to the field, five levels of noise signals 
were added to each normalized waveform of test data. The 
noise signals were generated simulating Gaussian 
distribution. Numpy, which is the package with Python, was 
used to generate the noise signals. An average value of each 
noise signals was 0 and standard deviations σ were 0.1, 0.2, 
0.5, 1.0 and 2.0. 

The trainings and tests as described above were carried out 
for CNN-LSTM model, CNN model and LSTM model. 

 

  
Figure 2. Examples of normalized acceleration waveforms of Data A, B and C. 

Table 3. Number of waveforms in the training data.  

Test 
No. 

Data A Data B Data C 

Normal Fault Normal Fault Normal Fault 

1 2500 2500 0 0 0 0 

2 0 0 2500 2500 0 0 

3 0 0 0 0 2500 2500 

4 0 0 1250 1250 1250 1250 

5 834 0 833 1250 833 1250 

6 2500 2500 0 0 0 0 

7 0 0 2500 2500 0 0 

8 0 0 0 0 2500 2500 

9 1250 1250 0 0 1250 1250 

10 833 1250 834 0 833 1250 

11 2500 2500 0 0 0 0 

12 0 0 2500 2500 0 0 

13 0 0 0 0 2500 2500 

14 1250 1250 1250 1250 0 0 

15 833 1250 833 1250 834 0 
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5. RESULTS OF EVALUATION 

In this section, generalization performance of the diagnostic 
models is described from evaluation results under influences 
of various training data. First, the results of the CNN-LSTM 
model are described, followed by comparison with the results 
of CNN model and LSTM model. 

5.1. Results of CNN-LSTM model 

Figure 3 shows test results using single data set for training 
(Test No.1,2,3,6,7,8,11,12,13). It is quite obvious from 
Figure 3 that high F-scores are achieved when training data 
and test data were selected from the same dataset. On the 
other hand, when the training data and the test data were 
different, F-scores remarkably deteriorated. This result 
showed that it is easy to achieve high diagnostic accuracy as 
long as the training data and the test data are acquired under 
the same condition. These results also suggested that high 
accuracy of trained diagnostic model does not mean high 
generalization performance under the state that training data 
and test data are acquired in the same condition. 

Figures 4, 5 and 6 show the test results when different 
datasets were used for training and test. Generalized 
performance of the trained diagnostic models can be 
improved by adding only normal, i.e., not failed data to 
training data from the test target data when using different 
data in training and test. 

Figure 4 shows results of tests using test data A in cases that 
training data does not include fault data of data A (Test No.  
2, 3, 4, 5). F-scores were improved when using mixed 
training data than when using single condition training data. 

Figure 5 is almost same as Figure 4, but for data B and 
excluded training data is fault data of data B (Test No. 6, 8, 
9, 10).  F-score of the diagnostic model using the training data 
A + C + Bn achieved the maximum score of 0.9, which was 
the highest in this figure. 

Figure 6 is almost same as Figures 4 and 5, but for data C and 
excluded training data is fault data of data C (Test No. 11, 12, 
14, 15). F-score of the diagnostic model using the training 
data A + B + Cn was a maximum score in this figure. 
However, F-score of the diagnostic model using the training 
data A + B were lower than F-score of the diagnostic model 
using only the training data B.  

From these results, it is revealed that generalization 
performance of diagnostic model tends to be improved by 
using training data of various conditions data. In particular, it 
is effective for improvement of generalization performance 
to add only normal data of a test target to training data. 

Figures 7, 8 and 9 show the evaluation results on the 
influence of noise on diagnostic accuracy. The noise added 
test data were diagnosed by using each trained diagnostic 
model at epoch 10.  

Figure 7 shows results of tests using test data A (Test No. 1-
5) with a noise component. In the case of σ = 2.0, F-score of 
the models trained with the single condition data decreased 
to the level of the failed model, about 0.33. However, the 
model trained with data B + C + An maintained the F-score 
over 0.4.  

 
 

Figure 3. Test results of the model 
trained with single condition data. 

 

Table 4. Classification of prediction results. 
(Confusion matrix). 

   Actual class 

    Normal Fault 

P
re

di
ct

ed
 

cl
as

s 

Normal 
TN 

( True 
Negative ) 

FN 
( False 

Negative ) 

Fault 
FP 

( False  
Positive ) 

TP 
( True  

Positive ) 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

Figure 8 shows results of tests using test data B (Test No. 6-
10) with a noise component. In the case of σ = 2.0 added, F-
scores decreased to the level of the failed model. However, 
F-score of the diagnostic model trained with training data A 
+ C + Bn provided a little bit better F-score than the others.  

Figure 9 shows results of tests using test data C (Test No. 11-
15) with a noise component. In the case of σ = 2.0, F-score 
of the diagnostic model trained with training data A + B + Cn 
provided about 0.45, better F-score than the others. 

These results showed that the accuracy of the diagnostic 
model was kept almost same as no noise level for the noise 
intensity was 0.5 or less. In addition, loss of diagnostic 
accuracy was less for the noise intensity is 1.0 or more, if the 
model was trained with various conditions including the same 
condition data as those of test target. 

 

 

 

 

 
Figure 4. Test results of the CNN-LSTM model for data A 

trained without fault data of data A. 

 
Figure 5. Test results of the CNN-LSTM model for data B 

trained without fault data of data B. 

 
Figure 6. Test results of the CNN-LSTM model for data C 

trained without fault data of data C. 

 
Figure 7. Test results of the CNN-LSTM model for 

data A with noise component. 
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5.2. Comparison with other models 

Generalization performance was improved in many cases of 
the CNN model and the LSTM model, as in case of the CNN-
LSTM model, by training with mixed data including normal 
data. Also, even loss of F-score were small for test data noise 
added. However, the evaluation results for part of test data 
showed a tendency different from that for the CNN-LSTM 
model.  

Figures 10 and 11 show the part of evaluation results using 
the CNN model and the LSTM model on the influence of 
noise on diagnostic accuracy. The noise added test data were 
diagnosed by using each trained diagnostic model at epoch 
10. 

 

 

Figure 10 shows results of test using the CNN model and test 
data C (Test No.11-15). Unlike in the case of CNN-LSTM 
model, there were no improvement of generalization 
performance by training using mixed data. In addition, when 
the noise σ = 0.5 or more, the loss of F-score due to test data 
noise were the same level as the evaluation result of the 
model trained using single condition data. 

Figure 11 shows results of test using the LSTM model and 
test data C (Test No.11-15). Like in the case of CNN-LSTM 
model, there were improvement of generalization 
performance by training using mixed data with normal data. 
Also, the loss of F-score due to test data noise were small 
when the noise σ = 0.5 or more. However, the F-score in the 
case of CNN-LSTM model (figure 9) were higher than in the  

 
Figure 8. Test results of the CNN-LSTM model for data 

B with noise component. 

 
Figure 9. Test results of the CNN-LSTM model for 

data C with noise component. 

 
Figure 10. Test results of the CNN model for data C 

with noise component. 

 
Figure 11. Test results of the LSTM model for data C 

with noise component. 
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case of LSTM model when noise σ was less than 2.0 and 
training data were mixed data include normal data. Therefore, 
it is inferred that more general features were extracted in the 
case of CNN-LSTM model. 

These results show that in the diagnostic model using deep 
learning, not only the CNN-LSTM model, can be improved 
of generalization performance by training with mixed data 
including normal data. In addition, the CNN-LSTM model 
can obtain generalization performance improvement more 
stable than the CNN model or the LSTM model. 

6. CONCLUSIONS 

In this study, the CNN-LSTM diagnostic models have been 
applied, which are combined with two methods, CNN and 
LSTM. The applied models are designed to detect the flaking 
occurred in bearings. The binary classification process is 
adopted to detect the fault from the vibration waveforms of 
the accelerometers. The training method is proposed that 
using data of various test rigs and various bearings with an 
artificial defect. Generalization performance of the 
diagnostic models has been investigated with the various 
combinations of the training datasets acquired from three 
types of test rigs.  

The models trained with single condition dataset showed low 
diagnostic accuracy for test data which were different from 
the data for training. If training data consist of the normal / 
fault data provided from other test rigs and only normal data 
from the target test rig, it was found that the diagnostic 
accuracy was improved. It is suggested that damage data of 
diagnostic target would be unnecessary for condition 
monitoring in the field. The effect of the noise component 
included in the normalized test data also has been 
investigated. When the value of noise	σ was 0.5 or less, the 
diagnostic accuracy of the models did not decrease 
substantially. When the value of noise	σ was 1.0 and 2.0, 
however, the diagnostic accuracy of all models was lower 
than in case of no noise, diagnostic accuracy was less likely 
to decrease of the models trained with proposed method than 
other models. The CNN-LSTM models gained these 
advantages more stable than the CNN models and the LSTM 
models. From these results, CNN-LSTM models could 
diagnose bearing flaking with high accuracy and robustness 
by using the proposed training method. 

In future work, it would be necessary to verify, whether the 
essential features of the vibration waveforms due to flaking 
would be extracted correctly through the applied method, and 
how it changes as training progress.  
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