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ABSTRACT 

Expanding Prognostics and Health Management (PHM) from 
an equipment-centric view to complex large-scale 
engineering systems is a challenging problem. One example 
for a large engineering system is the next generation national 
airspace system (NAS), which is a fully coupled cyber-
physical-human system. This paper presents an overview of 
a NASA University Leadership Initiative (ULI) project 
which aims to address the safety needs and their technology 
solutions for future NAS. The ULI is a 5-year collaborative 
project in which researchers from several universities and 
commercial entities work together to advance real-time 
airspace safety concepts. The underlying premise is that it is 
imperative to be able to assess and predict the evolution of 
the airspace’s safety state. Towards that end the work 
envisions to address the following issues:  modeling of the 
airspace using both data-driven and physics-based 
approaches; quantifying and managing uncertainty; 
advancing prognostics and information fusion algorithms; 
and understanding and modeling human computer interface. 
A comprehensive simulation environment is being built that 
allows for assessment of performance and verification and 
validation. The paper discusses the various activities and 
places them into the context of overall NAS safety.  

1. BACKGROUND AND OVERVIEW 

The next generation (NextGen) national air transportation 
system will include a number of changes. In particular, a 
multitude of new and existing aviation data sources are 
expected to become available, such as from Automatic 
Dependent Surveillance - Contract (ADS-C) and Automatic 
Dependent Surveillance – Broadcast(ADS-B) (ADS-B) 
surveillance systems-based operations (McCallie, Butts et al. 

2011), voice and data communications, weather forecasting, 
and aircraft health data. However, several critical challenges 
exist for systematic integration and interpretation of the 
enormous amounts of information associated with national 
airspace systems (NAS). For example, it is anticipated that 
the myriad of information offered by various data sources in 
the future will require appropriate representation and fusion 
methodologies. Furthermore, a large amount of uncertainty is 
associated with this information arising from various sources 
such as aeronautical instrumentation, environment, intrinsic 
variabilities, and limited knowledge of human-system 
integration on safety (Lintner, Smith et al. 2008). Complex 
system safety modeling of multiple failure modes (e.g., loss 
of separation, mechanical and electrical sub-system failure, 
miscommunications, human-automation errors, and weather-
related hazards) with largely unknown uncertainties is 
extremely valuable for the safe transition of the present NAS 
to NextGen concept of operations. In addition, as the NAS 
adopts new NextGen technologies to enhance its capacity, 
efficiency, and uses, maintaining a safe system has created 
the need for real-time responses for risk mitigation. A 
system-wide prognostics framework equipped with rigorous 
verification and validation methodologies for proactive 
health management of evolving NextGen NAS, hence, is of 
both technical and practical urgency.  

The objectives of the study are to develop an integrated real-
time system-wide information fusion methodology for 
prognostics and safety assurance of the NAS. Various sources 
of uncertainties and their coupling effects are systematically 
investigated for accurate failure and risk assessment of the 
extremely large-scale, complex NAS. A community-based 
collaborative simulation platform will be developed for 
continued sustainable prognostics technology evolution for 
the NAS safety research 

2. NASA STRATEGIC THRUSTS 

NASA’s Aeronautics Mission Directorate has defined a set 
of Strategic Thrusts (NASA 2017) that are setting the 
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agency’s research agenda to global trends affecting aviation. 
These thrusts encompass a broad range of technologies that 
are meant to meet future needs of the aviation community, 
the nation, and the world for safe, efficient, flexible, and 
environmentally sustainable air transportation. 

2.1. Real-Time System Wide Safety Assurance 

One of these strategic thrusts is Real-Time System Wide 
Safety Assurance (NASA, 2017). Continuous efforts to 
reduce risk in commercial aviation over the last few decades 
have made it the safest mode of transportation. Yet, as 
aviation adopts new technologies to enhance the capacity, 
efficiency, and uses of the NAS, maintaining a safe system 
will require detection and timely mitigation of safety issues 
as they emerge and before they become hazards. Needed are 
capabilities to ensure safe operations in a more complex 
airspace through proactive detection, prognosis, and 
resolution of emergent threats to system-wide safety. 
Envisioned is a safety net that utilizes system-wide data to 
provide alerting and mitigation strategies in real-time to 
address emerging risks. 

2.2. ULI Vision 

ULI is a project initiative that was meant to engage 
Aeronautics Research Mission Directorate (ARMD) and the 
academic community in a new type of interaction where 
universities take the lead, build their own teams, and set their 
own research path. ULI seeks new, innovative ideas from 
university-led teams to support the NASA ARMD research 
portfolio and the U.S. aviation community. To that end, 
university teams are being challenged to address unique 
research questions associated with ARMD strategic thrusts 
(NASA 2017), defining interdisciplinary solutions, 
establishing peer review mechanisms, and applying 
innovative teaming strategies to strengthen their research 
impact. In order to transition their research, the projects have 
been challenged to actively explore transition opportunities 
and pursue follow-on funding from stakeholders and 
industrial partners during the course of their award. This 
paper describes the efforts that are being undertaken for the 
ULI project awarded under the strategic thrust Real-Time 
System-Wide Safety Assurance.  

3. METHODOLOGY 

A general methodology for PHM of NAS involves close 
interactions among several distinct disciplines. Central to the 
large-scale multi-source information fusion supported via 
several key building blocks is the generalized Bayesian-
Entropy Network (BEN). A schematic illustration of the 
overall framework is shown in Figure 1. Each component is 
briefly discussed below.  

 
Figure 1. Schematic illustration of information fusion 

methodology for prognostics 

3.1. System-wide air traffic modeling and failure 
simulation 

A domain knowledge-based air-ground traffic simulation 
framework is required for prognostics and risk analysis 
(Figure 1.). The current study advances a computational 
framework in which factors impacting the safety of national 
airspace operations can be modeled and analyzed to assess 
emerging safety issues.  
This framework is termed as the National Airspace Traffic-
Prediction System (NATS) throughout this paper. NATS is 
implemented as a server-client software package that 
incorporates realistic models of three major subsystems: 
Equipment, Entities and Environment. (1) The Equipment 
category includes aircraft, flight-deck automation equipment, 
ground vehicles, and surveillance and communication 
systems. (2) The Entities category includes error models of 
all human operators involved in NAS operations such as 
pilots, air traffic controllers and ground vehicle operators. (3) 
The Environment subsystem consists of airports with ramp, 
taxiways and runways, en-route and terminal area flight 
operations procedures, terrain, and weather. Any other 
subsystem models to be considered in the analysis can be 
modeled by the analyst and integrated with NATS under one 
of these three categories. 

The development of this simulation framework is based on 
NASA tools (ACES and FACET) and OSI codes (CARPAT) 
that use filed flight plans and the instantaneous aircraft states 
in the NAS for forecasting traffic flow evolution. The impact 
of traffic management initiatives caused by weather and other 
factors affecting traffic flow will also be included in future 
work. This part reflects the information sources from existing 
understanding of the complex NAS system. 

A block diagram of the system-wide air traffic modeling and 
failure simulation flow chart is shown in Figure 2. The 
simulation system is built around NASA air traffic simulation 
tools such as FACET (Bilmoria, Banavar et al. 2000), ACES 
(George, Satapathy et al. 2011), SOSS (Wood, Kistler et al. 
2009, Windhorst 2012) and ATG (Jung, Hoang et al. 2011).  
Hardware-accelerated air traffic simulation software such as 
CARPAT (Tandale and Menon 2008, Tandale, Wiraatmadja 
et al. 2011) may be included to address the needs for iterative 
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simulations such as Monte-Carlo simulations. Surface traffic 
simulation tools such as ATG is being incorporated to allow 
the analysis of system safety on ramp, taxiways and runways. 
Aircraft databases such as BADA (Nuic 2010) are being used 
to enable the trajectory simulation of every operational 
aircraft currently operating in the NAS. Historic flight plans 
and weather data from NOAA (Tandale and Menon 2008, 
Tandale, Wiraatmadja et al. 2011) are being provided for 
simulation. Evolving NextGen automation tools such as new 
controller decision-support systems, airborne self-separation 
algorithms, precision navigation systems, and trajectory-
based operational capabilities is being included to enable 
analysis of these systems on overall NAS safety.  

 
Figure 2. Schematic Illustration of NAS Air Traffic 

Prediction and fault/Failure Simulation 
 
Next, the domain-knowledge traffic model is being 
transformed into a mathematical dynamic formulation (e.g., 
state-space equations) to facilitate the future prediction and 
information fusion. In this study, the concept of physics-
based learning is investigated and a new prognostics 
algorithm for aircraft dynamics simulation is developed. 
Physics-based learning is a hybrid approach that utilizes both 
the data-driven learning and the underlying physics of 
dynamical systems to achieve more efficient learning and 
prediction. Specifically, the underlying physics of the 
dynamical system is integrated into the learning models such 
as RNNs to provide additional constraints for the learning and 
prediction of behavior of dynamical systems. By doing so, 
the physics-based learning method is able to greatly reduce 
the training costs associated with the purely data-driven 
approach. The trained model can serve as surrogate models 
for aircraft dynamical systems and thus reduce the high 
computation costs of solving the system numerically. 
Furthermore, the integration of the physics enhances the 
extrapolation capability of the trained model. This is 
considered as a desirable feature since the long-term 
responses of dynamical systems under arbitrary inputs are 
often of interest. Recently, a physics-aware RNN architecture 
known as the deep residual RNN (DR-RNN) was introduced 

(Kani and Elsheikh 2017). The DR-RNN formulates an 
iterative scheme to minimize the residual function that is 
computed using the underlying physics of the dynamical 
system. In this study, the DR-RNN is adopted to handle 
learning of aircraft dynamics. 

Another major component is the big data analytics module 
that is used to develop metrics-based safety measures that can 
be used for prognostics. Multiple data sets consisting of 
different types of historical aviation information are mined, 
including NTSB Aviation Accident Database & Synopses, 
FAA Aviation Safety Information Analysis and Sharing 
(ASIAS) Source Databases, Automatic Terminal Information 
Service (ATIS), to name a few. The goal is to build predictive 
models that take as input multi-sourced data, or multi-view 
data, and output the predictions regarding various types of 
fault/failure modes, such as wake turbulence related 
accidents, pilot errors, mechanical errors, and sabotage. A 
heterogeneous learning framework for scalable and real-time 
failure and risk identification from multi-modality input data 
consists of the following two key components:  
a) Multi-view rare category analysis for detecting fault and 
failures. A single view only corresponds to the features from 
one information source (one view), e.g., text information 
from ATIS. The goal is to identify fault/failure modes (which 
are rare compared with the normal working modes) by 
integrating the weak signals of such rare events from all the 
views. As a pre-processing step, the data are being converted 
from all the information sources into numerical forms. For 
example, to process the text information from ATIS, one first 
builds a vocabulary consisting of key words commonly used 
in aviation and airport environments. Each piece of recorded 
information is mapped into a numerical vector using, e.g., the 
bag-of-word model (Schütze 2008), or the Word2Vec model 
(Goldberg and Levy 2014). Then based on these numerical 
features from multiple views, novel multi-view rare category 
analysis algorithms are designed to output a list of events 
ranked in descending order of their probabilities of fault and 
failures. These algorithms are based on the alternating 
direction method of multipliers (ADMM) (Boyd, Parikh et al. 
2011). End users of these algorithms can look through the top 
ranked events, and identify them as positive with a specific 
fault/failure mode or negative (normal). Such feedback is 
used as auxiliary label information (Jansen and McNeese 
2005) to improve the performance of the multi-view rare 
category analysis algorithms.  
b) Multi-label learning for multiple fault/failure types. Given 
multiple types of fault/failure available in historical data, a 
natural idea is to construct separable models from each type 
independently. However, given the relatedness of different 
types of fault/failure, sometimes due to the co-existence of 
multiple causes, discarding the relationship among the 
different types might be sub-optimal (Gibaja and Ventura 
2015). For example, a fault/failure might be caused by both 
pilot error and wake turbulence. To this end, a multi-label 
learning algorithm is used to simultaneously build models for 
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multiple fault/failure types. The key idea is to form 
optimization problems where the objective function takes 
into consideration both prediction performance as well as 
relatedness measure in terms of various matrix norms (Yang, 
Yang et al. 2016) (e.g., the L2_1 norm). Such optimization 
problems can be solved using e.g., the randomized block 
coordinate descent algorithm (Richtárik and Takáč 2014). 
Based on the fusion of domain-knowledge and data analytics, 
the “risk” of the complex NAS system can be rigorously 
evaluated. 

3.2. Multi-modality safety monitoring 

PHM of NAS requires accurate and real-time state awareness 
and this is achieved by multimodality safety monitoring 
(Figure 1). For example, vehicle level flight information can 
be used to obtain engine status data (e.g., temperature and 
speed) which can extract their features to indicate health and 
fault states (see Figure 3). Once the data are obtained, 
advanced data analysis is used for data reduction and 
classification. The current study focuses on a robust real-time 
aircraft health monitoring framework using a machine 
learning based approach, specifically the multivariate 
Gaussian mixture model (mGMM), for the detection of in-air 
operational anomalies of an aircraft system. Sensor fusion 
and noise filtering algorithms have also been adopted to 
reduce dimensionality of the feature space while avoiding the 
elimination of useful information from the original flight 
data. Random noise in each feature, induced by the aircraft 
sensors and data acquisition system, is filtered out using a 
weighted averaging window while maintaining inherent 
variances. The filtered dataset is then fused according to the 
underlying physics of each sensed feature to reduce 
redundant features and subsequently trained using the 
mGMM. The methodology allows monitoring the behavior 
of each feature as well as correlations between features, 
significantly improving detection sensitivity. The high 
computational efficiency of this approach permits real-time 
monitoring of an aircraft system. 

Beyond vehicle level monitoring, ground and in-air 
surveillance monitoring is integrated within the prognostics 
framework to automatically assess conditions of aircrafts and 
various spaces relevant to air traffic management (e.g., 
runway, airspace), and detect anomalous ground and in-air 
events and activities across those spaces (e.g., a pilot deviated 
from a rule of ATC instruction). The goal is to provide 
spatiotemporal details that depict the interactions between 
aircrafts, natural or built environments, resources, equipment, 
and humans involved in various in-air and ground operations. 
Existing air traffic surveillance technology, such as ADS-B, 
can automatically report aircraft position, altitude, speed, 
elements of navigational intent and meteorological data 
(McCallie, Butts et al. 2011), but needs tedious manual/semi-
manual operation to extract spatiotemporal relationships. 
Real-time computer vision, spatiotemporal pattern analysis, 
and spatiotemporal reasoning techniques is examined with 
the goal to automate the recognition of objects and the 
detection of anomalous objects from imageries. 

Here, object recognition algorithms are being developed that 
utilize both visual and spatial features of objects and 
spatiotemporal relationships between objects, such as 
aircrafts, human individuals, runways, airport facilities, and 
equipment and environmental objects from large amounts of 
imagery data (Tang, Chen et al. 2016). Specifically, a 
Conditional Random Field (CRF)-based method is used for 
reducing the search space of objects to match the properties 
and likely spatial relationships with nearby objects (e.g., 
runways should be below and parallel to the departing 
aircrafts) (Xiong and Huber 2010). A deep learning algorithm 
can mine such spatial relationships from large number of 
imageries and then obtain hierarchical object-relationship 
knowledge for supporting CRF-based recognition (Lee, 
Grosse et al. 2009). The CRF-based approach uses spatial 
relationships between objects for narrowing down the search 
space of the recognition problem, and also utilize the 
temporal relationships captured in videos in order to 
eliminate mismatches. 

 

 

 
Figure 3. Schematic illustration of vehicle level healthy state identification 
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In addition, the  approach utilizes the contextual features of 
objects to significantly improve reliability and efficiency of 
tracking objects that have complex motions in low-contrast 
videos (Li, Wu et al. 2014, Sun, Zhang et al. 2016). 

3.3. Human system integration 

One of the most important factors for NAS safety is human 
performance. A holistic prognostic health management 
approach must include the information and models to 
evaluate the impact of human behavior. The BEN requires 
that the sources of information provided as input to the BEN 
consider the decision making of air traffic managers. Factors 
that ATMs currently use to make their decisions and how 
they weight and combine factors in their decisions are being 
explored through text analysis of historical data and records, 
and c) elicitation of the knowledge of expert air traffic 
managers (ATMs Given the rich array of information that 
could be presented to the controller and pilot, it is essential 
that information needs are identified, classified, and 
prioritized., ATMs rely on many different sources of data that 
include visual information in flight strips and radar displays, 
visual and auditory alerts, weather information and runway 
information, and communications with pilots and other 
controllers (Wickens, Mavor et al. 1997). Archival data from 
these types of analyses are being collected and aggregated in 
an inventory. 

Unstructured historical data and records (e.g., computer logs, 
natural language reports about aircraft inspection results, 
flight delay records, historical performance records of pilots 
and aircrafts) can be mined to extract knowledge about 
information needed by ATMs in certain scenarios of air 
traffic management, aircraft inspection, runway and facility 
inspection, and airport pedestrian traffic analysis and 
evacuation. Since a manual analysis of such historical data is 
tedious and error prone, a semantic data model is being 
developed that can be used to represent the information 
commonly available in historical documents, such as 
inspection records of facilities, technical specifications, 
runway intrusion records, and flight delay records. Such a 
semantic data model, as shown in the literature about 
document analytics for improving designs of various 
engineering systems (e.g., buildings, software systems, 
manufacturing systems) (Gruber 1995, Zhang and El-Gohary 
2013), is the type of information representation used by text 
mining methods and algorithms to automatically extract 
operational requirements from technical documents 
specifying tasks such as how to ensure safe and efficient 
operation of aircrafts, runways, airports in various weather 
conditions across multiple cities. 

Finally, knowledge elicitation techniques including 
interviews and conceptual scaling methods can be conducted 
with experienced ATMs to identify information requirements 
of the system (Cooke 1994, Cooke, Neville et al. 1996, Cooke 
1999). The goal is to identify the types of information used 

by ATMs to make decisions, the prioritization of different 
data sources, and rules for combining this information 
(Schvaneveldt, Beringer et al. 2001). The knowledge 
elicitation methods includes structured interviews and 
Pathfinder Network Scaling (Schvaneveldt 1990). 
Challenges associated with knowledge elicitation revolve 
around the elicitation of knowledge that may be difficult, 
especially for the most experienced ATMs, to verbalize.  
Techniques such as the critical decision method (Klein, 
Calderwood et al. 1989) are used in which the ATM recounts 
an important event from the past and can be questioned on 
the events surrounding a particular decision. 

Human-in-the-loop simulation (through ASU’s Air Traffic 
Control (ATC) simulation capabilities) is used to better 
understand the situation and process factors that relate to 
ATM performance. There are many factors relevant to human 
performance (e.g., situation awareness, workload, fatigue), 
which have been measured subjectively. These factors can 
also be detected by more rigorous methods in a simulation 
environment (Yoo, Lee et al. 2015). Simulators are equipped 
with measures of individual, team, and system performance, 
as well as process, including video records, communications 
measures, and tests of situation awareness. Participants from 
ASU's aviation programs are asked to participate as ATMs 
and pilots in these several experimental exercises. Scenarios 
are being developed that varies in complexity and task load 
to provide representative data on human performance.  
Individual ATM and team performance is measured using 
outcome-based metrics in the simulation environment such as 
mean separation of aircraft.  Other situation and process 
factors is also measured to include situation awareness, 
workload, team process, and video and communication data 
(see Figure 4).  Situation awareness can be assessed at the 
individual and team level by injecting faults into the scenario 
and tracking the team’s ability to respond to them (Endsley 
and Garland 2000, Gorman, Cooke et al. 2006).   

 
Figure 4. Schematic illustration of human factor modeling 

approach 
 
Multiple types of metrics can be used to indicate the human 
performance. Previous studies have examined the feasibility 
of using computer vision techniques for human behavior 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

monitoring through facial expression analysis (Shan, Gong et 
al. 2009, Shabbar Ameen 2014). Soukupová has developed a 
real-time eye blink detection algorithms using facial 
landmarks to detect human operators’ vigilance (e.g. driver 
drowsiness)(Janssen, Rothkrantz et al. 2010). Reddy has 
developed a real-time driver drowsiness detection system by 
using facial landmarks of the drivers (Reddy, Kim et al. 2017). 
These studies show the potential of using facial expression 
analysis for detecting anomalous behaviors of ATCOs during 
air traffic control. One of the current study and focus is to use 
Bayesian Network (BN) modeling approach to quantify the 
relationship between anomalous behavior, human errors, and 
accidents by analyzing the accident reports from ASRS. Then 
examine how human behavior monitoring through facial 
expression analysis could help detect anomalous ATCOs’ 
behaviors and use as real-time input to the BN for predicting 
human errors and accidents. 

The work consists of two parts (see Figure 5): 1) develop a 
Bayesian Network (BN) to represent the quantitative 
relationship between anomalous behaviors of ATCOs, 
human errors, and accidents through a review of accident 
reports retrieved from ASRS. The developed BN provides 
risk knowledge about how anomalous behaviors of ATCOs 
cause human errors and lead to accidents according to the 
histories of ATC-related accidents; 2) develop a sensor-based 
human behavior monitoring algorithm to identify anomalous 
behaviors of air traffic controllers automatically. The 
developed algorithm first uses facial landmark detection to 
extract the Eye Aspect Ratio (EAR) as an observable feature. 
Then the algorithm uses the extracted EAR as input to the 
Hidden Markov Model (HMM) to detect anomalous human 
behaviors. The proposed approach uses the detected 
anomalous behaviors of ATCOs as inputs to the developed 
BN based on accident reports and provides probabilities of 
human errors and ATC-related accidents in real-time. 

3.4. Uncertainty management and risk assessment 

PHM for NAS needs to carefully include the effect of 
uncertainties for the safety assurance (Figure 1). Uncertainty 

management includes: uncertainty quantification, uncertainty 
propagation through models, uncertainty reduction technique 
in prognostics, and decision making under uncertainties. In 
large complex networks such as NAS, heterogeneous sources 
of uncertainty are involved in the process of risk assessment. 
These uncertainty sources in general can be classified into 
two categories: aleatory uncertainty and epistemic 
uncertainty (Mahadevan and Haldar 2000). Aleatory 
uncertainty sources are irreducible sources of variation such 
as measurement noise and physical variability in system 
characteristics (such as ground operations and pilot-to-pilot 
variations). Epistemic uncertainty sources are theoretically 
reducible that arise out of lack of perfect information such as 
environmental conditions and vehicle state. Rigorous 
uncertainty modeling frameworks for the risk assessment of 
NAS networks must be capable of accurately capturing the 
important statistical properties of the uncertainty sources 
(e.g. dependence over time and space between different 
uncertainty sources) and assess their contributions to the 
system performance. To enable this level of rigor, the system 
includes both probabilistic and non-probabilistic approaches 
to model the uncertainty sources. Probabilistic approaches 
are being used to quantify appropriate sources of uncertainty 
as random variables, stochastic processes, and time-
dependent random field, modeled using probability 
distributions and correlations that describe 
interdependencies. Non-probabilistic approaches such as 
interval analysis, evidence theory, and fuzzy numbers are 
being used to create initial models for epistemic sources of 
uncertainty or where too little data is available to confidently 
fit the parameters of a probability distribution, and then 
equivalent probabilistic distributions are determined using 
the maximum entropy principle. In addition, rare events, 
which are usually the root causes of failures of the NAS 
systems, are often caused by simultaneous occurrences which 
are not only dependent but tail dependent (Bedford and 
Cooke 2002). Tail dependence measures the co-movement in 
the lower and upper tails of the joint probability function of 
uncertainty variables, which is important for the risk 
assessment of NAS.

 

 
Figure 5. Flow chart for risk analysis integrating human monitoring 
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Because the NAS has an extremely large number of variables, 
it is necessary to evaluate the importance of each variable and 
thus reduce the number of variables to achieve the purpose of 
real-time risk assessment. Here, a fast global sensitivity 
analysis (GSA) method is being developed to determine the 
importance of variables in the NAS network. Current GSA 
methods for dimension reduction estimate the contribution of 
input variables to output variance (Wagner 1995) based on 
the variance decomposition theorem, and have two major 
limitations: (1) they only consider aleatory uncertainty in the 
inputs, and (2) in the presence of high-dimensional dependent 
variables, they are computationally expensive. The GSA 
method (Li and Mahadevan 2016a) is being leveraged to 
study complex NAS networks in the presence of correlated 
inputs and outputs, and extend it to fast GSA with both 
aleatory and epistemic uncertainty sources (Sankararaman 
and Mahadevan 2013) (due to noise, insufficient knowledge, 
data uncertainty, etc). Uncertainty sources with low 
contributions to output variability can be eliminated to enable 
real-time risk assessment. 

After eliminating some of the input variables with low global 
sensitivity in the NAS network, the dimension of the 
remaining variables may still be high. In this situation, 
reduced-order modeling of the NAS networks from two main 
directions are being pursued, namely Sparse Principal 
Component Analysis (SPCA) (Zou, Hastie et al. 2006) and 
Active Subspace Modeling (Russi 2010, Constantine, Dow et 
al. 2014). SPCA is used to map the high-dimensional 
response variables of the NAS networks into low-
dimensional latent variables. The main principle of SPCA is 
similar to the Principal Component Analysis (PCA), which 
uses orthogonal transformation to convert high-dimensional 
correlated variables into low-dimensional uncorrelated 
variables. Active subspace modeling is investigated to further 
reduce the input dimension. The directions of the remaining 
input variables with the largest variability is being identified 
first by exploring the gradient of the important principal 
components obtained from SPCA with respect to the 
remaining input variables. The BEN modeling of the NAS 
network is then implemented in the identified subspace (i.e., 
active subspaces).  Next, surrogate models are constructed for 
the resulting input and response variables to build the BEN. 
The efficient global reliability analysis (EGRA) method 
(Bichon, Eldred et al. 2008) is one such method that 
constructs highly efficient Kriging models specifically for the 
purpose of risk assessment. EGRA has been shown to be 
especially effective when applied to system reliability 
problems that are necessary for assessing the NAS. An 
illustration of the EGRA method is shown in Figure 6(a). 

 
a) 

 
b) 

Figure 6. Illustration of a) EGRA and b) inverse subset 
sampling algorithms 

 

The above discussion is for forward risk assessment and 
reliability analysis where all the input variables are 
determined. Another critical element in the discussed 
research is the inverse reliability analysis, i.e., determine the 
remaining useful life (prognostics) or model parameter value 
(design) given the required reliability level of the system.  

The inverse reliability problem is essentially an optimization 
problem with reliability constraints. Reliability-based design 
optimization (RBDO) has been widely investigated in the 
past. In general, the methods can be divided into gradient-
based RBDO problem with analytical formulation and 
sampling-based simulation algorithms. For the former one, 
several inverse reliability algorithms have been developed by 
different researchers (Li and Foschi 1988, Ramu, Qu et al. 
2006) (Kirjner-Neto, Polak et al. 1998).  One of the most 
widely used analytical method is the inverse first-order 
reliability method (FORM) (Xiang and Liu 2011). The key 
idea is to iteratively use the Taylor linear approximation of 
the defined limit state function until the convergence of the 
performance function and the constraint function. The benefit 
is the very efficient calculation for medium-size problems, 
which is critical for the first-order determination of the 
complex NAS system once the reduced-order model is 
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available. Real-time risk assessment can be done with the 
help of inverse FORM. 

If more detailed risk assessment is required with large 
systems, the inverse FORM-type of analytical inversion 
technique is not appropriate. First, numerical difficulties may 
occur when calculating the gradient of response function in 
the searching process, especially for an implicit response 
function. Second, the complex NAS network may yield very 
complicated limit state function shape and multiple failure 
envelopes. In view of this, efficient simulation algorithm with 
novel sampling method, such as Subset Simulation (Au and 
Beck 2001), is explored. The Subset Simulation is an efficient 
Monte Carlo technique originally developed for structural 
reliability problems. In this method, a small probability 
problem is decomposed into a series of large conditional 
probabilities. Then, the method takes advantage of the 
Markov Chain Monte Carlo (MCMC) (Li, Xiang et al. 2012) 
to estimate the small probability. A schematic illustration of 
the discussed inverse subset simulation is shown in Figure 
6(b). 

3.5. Information fusion and prognostics 

 

One of the key concept for a complex system prognosis is 
rigorous information fusion (Figure 1). The key idea is to 

integrate all available information (archived or real-time) to 
assist the final objective of PHM. Above discussion presents 
many different types of information available in NAS and a 
novel Bayesian Entropy Network (BEN) is used for this 
purpose. BEN is a generalized Bayesian Network (BN) where 
Entropy is used to enrich the inference if additional 
information constraint is available. Bayesian Network (BN) 
has been widely used for causal studies where the topology 
structure represents the causal relationships. Existing BN 
methods for causal inference only take the information from 
point observation/experimental data. Many other 
sources/types of information cannot be directly used by the 
BN. For example, these types of information include non- 
probabilistic range information, linguistic 
information/opinions from human, physical constraints, and 
encoded probabilistic point data (e.g., only moment 
information is available due to data reduction). Rigorous and 
systematic inclusion of multiple sources information is 
critical for a complex system-of-systems such as the NAS. A 
new definition of Maximum Relative Entropy is used for 
inference and prognostics 

 
  

(1) 

 

 
Figure 7. Schematic illustration of the multisource hierarchical information fusion of NAS using BEN 
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where x is the observed data and θ is the model parameter. 
𝑃"#$  is the joint prior distribution and 𝑃%&'  is the joint 
posterior distribution. 𝑆[𝑃%&'	, 𝑃"#$] is the relative entropy. 
Additional information can be coded as constraint 𝑓(𝜃)   

  (2) 

By maximizing the relative entropy (Guan, Giffin et al. 
2012), the posterior of model parameters given the new 
information (i.e., point observation data x and constraints 
𝑓(𝜃) ) can be obtained as 

 
 

(3) 

The Lagrange multiplier β is determined by the optimization. 
Eq. (3) shows that the updating is identical to the Bayesian 
updating if no additional constraints are given, i.e., 𝑓(𝜃) =
0 . This formulation is termed as Bayesian Entropy (BE) 
updating. The above discussion can be considered as a single 
“node” problem and can be extended to its network format. 
Thus, Bayesian Entropy Network (BEN) can be developed 
and it has the same topology structure and algorithmic 
properties as the classic Bayesian Network (BN) (Wang & 
Liu, 2018). The developed BEN are used for the causal 
multiscale inference, information fusion, and prognostics as 
shown below. 

Information fusion in the discussed study integrates all 
achievements from previous components.  Some of the 
characteristics of the NAS networks are that they are 
hierarchical (e.g., NAS system – airport portal node – vehicle 
level monitoring) and dynamic (time-dependent processes) in 
nature. An example of the hierarchical multisource dynamic 
BEN for NAS systems is shown in Figure 7.  

Here, the BEN concept and the Dynamic Hierarchical 
Bayesian Networks (DHBN)  (Nannapaneni) are being 
combined for the integration of knowledge and aggregation 
of uncertainty sources across levels and time of the NAS 
networks. A BEN in general, can be constructed in three ways 
– (1) using physics-based models, (2) using data-driven 
models, and (3) a hybrid approach, combining physics-based 
and data-driven methods. Currently available techniques, 
such as greedy hill-climbing, minimal description length, 
Bayesian-Dirichlet equivalence, and Mutual Information 
Test (MIT) is under investigation to facilitate automatic 
DHBN learning of NAS networks. 

Next, the information fusion from both domain-knowledge 
and data is performed. Domain knowledge and expert’s 
opinions have their preferences of the network structure and 
topology (dimensions). Automatic and efficient 
determination of most proper model and model combinations 
are very valuable for the prognostics. A reversible jump 
Markov Chain Monte Carlo (r-MCMC) simulation (Guan, 
Jha et al. 2010, Guan, Jha et al. 2011) are being developed 

and used to automatically learn the most plausible topology 
structure from different types of information. The most 
plausible causal inference results can be automatically 
identified using the r-MCMC samples. Finally, the developed 
method is extended for dynamic complex system with 
possible topology structure changes with help of DHBN 
algorithm. Developing an efficient algorithm for moderate-
to-large size networks with the time-evolving nodes is the key 
focus.  

It should be kept in mind that the above discussion is on the 
fundamental algorithm developed for information fusion. 
Information fusion in a complex system such as NAS 
involves frequent communication and flow of huge amount 
of data. These data are hierarchical and dynamic at both 
temporal and spatial scales. The key objective of “real-time” 
information fusion thus requires very rigorous management 
of information flow to avoid overflow and over-reduction.  
The discussed approach for real-time information fusion is to 
map the functionalities of information fusion in BEN to 
physical devices of the NAS network in resource-constrained 
environments. In the information fusion network, data 
objects include original (or raw) data such as sensor measures 
or expert opinions, intermediate data after local processing, 
and final risk assessments. To aggregate information from 
multiple sources, a protocol for distributed information 
stream management is required to decide where to cache, 
where to process, and how much to transmit based on the 
state of NAS and the risk levels. To tackle the challenge of 
prognostics-based information stream management in the 
NAS network, an optimization-based approach for the design 
of distributed information stream management protocols is 
being explored. An NSA network can be represented as a 
graph where the nodes correspond to physical devices such 
as a sensor or an airplane, possibly with limited power and 
energy (e.g., a sensor node), and the edges represent 
communication links with limited and time-varying 
bandwidth. In recent work (Wang and Ying) a throughput 
optimal information stream management protocol has been 
developed that includes load-balancing, information 
transmissions and data-processing scheduling. 

3.6. Verification, validation, and safety assurance 

Verification and Validation (V&V) methods for the cyber-
physical-human NAS systems is required for future 
certification and decision-making (Figure 1.).  NAS is a 
highly complex heterogeneous system, featuring interactions 
between hardware, software, and human operators and users. 
The discussed methodology systematically organizes the 
available models and information in order to develop system-
wide confidence in the NAS simulation models. Since NAS 
systems are hierarchical and dynamic in nature, new 
verification and validation metrics is developed from the 
dynamic risk assessment perspective. Currently available 
verification and validation metrics mainly focus on problems 
of static response prediction. These metrics is extended to 
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dynamic response of complex networks, based on random 
process representation and principal component analysis over 
time. The new V&V metrics are being developed from two 
directions, namely feature-based validation metrics and 
reliability metric-based validation metrics. In the feature-
based validation metrics direction, wavelet analysis (Jiang 
and Mahadevan 2008), principal component analysis, and 
time-series modeling are leveraged to the development of 
V&V metrics for large complex systems. In the reliability 
metric-based validation metrics (Mahadevan and Rebba 
2005, Rebba, Mahadevan et al. 2006), V&V metrics are being 
investigated from the perspective of time-dependent 
reliability. Three different metrics appear feasible – 
instantaneous reliability, first-passage reliability, and 
accumulated reliability – each offering a different measure of 
model performance. Figure 8 gives an illustrative example of 
the V&V metrics for time-dependent complex systems. The 
V&V metrics developed in the feature-based methods and 
reliability metric-based methods have their own advantages 
and disadvantages. The information obtained from these 
different V&V analyses are being fused in a Bayesian 
network to develop an overall performance assessment of the 
NAS models. The developed dynamic V&V metrics 
effectively capture the quality change of the NAS models 
over time and thus provide a real-time model assessment. 

Model assumptions and approximations are inevitable during 
NAS simulation and risk assessment. These assumptions and 
approximations constitute model uncertainty. Along with 
model uncertainty, there is also data uncertainty (due to 
sparse, imprecise, erroneous, missing or qualitative data) 
(Sankararaman, Ling et al. 2011), causing uncertainty 
regarding the inputs to the NAS model. The model and data 
uncertainties cause uncertainty in the results of V&V and 
system risk assessment (Sankararaman and Mahadevan 
2011). Rigorous verification and validation (V&V) need to 
be performed at both component and system levels in order 
to establish adequate confidence in the analysis results. The 
developed new V&V metrics are being extended to 
incorporate heterogeneous sources of data uncertainty into 
the V&V metrics using Bayesian networks. In addition, 
effective UQ methods, which quantify the uncertainty of 
V&V results due to model and data uncertainty, need to be 
included in V&V process. 

An important element in information sourcing is sensitivity 
analysis, which helps to identify the dominant contributors to 
prognosis and validation uncertainty, and system safety. A 
particular benefit of the sensitivity analysis is to optimally 
allocate resources for uncertainty reduction activities (such as 
data collection, testing, model refinement, etc.) 
(Sankararaman, McLemore et al. 2013). In the discussed 
effort, the solution of this inverse problem is accomplished 
through multi-objective optimization methodologies suitable 
for complex cyber-physical-human systems. Our previous 
research on the validation of safety analysis using BNs and 
resource allocation for model validation (Li and Mahadevan 

2016b) is implemented to develop a new resource allocation 
strategy for model validation of NAS systems. The GSA 
method is used to provide guidance on where and when 
should the validation be conducted through uncertainty 
contribution analysis of components and subsystems towards 
the uncertainty in the overall system.  
 

 
(a) Instantaneous 

 
(b) First passage 

 
(c) Accumulated 

Figure 8. Illustration of the model reliability metric for 
dynamic systems 

 

4. CONCLUSIONS  

This paper addressed the safety needs and their technology 
solutions for future NAS. Because the NAS is a fully coupled 
cyber-physical-human system, a number of technologies and 
supporting techniques need to be interlinked to provide the 
desired safety at an acceptable performance level. Backbone 
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to the methodology is an information fusion and uncertainty 
management framework. The underlying premise to ensuring 
safety is the need to assess and predict the evolution of the 
airspace’s safety state. Towards that end the following 
elements are pooled and conjoined:  modeling of the airspace 
using both data-driven and physics-based approaches; 
quantifying and managing uncertainty; advancing 
prognostics and information fusion algorithms; and 
understanding and modeling human computer interface. A 
comprehensive simulation environment is being built that 
will assess performance and allow verification and 
validation. The techniques presented here are part of the 
NASA University Leadership Initiative (ULI) collaborative 
project that specifically addresses NASA Aeronautics 
strategic thrust 5: Real-Time System-Wide Safety Assurance. 
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