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ABSTRACT

Throughout the United States Navy, marine gas turbines
(MGT) are used for the production of propulsive and elec-
tric power aboard many surface ships. The operational avail-
ability of these ships during deployments is contingent on the
health and reliability of the installed MGTs. Currently, to en-
sure the health and proper functionality of these turbines, a se-
ries of manual evaluations are employed with varying success
(e.g., pre-deployment visual inspections, periodic inspections
of predefined wear out modes, characteristic vibration sur-
veys, Integrated Performance Analysis Reports). This paper
examines historical records associated with the General Elec-
tric LM2500 MGT installed for propulsion aboard Guided
Missile Destroyers (DDG) and Guided Missile Cruisers (CG)
to develop a deployable model of a healthy engine for the au-
tomated, near-real time comparison of sensed data. In tradi-
tional gas-path analysis (GPA), parameters such as compres-
sor discharge pressure (CDP), compressor inlet temperature
(CIT), and exhaust gas temperature (EGT) are predicted as a
function of engine speed using baseline engine data and cor-
rection factors. Implementation of GPA in the MGT environ-
ment is particularly challenging, as analysis will be limited
to narrow operation bands and not account for influence fac-
tors such as engine load or the performance of critical sub-
systems on the engine. In this work, a multi-layer perceptron
(MLP) regression model is developed in order to capture the
nonlinear relationships between engine controller inputs, ex-
ternal loads, and ambient conditions to selected sensor out-
puts such as gas generator speed (NGG), low pressure tur-
bine speed (NPT ), and power turbine inlet pressure (P54).
Optimal inputs and outputs are chosen using both mutual in-
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formation (MI) scores and input from subject matter experts.
A healthy data set was created using data from 60 MGT’s in
service and time-synchronized failure records over a five year
period from 2012 to 2017. An inter-engine model was trained
from the healthy data set and used to generate model residu-
als, which show strong correlation with a variety of critical
failure modes reported in maintenance history, thus enabling
automatic fault detection and remote identification of asset
health and reliability.

1. INTRODUCTION

The health and reliability of installed equipment aboard the
United States Navy (USN) surface fleet is critical to ensuring
operational availability and readiness. Chief among this ship-
board equipment are the marine gas turbines (MGT) installed
for the production of propulsive power aboard DDG-51 and
CG-47 class ships, the General Electric (GE) LM2500. To
achieve the necessary reliability for this vital piece of equip-
ment, development and deployment of health monitoring so-
lutions in order to automate shore-side analysis and identify
abnormal behavior are essential.

1.1. Gas Turbine Health and Performance Monitoring

A comprehensive review of gas turbine performance-based
health monitoring, diagnostics, prognostics, and condition-
based maintenance (CBM) was presented in (Tahan, Tsoutsa-
nis, et al., 2017). State-of-the-art techniques in fault detection
and isolation (FDI), model-based methods, data-driven meth-
ods, and hybrid methods were all presented from different
authors. The large majority of literature in this field is fo-
cused on aviation, although the techniques applied to aircraft
engines, industrial gas turbines, and marine gas turbines share
many similarities. Linear gas path analysis (GPA) is one of
the earliest techniques developed for monitoring gas turbines
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(Urban, 1969). The purpose of GPA is to estimate the state
vector of the engine by mapping measured variables such as
compressor discharge pressure (CDP) and spool speed (N1)
to state variables such as compressor efficiency (ηc) and flow
capacity (FCc) (Ganguli, 2012). Typically, influence coeffi-
cients that map engine measurements to states are determined
from baseline data and least-squares regression. Linear GPA
was used in both (Pinelli et al., 2012) and (Roumeliotis et
al., 2017) demonstrating the effectiveness of the technique
to identify performance shifts on actual gas turbines in ser-
vice. A commercial application of linear GPA has been pre-
sented in Doel (1992), which provides an overview of Gen-
eral Electrics’ TEMPER software. Various techniques have
been developed to overcome the limitations of linear GPA,
which are particularly important due to the strong nonlin-
ear relationships between measurements and state variables
in gas turbines. An improved GPA technique using particle
swarm optimization (PSO) was demonstrated on simulated
MGT data in (Ying et al., 2015). A diagnostic method us-
ing GPA and fuzzy logic was developed and demonstrated
on industrial two-shaft gas turbine simulation data in (Amare
et al., 2017). The use of Kalman filter and neural network
methodologies combined with GPA for identifying faults in
simulated gas turbine data was presented in (Volponi et al.,
2003). An adaptive gas path analysis tool was presented in
(Li, 2010), which introduces a novel two-step process for es-
timating degraded engine performance.

Many advances in gas turbine turbine health and performance
monitoring have come from the application of various ma-
chine learning (ML) techniques, such as artificial neural net-
works (ANN) and support vector machines (SVM). There are
three main uses for ML models in gas turbine monitoring: 1)
a healthy engine model in which a regression model is used
to map selected inputs to outputs (typically sensor measure-
ments), 2) fault detection and diagnostics in which a model
is used for classification by mapping sensor measurements or
model residuals to fault classes, and 3) prognostics for esti-
mating remaining useful life (RUL). Research in this area has
received increased attention over the past 15 years, particu-
larly in the application of ANN’s. An ANN was used for sys-
tem identification of a single-shaft gas turbine in (Asgari et
al., 2013), based on simulated data from physics-based mod-
els. In (Barad et al., 2012), steady-state and transient ANN
models were developed for the combined performance and
mechanical health monitoring of a gas turbine. Healthy gas
turbine engine models were trained from simulated gas tur-
bine data in (Kumar et al., n.d.) and (Tahan, Muhammad, &
Karim, 2017). Healthy ANN-based gas turbine models based
on field data were developed in (Fast et al., 2009) and (Shirazi
et al., 2016). Logistic regression and ANNs were used in (Al-
legorico & Mantini, 2014) in order to identify cold spots, hot
spots, and anomalies in exhaust gas temperature (EGT) pro-
files. A deep learning (DL) methodology was presented in

(Yan & Yu, 2015), in which learned features extracted from
EGT profiles were shown to out-perform hand-crafted fea-
tures for combustor anomaly detection. In (Zhou et al., 2015),
an SVM was trained with simulated data from a degraded en-
gine model in order to diagnose faults. Other techniques have
been implemented for fault detection, including the applica-
tion of similarity-based models (Carricajo et al., 2013) and
sparse Bayesian learning (Pu et al., 2013). Research in gas
turbine prognostics has also received increased attention. A
comparison of data-driven techniques for gas turbine prog-
nostics was presented in (Baptista et al., n.d.), including sup-
port vector regression (SVR), ANNs, random forests, and k-
nearest neighbors (kNN) regression. A Bayesian hierarchical
model was implemented on fleet data in (Zaidan et al., 2015),
and shown to accurately track degradation and RUL.

1.2. Marine Gas Turbine (MGT) Health and Perfor-
mance Monitoring

Research in the area of Marine Gas Turbine (MGT) health
and performance monitoring for surface combatants dates
back over 40 years. Some of the earliest work was presented
in (Kandl & Groghan, 1980), which includes the develop-
ment and testing of a condition monitoring (CM) solution
for LM2500 MGTs aboard DD-963 and FFG-7 class ships.
An approach for trending LM2500 vibration data was pre-
sented in (Hartranft, 1995), demonstrating a technique to pre-
dict optimal maintenance inspection intervals. In (Thomp-
son & Raczkowski, 1996), the development of a diagnostic
tool for trouble-shooting LM2500 performance and controls
problems was presented, based on the development of base-
line performance models from test cell data. A prognostic
tool for timing optimal crank-wash intervals was presented in
(Kacprzynski et al., 2001) and (Scharschan & Caguiat, 2005),
based on land-based fouling tests. Algorithms for identify-
ing clogged fuel nozzles based on features extracted from
gas path sensor measurements for Rolls Royce 501-K17 gas
turbine generators (GTG) were presented in (Byington et al.,
2003). An ANN-based algorithm for detecting LM2500 com-
pressor stalls was presented in (Caguiat et al., 2006), based
on data generated from land-based tests. In (Campora et
al., 2017), a combined fault detection and diagnostics tool
was demonstrated based on Mahalanobis distance (MD) and
ANNs, using simulated data for the entire power plant of a
gas turbine powered frigate.

Much of the MGT research has been focused on specific
faults using synthetic or test cell data, as opposed to over-
all engine health monitoring developed from fleet-wide his-
toric operational data. Currently, the USN collects data from
sensors installed on the gas turbine, fuel system, control sys-
tem, and lube oil system. These data are sent to a shore-side
repository for remote analysis, which includes a combination
of automated fault detection based on preset sensor thresh-
olds and manual data analysis from equipment experts. In
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this work, a healthy engine model is sought in order to au-
tomate shore-side analysis and identify abnormal behavior in
the LM2500 gas turbine and sub-systems, with less user in-
tervention. An inter-engine model approach is taken using a
Multi-layer Perceptron (MLP) regression model trained on a
subset of healthy engine data from 60 LM2500s in service.
The model is used to predict healthy engine behavior (sensor
measurements) for a five year period of operation, demon-
strating the ability to identify critical faults, many of which
remained undetected by present methods.

2. LM2500 MARINE GAS TURBINE (MGT)

The General Electric LM2500 Marine Gas Turbine (MGT)
is a light-weight, high-powered main propulsion engine in-
stalled aboard United States Navy (USN) Guided Missile
Cruisers (CG), Guided Missile Destroyers (DDG), and the
Independence Class Littoral Combat Ships (LCS-2 Variant).
Since its introduction into the surface fleet in 1975, this
derivative of the CF6-6/TF-39 aircraft engine has become
ubiquitous with over 350 engines currently installed and op-
erational aboard Navy vessels. The LM2500 MGT consists
of two major modules (Figure 1), the Gas Generator Assem-
bly (GGA) and Power Turbine Assembly (PTA), and fuel and
lubrication sub-systems. The GGA is composed of a vari-
able geometry compressor, an annular combustor, and a High
Pressure Turbine (HPT); the PTA houses the six-stage Low
Pressure Turbine (LPT). Data used in the following analyses
are limited to ships equipped with the Digital Fuel Controller
(DFC), which is described in the following section.

2.1. Fuel and Speed Governing System

The LM2500 utilizes the DFC to control gas generator speed
(NGG) via regulation of fuel flow into the combustor through
the Fuel Metering Valve/Actuator (FMV/A), which is ad-
justed based on the desired Throttle Input Command (TIC)
to the engine. The position of the Variable Stator Vanes
(VSV) within the variable geometry compressor are rotated
and translated based onNGG and GGA inlet temperature (T2)
to maintain satisfactory compressor performance. The LPT
speed (NPT ) is not directly controlled, but is established by
the gas stream energy. In addition to measurements related to
the command and control (e.g. TIC, VSV position, FMV/A
position,NGG,NPT , and LPT Torque (Mload)), the LM2500
is equipped with built-in sensors monitoring the gas path, vi-
bration levels, fuel oil system, and lubrication oil system to
remotely determine equipment health during underway op-
eration. Gas path sensors include T2, GGA inlet pressure
(P2), compressor discharge pressure (P3), LPT inlet pressure
(P54), and LPT inlet temperature (T54). Vibration signals are
measured via two accelerometers, one mounted to both the
GGA and PTA. Signal conditioners are used to output dis-
placements at each location at the frequency of rotation for
both the GG and LPT such that four vibration signals are

produced: GGA vibrations at NGG (V11), GGA vibrations
at NPT (V12), PTA vibrations at NGG (V21), and PTA vibra-
tions at NPT (V22). The lubrication oil system supplies the
bearings (housed in A- through D-Sumps) and the accessory
gearbox with adequate cool oil to prevent excessive friction
and heat. Relevant supply and scavenged lubrication oil tem-
peratures and pressures throughout the system are monitored
via in situ sensors as diagrammed in Figure 2. Fuel oil sys-
tem health is monitored via remote sensing of fuel manifold
pressure (PF2) and fuel filter differential pressure (PF1).

3. MODEL DEVELOPMENT

3.1. LM2500 Engine Data Collection

For each installed engine, sensors are measured simultane-
ously and collected shipboard during underway operation via
the Integrated Condition Assessment System (ICAS). Data
are acquired once per hour during steady-state operation
when the compressor speed (NGG) is greater than 4000 RPM
or once the equipment regains steady-state if NGG changes
by more than 500 RPM in the interim. Steady-state opera-
tions are characterized by nearly constantNGG, TIC, and T54
over a five minute interval. Qualified sensor data in ICAS is
replicated to the shore side data repository CMAS (Consol-
idated Machinery Assessment System) for storage and anal-
ysis. The data set used in these analyses, obtained via the
CMAS data repository, includes historical operational data
from 60 LM2500s installed aboard 15 ships recorded during
a five year span between 2012 and 2017. It includes 921,652
rows of samples with each row containing readings from 28
unique sensors. Additionally, failure records, limited to ”crit-
ical” events expected to significantly affect engine perfor-
mance and covering the entire five year span of the data set,
were supplied and time-synchronized with the CMAS sen-
sor data. A comprehensive overview of LM2500 failures was
provided in (Driscoll et al., 2011), covering a 35-year period
of engine removals.

3.2. Healthy Engine Data Selection

The time-synchronized failure records were used to label and
extract nominally ”healthy engine data” for model training
and validation. The subset of healthy engine data was se-
lected by first removing samples from the raw operational
data in the 90 day window leading up to reported failures.
This step accounted for the removal of approximately 40 per-
cent of the original data set. The failures, limited to ”critical”
events only, include major faults in the Fuel Metering Valve
(FMV), Variable Stator Vanes (VSV), Gas Generator Assem-
bly (GGA), Lube Oil (LO) system, Power Turbine Assembly
(PTA), and instrumentation. Next, rows with missing or er-
roneous sensor readings were removed, as the modeling ap-
proach requires complete vectors at each time sample. Practi-
cal upper and lower sensor limits extracted from the technical
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Figure 1. Schematic of LM2500 marine gas turbine.

Figure 2. LM2500 lubrication system with corresponding sensors in blue.

manuals were used to filter out impossible sensor values a
priori, such as vibration levels less than zero reported during
operation. After filtering, 280,963 qualified samples were re-
tained in the healthy data set, or approximately 30 percent of
the original data set.

3.3. Model Input and Output Variable Selection

The input variables (see Table 1) of the model were cho-
sen based on the operational description of the LM2500 with
the aid of Mutual Information (MI) scores (Kappaganthu &
Nataraj, 2011). The gas generator speed (NGG) is directly
controlled by the TIC setting, thereby making TIC an appro-
priate input to the model. Both T2 and P2 were also chosen
as inputs, as they represent ambient conditions at the inlet of
GGA. The power turbine load (Mload) was chosen as the final
input and represents the torque load on the engine from driv-

Table 1. Model input variables.

Parameter Symbol
Compressor inlet temperature T2

Compressor inlet pressure P2

Power Turbine Load Mload

Throttle input command TIC

ing the main reduction gear, which drives the ship’s propeller
shaft. The remaining sensors were considered as outputs of
the model.

The dependencies amongst the various sensors were studied
by computing the MI scores for all of the variables in the
healthy data set. For two random variables, X and Y , the MI
can be described as the reduction in uncertainty in X , given
knowledge of Y . It is a measure of the dependency between
the variables and equals zero if the two random variables are
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independent. It can be calculated using the conditional and
marginal entropy

I(X,Y ) = H(X)−H(X|Y ) (1)

where the entropy is calculated from

H(X) = −
∑
x

p(x) log2 p(x) (2)

For discretely sampled data, estimates of p(x) and p(x|y) are
required. Nearest neighbor density estimation was used in
this work, which estimates the probability density by finding
an appropriate volume containing a fixed number of points.
Table 2 lists the selected model outputs and the three variables
with the highest MI scores. For example, TIC has the highest
MI score for the parameter NGG, which is expected since
NGG is controlled directly by this variable.

3.4. Model Architecture

Figure 3 shows the model architecture for a single engine,
which consists of a Multi-layer Perceptron (MLP) regression
model that maps the inputs from Table 1 to the outputs listed
in Table 2. The model is intended to be used in real-time,
by continuously generating predictions for comparison with
measurements as new data is recorded. This can be classi-
fied as an inter-engine model, as the combined historical op-
erational data from 60 engines was used for training. The
predicted output of the model is compared to the measured
output and used to generate residuals, e, which are used to
automatically detect deviations from ”normal” behavior. In
other words, this modeling approach aims to identify devia-
tions away from typical fleet behavior.

Figure 3. Model architecture.

3.4.1. Multi-layer Perceptron (MLP) Model

A basic multi-layer perceptron (MLP) model can be de-
scribed as a nonlinear function that maps a set of input vari-
ables, (xi) to a set of output variables (yk) (Bishop, 2016).
In this work, an MLP regression model was utilized with a
single hidden layer and unit activation function in the output
layer. The overall network function takes the form

yk(x,w) =

M∑
j=0

w
(2)
kj h

( D∑
i=0

w
(1)
ji xi

)
(3)

where D is the number of inputs, M is the number of hidden
neurons, and h(a) is the activation function. The rectified
linear unit (RELU) was chosen as the activation function for
the hidden layer and is given by

zj = max(0, aj) (4)

where

aj =

D∑
i=0

w
(1)
ji xi (5)

The MLP model is trained by finding the weights, w, that
minimize the loss function

Γ =
1

2
||ŷ − y||22 +

α

2
||w||22 (6)

where ŷ are the predicted values and α is the regularization
hyper-parameter. In this work, optimization of Equation 6
was achieved using the Adam algorithm, an iterative algo-
rithm that uses running averages of the gradients and second
moment of the gradients. This algorithm was chosen for its
computational efficiency and performance on large data sets,
as demonstrated in (Kingma & Ba, 2014).

3.5. Model Training and Hyper-parameter Tuning

The optimal number of neurons (M ) in the hidden layer of
the MLP model was determined by examining the validation
curves, which compares training and cross-validation error
with respect to M . Before training, the healthy data set was
standardized by removing the mean and dividing by the stan-
dard deviation for each variable. A digitized version of the
throttle input command (TIC) was created using 25 linearly
spaced bins to serve as the label for stratification, ensuring
the folds preserve the percentage of samples in each bin. The
healthy data set was then divided into training and validation
data using a stratified cross-validation scheme with 10 folds.
Training was repeated until each fold was used for validation,
with the remaining 9 folds of data utilized for training. This
was repeated for each value of M in order to compute the av-
erage cross-validation error, training error, and the standard
deviation of both metrics. Figure 4 shows the training and
cross-validation error plotted as a function of the number of
neurons (M ). The shaded bands indicate the standard devi-
ation (confidence interval) computed across the ten folds for
training and testing. The minimum cross-validation MSE was
found to be 0.456 for M = 20, with a corresponding train-
ing MSE of 0.477. For M > 20, the training MSE continues
to improve but the cross-validation error steadily degrades as
the two curves diverge. The number of hidden neurons was
therefore set to M = 20, as it achieves minimal error without
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Table 2. Model output variables.

Variable Symbol Top MI Ranked Predictors
Cooling air temperature Tclg Td, Tb, Tgb

Fuel metering valve position FMV P3, VSV, P54

Fuel filter differential pressure PF1 P3, PF2, VSV
Fuel manifold pressure PF2 P3, VSV, FMV
Gas generator vibration at NGG V11 V21, V22, PL2

Gas generator vibration at NPT V12 V22, NPT , PL1

Lube oil cooler outlet temperature Tloc Ta, Tgb, Td

Lube oil scavenge filter differential pressure PL4 PL3, PL2, V12

Lube oil scavenge gearbox temperature Tgb Ta, Tc, Td

Lube oil scavenge pump pressure PL3 NGG, P3, PF2

Lube oil sump A temperature Ta Tc, Tb, Tgb

Lube oil sump B temperature Tb Ta, Tc, Tgb

Lube oil sump C temperature Tc Ta, Tgb, Tc

Lube oil sump D temperature Td Tc, Tgb, Ta

Lube oil supply filter differential pressure PL2 V12, V22, PL3

Lube oil supply pressure PL1 PF2, VSV, FMV
Gas generator speed NGG TIC, VSV, FMV
Low pressure turbine speed NPT P3, VSV, FMV
Compressor discharge pressure P3 VSV, FMV, P54

Low pressure turbine inlet pressure P54 P3, FMV, Mload

Power turbine vibration at NGG V21 V11, V22, P2

Power turbine vibration at NPT V22 V12, PL2, NPT

Low pressure turbine inlet temperature T54 FMV, TIC, NGG

Variable stator vane position VSV P3, NGG, FMV

over-fitting and also achieves the lowest standard deviation of
the cross-validation error.

Figure 4. Training and cross-validation mean-squared error
(MSE) vs. number of hidden neurons for MLP model.

3.5.1. Performance of MLP with Multiple Hidden Layers

An MLP with a single hidden layer was chosen for it’s sim-
plicity, low computational expense, and performance. How-
ever, the performance of an MLP model with additional hid-
den layers was also studied. Since the hyper-parameter space
for a multi-layer network can be large, a genetic algorithm
(GA) was used to find the optimal number of hidden layers
and nodes in each layer for comparison with the single-layer
MLP. The parameter space was limited to a maximum of five

hidden layers and 50 hidden neurons per layer. Optimization
was carried out as follows:

Genetic Algorithm:

1. Create initial population containing random hidden layer
configurations within search subspace. Each member of
the population is described by a five gene sequence with
each gene corresponding to the number of hidden neu-
rons.
(a) For each member of the population, compute the fit-

ness score using the cross-validation MSE from 10-
fold cross-validation

(b) Select the ”parents” based on the fitness scores, the
cross-validation MSE

(c) Select the ”elite children” with the highest fitness
scores

(d) Create ”crossover children” by randomly combin-
ing genes from parents

(e) Create ”mutation children” by randomly select-
ing/mutating genes from parents. Mutation was
achieved by adding random integers between -5 and
5 to the genes

(f) Replace current population with new generation of
children

2. Steps (a) to (f) are repeated until the difference in the
best scores from successive populations is less than the
tolerance

The GA was run with the parameters listed in Table 3. The
algorithm was run repeatedly, using the best ”children” from
previous runs as part of the initial population for successive
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runs. Table 4 lists the best scores from optimization as well
as the results from optimization of the MLP with a single
hidden layer. The additional hidden layers do not seem to
offer any performance advantage, yielding comparable cross-
validation MSE scores to the single-layer MLP. It was also
determined that the three or four layer networks consistently
scored better than two or five layer networks. Architectures
with more than four layers were usually discarded after the
first iteration. Each run converged in less than 50 iterations,
often arriving within 10% of the final MSE after the first iter-
ation.

Table 3. Genetic algorithm parameters.

Parameter Value
Population 30
Number of Parents 4
Number of Elite Children 4
Crossover Fraction 0.8
Tolerance 5e-4

Table 4. Genetic algorithm results.

Model architecture Best MSE score
4 - 44 - 46 - 43 - 43 - 24 0.458

4 - 28 - 26 - 26 - 24 0.463
4 - 20 - 24 0.457

3.5.2. Final MLP Model Training

The MLP model was trained with the model parameters
listed in Table 5 using the healthy data set and a 70/30
training/testing split, yielding 196,674 training samples and
84,289 testing samples. The model reached convergence af-
ter 108 epochs with a final training MSE of 0.469 and testing
MSE of 0.457.

Table 5. MLP Model Parameters.

Parameter Value
Network architecture 4 - 20 - 24
Activation unit RELU
Output activation unit Linear
First moment decay rate (β1) 0.9
Second moment decay rate (β2) 0.99
Learning rate (α) 0.001
Momentum 0.9
Epsilon (ε) 1e-8
Solver Adam

The performance of the model was examined by compar-
ing the predicted outputs with the measured outputs for the
healthy data set. Table 6 lists the model uncertainty for each
of the predicted outputs expressed in physical units and as a
percentage of the full scale range (% FS). The model is capa-
ble of predicting gas path parameters such as NGG, VSV, P3,
FMV, T54, and P54 with the lowest prediction error and tends
to perform worst on lube oil and vibration variables. This is

to be expected, as both lube oil and vibration sensors show a
much larger band of process noise and variability when com-
pared to the gas path parameters.

Figure 5 shows six performance curves typically used to as-
sess gas turbine performance, including NGG vs TIC, VSV
vs NGG, P3 vs NGG, FMV vs NGG, T54 vs NPT , and P54 vs
NPT . Each plot shows the measurements and model predic-
tions for the entire healthy data set with 60 engines. The mea-
sured and predicted output show strong agreement in each of
these plots, with only a very small subset of points falling
outside of the prediction envelope.

Figure 6 shows the predicted and measured lube oil sump
temperatures for sumps A, B, and C. For these variables, there
are significantly more points that fall outside of the predic-
tion envelope, particularly in the data for sump A and sump
C. The model prediction curve for each sump tends to fall
within the middle of measured range, thereby capturing the
general behavior of the fleet of engines without over-fitting
to the points in regions of lower density. The spread in data
around this prediction envelope can be accounted for by the
general variation amongst the engines, process noise, and out-
liers or erroneous readings that were not effectively filtered
during healthy data selection. This spread is not of partic-
ular concern, as the general trend representative of the fleet
of engines was sought, such that the model residuals become
indicative of deviations away from typical fleet behavior, as
opposed to specific engine behavior.

Figure 7 shows three plots that are typically used in the vibra-
tion assessment of the engine. The first plot, V22 vs. NPT ,
shows the presence of high speed coupling shaft (HSCS) im-
balance through elevated vibration levels in between 3000
and 3300 RPM. The second plot, V12 vs. NPT , shows the
presence of LPT imbalance through the peak located at 1575
RPM. The third plot, V21 vs. NGG, shows the presence of
GG rotor imbalance through the peak located at 7500 RPM.
Similar to the case with the lube oil temperature sensors, the
model fails to predict behavior in regions of lower density,
including the peaks that result from imbalance of various en-
gine components. These values were not filtered from the
healthy data set as they still fall within the alarm limits of
the engine. The large size of the training data as well as the
model order selected prevent the model from over-fitting to
these points. The peaks will therefore create high residual
values indicative of anomalous behavior, which is desired.

4. RESULTS AND ANALYSIS

The original raw data set containing 921,652 samples was fil-
tered by removing all rows containing missing data or values
deemed erroneous a priori. The remaining data set of 624,276
samples contained unlabeled healthy and non-healthy opera-
tional data. Using the trained model, predictions were gener-
ated after the standardization (scaling) of the inputs and these
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Table 6. Model Uncertainty for Predicted Variables.

Variable Symbol Uncertainty (% FS) Units
Cooling air temperature Tclg 12.8 (5.4%) ◦F
Fuel metering valve position FMV 1.46 (1.4%) %
Fuel filter differential pressure PF1 3.45 (4.6%) PSID
Fuel manifold pressure PF2 19.4 (2.5%) PSIG
Gas generator vibration at NGG V11 0.52 (6.7%) mils
Gas generator vibration at NPT V12 0.70 (4.1%) mils
Lube oil cooler outlet temperature Tloc 16.8 (1.9%) ◦F
Lube oil scavenge filter differential pressure PL4 1.28 (6.8%) PSID
Lube oil scavenge gearbox temperature Tgb 15.2 (1.8%) ◦F
Lube oil scavenge pump pressure PL3 2.93 (3.6%) PSIG
Lube oil sump A temperature Ta 16.0 (1.9%) ◦F
Lube oil sump B temperature Tb 13.9 (4.6%) ◦F
Lube oil sump C temperature Tc 15.7 (1.8%) ◦F
Lube oil sump D temperature Td 23.9 (2.8%) ◦F
Lube oil supply filter differential pressure PL2 0.56 (0.9%) PSID
Lube oil supply pressure PL1 3.31 (4.2%) PSIG
Gas generator speed NGG 22.8 (0.3%) RPM
Low pressure turbine speed NPT 176 (4.8%) RPM
Compressor discharge pressure P3 2.88 (1.1%) PSIA
Low pressure turbine inlet pressure P54 2.06 (3.4%) PSIA
Power turbine vibration at NGG V21 0.37 (10%) mils
Power turbine vibration at NPT V22 0.33 (1.9%) mils
Low pressure turbine inlet temperature T54 38.7 (2.5%) ◦F
Variable stator vane position VSV 0.95 (0.7%) %

results were used to test model ability for fault and anomaly
detection. Figures 8 and 9 compare measured and predicted
time series for an engine operating normally, illustrating the
strong agreement between the model and measurements.

To quantify sensor deviation from model predictions, residu-
als were generated using the following

ek = yk − ŷk (7)

where yk is the measured output and ŷk is the predicted out-
put. The magnitudes and trending of the resulting residuals
contain more diagnostics information than the raw signals
alone. Current remote monitoring and detection techniques
for installed LM2500s utilize only raw signals with universal
alarm thresholds resulting in a significant number of undi-
agnosed faults and failures. A dashboard was developed for
visualization of the residual signals, time series model predic-
tions, and performance curves. Several examples of anoma-
lous behavior detected through residual signal analysis are in-
cluded in the following sections, illustrating the capabilities
of the model for automating analyses. Smoothed residual sig-
nals are generated via a moving average with window size n
= 20.

4.1. LPT Pressure (P54) Degradation

Figure 10 shows the P54 raw and smoothed residual signals
for an engine during several years of operation. A step change
in the residual signal is observed around sample 2400 fol-
lowed by a return to normal operation. Shortly thereafter, a
second step change was observed at sample 2900, with the

residual signal remaining at -10 PSIA since. Reduction in
P54 with respect to the model prediction can signal a loss in
the engines ability to make power and hinder the platforms
operational readiness. As the LPT speed (NPT ) is not di-
rectly controlled, but is established by the gas stream energy
quantified by P54 entering the PTA, accurate modeling and
monitoring of this sensor is essential. During this same op-
erational period, further interrogation of the remaining gas
path variables and their respective residuals found them to
be within range with respect to the model, suggesting an in-
strumentation issue which went unnoticed for several months.
Review of maintenance histories showed no known issues re-
ported during this time period.

4.2. Lube Oil System Fault Detection

Figure 11 displays the raw and smoothed residuals of the
scavenged lube oil temperature from sump A, TA, over a pe-
riod of five years for a single engine. Residuals as high as
600 ◦F were observed in the first several hundred samples,
followed by a small interval of normal behavior before once
again degrading. Sump A, located at the front of the GGA
(Figure 1), contains the roller bearing that supports the GGA
shaft ahead of the compressor. Lube oil to each of the four
sumps (A through D) are supplied by a single storage tank
and supply pump (Figure 2) suggesting a nominally constant
lube oil temperature supplied to each bearing. Therefore,
an elevated measurement of one lube oil scavenge temper-
ature, while the remaining sump temperatures are found to
be within range, can be indicative of impending bearing fail-
ure. Review of maintenance records during the operational

8
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Figure 5. Comparison of measured and predicted performance curves generated from healthy data set.

time period when the deviation demonstrated in Figure 11
occured revealed that the Sump A resistance temperature de-
tector (RTD) was faulty. The faulty RTD sensor had gone
undetected by current monitoring practices for three months.
Maintenance and timely detection of faults associated with
these RTDs are essential, as they are the primary indicator of
bearing problems but tend to exhibit poor reliability.

4.3. Vibration Analysis

Figure 12 shows the gas generator vibration (V12), measured
at the rear of the GGA (Figure 1), tracked at low pressure tur-
bine speed (NPT ), with the data filtered to include only NPT

speeds in between 1550 and 1650 RPM. This speed range cor-
responds to a structural resonance in the engine that tends to
amplify the synchronous vibrations associated with low pres-
sure turbine imbalance. This engine operated with peak-to-
peak residual vibration levels of 2 mils for an extended pe-
riod, including several instances of peak-to-peak residual vi-
bration levels of 4 mils. The LM2500 operational alarm level
for the raw vibration signals tracked to the power turbine ro-
tor speed is 7.0 mils with a shutoff level of 10.0 mils. These
levels are significantly larger than any measured value within
the current data set and, therefore, no alarm was ever trig-
gered. Upon review of maintenance records, recognition of
a potential PT imbalance and subsequent trim balancing oc-
curred following a periodic boroscope inspection of the en-
gine. The results of the trim balancing are clearly visible in

the residual signal, indicated by the step change around the
1500th sample to a nominal residual value of zero. Contin-
ued operation of an unbalanced LPT in the 1600 RPM speed
range has been shown to result in premature degradation of
the engine and accessory mount links in addition to damaging
the bleed manifold (Thompson & Grobler, 2012). It is there-
fore imperative to track and monitor vibration levels above
normal in order to prevent prolonged operation with rotor im-
balance.

4.4. Fuel Oil System Fault Detection

Figure 13 shows the fuel filter differential pressure (PF1) raw
and smoothed residual signals for a single engine operating
over a five year span. The fuel filter is a high pressure fil-
ter mounted on the fuel pump to prevent large contaminants
from entering the fuel controller. Above 27 PSID, a high dif-
ferential pressure alarm is triggered indicating the fuel filter
is blocked and above 35 PSID a relief bypass valve is opened
until PF1 returns to less than 27 PSID. The large step change
in the residual signal observed in Figure 13 at the 1200th sam-
ple is indicative of a clogged fuel filter. Following the brief
increase in PF1, a step change return to nominally zero resid-
ual is suggestive of corrective maintenance occurring to rec-
tify issues with either the fuel filter or fuel filter differential
pressure transducer.

9
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Figure 6. Comparison of measured and predicted lube oil sump temperatures generated from healthy data set.

Figure 7. Comparison of measured and predicted vibration parameters generated from healthy data set.

Figure 8. Comparison of measured and predicted compressor discharge pressure (P3) for an engine operating normally.

Figure 9. Comparison of measured and predicted low pressure turbine inlet pressure (P54) for an engine operating normally.

10
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Figure 10. P54 raw and smoothed residual signals for single engine vs. sample number.

Figure 11. TA raw and smoothed residual signals for a single engine vs. sample number.

Figure 12. V12 raw and smoothed residual signals with NPT speed range of 1550 to 1650 RPM for a single engine vs. sample
number.

Figure 13. Fuel filter differential pressure (PF1) raw and smoothed residual signals for a single engine vs. sample number.

5. CONCLUSION

A technique for monitoring the performance and health of
LM2500 marine gas turbine (MGT) engines aboard CG-47

and DDG-51 class ships has been presented, using a Multi-
layer Perceptron (MLP) regression model trained from a sub-
set of healthy engine data from 60 MGTs in service. The
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trained inter-engine model was used to generate predicted
outputs for a period of five years from 2012 to 2017, on
15 ships. Residual signal analysis was performed in order
to demonstrate the effectiveness of the model in identifying
anomalies in the fuel system and gas path, vibration analy-
sis, and instrumentation, corroborated by the failure history
from the engines. A practical and scalable tool was developed
for automated analyses of sensor data, reducing the hours re-
quired analyzing raw sensor data by equipment experts. Fu-
ture work will focus on diagnostic and prognostic techniques
applied to the residual signals, using failure mode history as
the data class labels, with the aim of automating fault isola-
tion, diagnostics, and prognostics for MGTs.
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