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ABSTRACT

Fault diagnosis and prognosis (FDP) plays more and more
important role in industries FDP aims to estimate current fault
condition and then predict the remaining useful life (RUL).
Based on the estimation of health state and RUL, essential
decisions on maintenance, control, and planning can be con-
ducted optimally in terms of economy, efficiency, and avail-
ability. With the increase of system complexity, it becomes
more and more difficult to model the fault dynamics, es-
pecially for multiple interacting fault modes and for fault
modes that are affected by many internal and external fac-
tors. With the development of machine learning and big data,
deep learning algorithms become important tools in FDP due
to their excellent performance in data processing, informa-
tion extraction, and automatic modeling. In the past a few
years, deep learning algorithms demonstrate outstanding per-
formance in feature extraction and learning fault dynamics.
As emerging techniques, their powerful learning capabilities
attract more and more attentions and have been extended to
various applications. This work presents a novel diagnosis
and prognosis methodology which combined deep belief net-
works (DBNs) and Bayesian estimation. In the proposed
work, the DBNs are trained offline using available histori-
cal data. The fault dynamic model is then represented by
the trained DBNs and modeling uncertainty is described by
noise. The integration of DBNs with particle filtering is then
developed to provide an estimation of the current fault state
and predict the remaining useful life, which is very suitable
and efficient for most nonlinear fault models. Experimental
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studies of lithium-ion batteries are presented to verify the ef-
fectiveness of the proposed solution.

1. INTRODUCTION

Engineering system are usually exposed to many stresses that
can affect system reliability, safety, and mission effective-
ness. Prognostic Health Management (PHM) is critical to
these systems and fault diagnosis and prognosis are funda-
mental enabling techniques of PHM. Diagnosis is to detect
fault and estimate the fault state. The fault severity is given
by the discrepancy between a baseline (no-fault) probabil-
ity density function (pdf) and a real-time estimation pdf of
fault state. Prognosis is to predict the time to failure (TTF)
or RUL. Here, RUL is the time from current time to failure
time, which is defined as the time when the fault state reaches
a predefined failure threshold. Based on the information of
fault state and RUL obtained by FDP, maintenance activities
can be scheduled and control can be reconfigured optimally
and efficiently to lower operation and maintenance cost and
increase the safety and availability of the system.

In the past a few years, numerous efforts on diagnosis and
prognosis were developed (Z. Zhang, Wang, & Wang, 2013;
Orchard & Vachtsevanos, 2009; Yan, Zhang, Wang, Dou, &
Wang, 2016; R. Zhao et al., 2018; G. Zhao et al., 2018; Yan et
al., 2018; Hu et al., 2018). In general, these approaches can
be classified into physics model-based approaches and data-
driven based ones (Kan, Tan, & Mathew, 2015; Jardine, Lin,
& Banjevic, 2006). For physics model-based approaches, ex-
tensive knowledge about fault mechanism are often needed to
build a fault degradation model, which is difficult and, in most
cases, ad-hoc, which limits the application of model-based
approaches for complicated systems. Data-driven based ap-
proaches, on the contrary, mainly rely on historical monitor-
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ing data to extract features and describe fault dynamic be-
haviors. Although these approaches do not require the prior
knowledge about fault mechanism, they often require stati-
cally sufficient data. Many of the data-driven based methods
have been developed ranging from statistical model, machine
learning, to artificial intelligent methods. These approaches
are often used for analyzing the available historical and con-
ditional data in different ways for fault dynamics modeling,
anomaly detection, diagnosis, and prognosis (Y. Wang, Peng,
Zi, Jin, & Tsui, 2016; Biswas, Srivastava, & Whitehead,
2015; Mosallam, Medjaher, & Zerhouni, 2016). However,
these existing methods have some limitations that hinder their
applications in complicated systems: (1) most features are
manually extracted and selected, which require complex sig-
nal processing and extensive expert involvement; (2) feature
extraction and selection for a fault model is ad-hoc and cannot
be extended to other fault models; and (3) they have shallow
architectures, which limit the capacity to learn the complex
non-linear relationships in complex systems.

In recent years, deep learning related algorithms, such as
Deep Belief Networks, Deep Neural Networks (DNNs) and
Convolutional Neural Networks (CNNs), have drawn more
and more attention due to their excellent achievements in im-
age recognition and speech processing (Titos, Bueno, Garcı́a,
& Benı́tez, 2018; Oquab, Bottou, Laptev, & Sivic, 2014;
Kang & Meng, 2014). DBNs show superior abilities in fea-
ture extraction and have been used for FDP of many systems
(Chen & Li, 2017; Tamilselvan & Wang, 2013; G. Zhao et
al., n.d.). It is certain that the powerful feature extraction
and learning abilities of DBNs can be explored and extended
to many other applications. With this motivation, this paper
presents a novel fault diagnosis and prognosis methodology,
which integrates DBNs in particle filtering by combining the
advantages of both methods to improve the performance in
FDP. The lithium-ion battery capacity data are employed to
validate the proposed approach. The results of the case study
demonstrate the efficiency of the proposed solution.

This paper is organized as follows: Section 2 briefly describes
the theoretical background and basic concepts that are related
to this work. Section 3 presents the framework of the propose
method, which is followed by details on the particle filtering
based diagnosis and prognosis and the integration of DBN in
particle filter. Section 4 presents the results and analysis of
the proposed algorithms by application to the case studies of
Lithium-ion batteries. Finally, Section 5 provides concluding
remarks and some future research directions.

2. THEORETICAL BACKGROUND

In the proposed approach, DBNs are integrated into the
framework of particle filtering based diagnosis and progno-
sis. The theory of DBNs, including its structure and training
rules, will be discussed in this section together with the in-

ference of Bayesian estimation theory and its approximation
method, namely particle filtering.

2.1. Deep Belief Networks

DBN has shown demonstrated successes in feature extrac-
tion and data dimension reduction (X. Wang, Li, Rui, Zhu,
& Fei, 2015; G. Zhao et al., n.d.). It has become popular
with its capabilities in capturing the representative informa-
tion from raw time series data. DBN has a multi-layer feed-
forward structure of Restricted Boltzmann Machines (RBMs)
(Van Tung Tran & Ball, 2014), as shown in Fig. 1. With this
multi-layer structure, DBN can extract fault feature layer by
layer. The extracted features are used as input of the classifier
for fault detection.

Figure 1. The structure of a 3-layer DNB

RBM is a special probabilistic model of Boltzmann machine,
which consists of a visible input vector v and a hidden vector
h, connected by weighting factors, as shown in Fig. 2.

Figure 2. Structure of restricted Boltzman machine

The joint configuration (v, h) can be given by the energy
function (1)

E(v, h) = −
m∑
j=1

ajvj −
n∑

i=1

bihj −
n∑

i=1

m∑
j=1

vjwijhi (1)

where vi and ai are the binary states and bias of the i-th el-
ement of the visible vector, hj and bj are the binary states
and bias of the j-th element of the hidden vector, wij is the
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weight of the connection between the visible layer and the
hidden layer. The energy is used to assign a probability value
to each state in visible and hidden units. The joint distribution
is defined as

p(v, h) =
1

Z
e−E(v,h) (2)

where Z is a partition function, which can be described as

Z =
∑
v,h

e−E(v,h) (3)

As mentioned earlier, the connections just exist between the
visible layer and the hidden layer. The neurons in the same
layer are independent with each other. The conditional prob-
abilities of the hidden layer and the visible units are given
as

p(hi = 1|v) = 1

1 + e−bi−
∑m

i=1 viwij
(4)

p(vi = 1|h) = 1

1 + e−ai−
∑m

j=1 hjwij
(5)

The learning process of DBN can be divided into two stages:
pre-training and fine-tuning (C. Zhang, Lim, Qin, & Tan,
2017). In the pre-training process, the RBMs are trained
layer by layer with an unsupervised manner. The forward
pre-training process can be regarded as a construction and re-
construction process using Eq. (1). After all the RBMs in
the DBN are pre-trained, the fine-tuning step will be applied
to DBN using back propagation algorithm (Bengio, Lamblin,
Popovici, & Larochelle, 2007). In this fine-tuning process,
the weights and biases of every layer are adjusted continu-
ously until the errors satisfy the defined values. The trained
DBN model is obtained after the fine-tuning step and can be
used in describing the fault dynamics.

2.2. Particle Filtering

The fault processes of most engineering systems can be de-
scribed by dynamic models, which include a process model
and a measurement model. The nonlinear process model can
be defined as:

xk = fk(xk−1, ωk) (6)

where xk is the fault state at time instant k, ωk is the process
noise, and f(·) is a nonlinear function representing the state
transition. The measurement is given by assuming that the
measurements y are conditionally independent with state x.
The model can be described by Eq. (7):

yk = hk(xk, vk) (7)

where yk is the observed value at time instant k, vk is the
observation noise.

In the Bayesian estimation framework, our objective is to
use the dynamic fault model and historical observations to
estimate the current fault state of the system by using the
Bayesian theorem. Therefore, it is of interest to estimate the
posterior distribution p(x0:k|y1:k). The Bayesian estimation
method usually involves two steps, i.e., prediction and filter-
ing. The prediction step calculates the prior probability den-
sity function (pdf) by using the fault dynamic model. It is
calculated as:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (8)

where p(xk|xk−1) is the transition probability of the state de-
fine by Eq. (6), p(xk−1|y1:k−1) is the marginal distribution
defined by Eq. (7), and p(xk|y1:k−1) is the prior distribution.
When a new measurement yk becomes available, the filter-
ing step is executed to calculate the posterior pdf p(xk|y1:k)
at time instant k. The filtering step uses the new observa-
tion yk, prior pdf from prediction step p(xk|y1:k−1), and the
likelihood function p(y1:k|xk). The calculation is as follows:

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k)
=
p(yk, y1:k−1|xk)p(xk)

p(yk, y1:k−1)
(9)

where

p(yk, y1:k−1) = p(yk|y1:k−1)p(y1:k−1|xk) (10)

p(yk, y1:k−1|xk) = p(yk|y1:k−1, xk)p(y1:k−1|xk) (11)

p(y1:k−1|xk) =
p(xk|y1:k−1)p(y1:k−1)

p(xk)
(12)

Then, the posterior can be written as

p(xk|y1:k) =
p(yk|y1:k−1, xk)p(xk|y1:k−1)p(y1:k−1)p(xk)

p(yk|y1:k−1)p(y1:k−1)p(xk)
(13)

Assume that all the observations are independent to each
other, we have p(yk|y1:k−1, xk) = p(yk|xk). Then, the pos-
terior possibility distribution can be obtained as:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(14)
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Equation (14) represents a theoretical solution for state esti-
mation. However, for most non-linear and/or non-Gaussian
cases, the analytical solution does not exist. For this reason, a
Sequential Monte Carlo (SMC) method, also known as parti-
cle filtering, was developed to deal with this problem. Particl
filtering provides an approximation to the optimal solution
given by Eq. (14) (Orchard & Vachtsevanos, 2007).

Particle filter uses a set of particles xi0:k−1, i = 0, 1, ...N − 1
with associated weights wi

k, i = 0, 1, ...N − 1 to represent a
non-Gaussian distribution. Each particle can be regarded as
a sample in the state space. Instead of studying the propa-
gation of the whole distribution, particle filtering studies the
propagation of each particle. The prior and posterior distri-
butions are then estimated by the whole set of particles from
prediction step and filtering step, respectively. With the set of
particles, the empirical distribution can be obtained as:

πk(x0:k) =

N∑
i=1

wi
kδ(x0:k − xik) (15)

where xikrepresents the location of N particles, δ(·) denotes
the Dirac-delta function. The weights can be determined by
the importance sampling principle in many applications, the
most basic sequential Importance Sampling Resampling par-
ticle filter algorithm or bootstrap filter is sufficient for its sim-
plicity. In this algorithm, importance density function is sim-
ply chosen to be equal to the prior possibility distribution.
Therefore, the weights can be calculated by

wi
k = wi

k−1p(yk|xik) (16)

Finally, xk is obtained by weighted sum of the particles:

x̂k =

N∑
i=1

wi
kx

i
k (17)

3. METHODOLOGY DEVELOPMENT

This section will describe the framework of the proposed FDP
method, which starts from the particle filter based fault di-
agnosis and prognosis method and is then followed by the
integration of DBN in particle filter. Fig. 3 illustrates the
framework of the proposed FDP method.

3.1. Particle Filter based Diagnosis and Prognosis

The fault diagnostic algorithm is executed at every time in-
stant {t1, t2, t3, · · · , tk, · · · }. Assume that there exist a set
of particles {w(i)

k−1, x
(i)
0:k−1}, where the superscript i denotes

the N particles located at x(i)0:k−1 with weights being w(i)
k−1.

As mentioned in Section 2, particle filtering algorithm aims
to approximate a desired distribution using these particles.

Figure 3. The framework of proposed FDP method

Firstly, N particles with equal weights are taken as initial
conditions. Taking these particles in the trained DBN fault
dynamic model, a set of new particles can be generated to
represent the prior fault pdf. When the measurement becomes
available, it is used in the filtering step to update the weight,
which is described as:

ω(x
(i)
0:k) = ωi

k−1hk(y1:k|xi0:k) (18)

ω
(i)
k =

ω(x
(i)
0:k)∑N

i=1 ω(x
(i)
0:k)

(19)

Prognosis is the procedure of long-term (multi-step) predic-
tion, that is conducted to depict the degradation of fault state.
The ultimate goal of prognosis is to estimate the RUL of
the system. The process projects the current fault state pdf,
which is from diagnosis and is used as the initial condition
of prognosis, into future time instants by the fault state dy-
namic model. It involves two stages of calculation. The first
stage is to calculate the fault state distribution at each future
time instant by using the fault state model repeatedly. Since
no measurement is available in this long-term prediction, the
uncertainty will increase as the prediction horizon increases,
which needs to be properly addressed. The second stage is to
compare the fault state pdf at each instant with a predefined
failure threshold by using the law of total probabilities to get
the time to failure (TTF) or RUL distribution. The prognosis
is conducted at every time instant to get a RUL distribution.
It is noticed that due to the repeated computation of fault state
at each future time instants, the prognosis requires significant
computing resources and this is one of the main reasons that
hinder its online real-time implementation.

In this proposed framework of prognosis, the prediction
step is carried out with a fixed time internal from the cur-
rent time tk to the failure time instant tf when fault state
reaches the failure threshold Ff . The prediction steps are
{tk, tk+1, · · · , tf−1, tf} and the predicted fault state mean
value of the distribution at these time instants can be denoted
as {F (tk), F (tk+1), · · · , F (tf )]. Then, the RUL can be cal-
culated by comparing the distributions of fault state at all pre-
diction steps with the failure threshold.
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3.2. Integration of DBN in Particle Filter

The integration of DBN model training process and the par-
ticle filtering based FDP is illusrtated in Fig. 4. The major
functions shown in Fig. 4 are discussed as follows. The fault
dynamic process is described as follows:

Figure 4. The flowchart of the proposed DNB-based diagno-
sis and prognosis.

xk = x̂k + ωk (20)

x̂k = gk(xk−1, xk−2, xk−3, · · · , xk−m−1, xk−m) (21)

where gk(·) is a nonlinear function trained with the DBN, m
represents the input vector size of the trained DBN model,
{xk−1, , · · · , xk−m} are the previous m states that are used
as the input of the DBN model, x̂k represents the output of
the DBN model, ωk represents the process noise, and xk is
the predicted state at next time instant with noise.

As shown in Fig. 4, the DBN model involves offline training

and online prediction. The detailed algorithm steps can be
illustrated as follows.

Step 1: The DBN is trained using the available data to model
the fault dynamic process.

Step 2: The fault dynamic model (20) is used in particle fil-
tering algorithm to draw a set of particles. Take the current
particles as the input, the prediction of next time instant state
can be conducted with the fault dynamic model.

Step 3: Prognosis algorithm is executed repeatedly following
the Step 2. This is a multistep prediction that relies mainly
on the fault dynamic model denoted by DBN model. The
recursively calculation is illustrated as follows:
xik = g(xik−1, x

i
k−2, x

i
k−3, · · · , xik−m) + ωk−1

xik+1 = g(xik, x
i
k−1, x

i
k−2, · · · , xik−m−1) + ωk

...
xik+n = g(xik+n−1, x

i
k+n−2, · · · , xik+n−m) + ωk+n−1

(22)
where g(·) represents the fault dynamic model obtained by
DNB training, ω is the processing noise. It is executed recur-
sively until the predicted fault state reaches the defined failure
threshold.

In the diagnosis step, after the prediction is obtained via
DBN, the new measurement comes in. The weights are then
updated according to (18) and (19). If there exists severe de-
generacy, which is indicated by the increase of weight vari-
ances such that all but one particle have trivial weights, the
particles are resampled to solve the problem.

Step 4: Repeat Step 2 and Step 3 until the diagnosis and prog-
nosis process is finished.

4. EXPERIMENTAL RESULTS

In this section, the proposed DBN based FDP approach
will be demonstrated with a particle filtering algorithm in a
lithium-ion battery capacity degradation case study. The ex-
periments were carried out for lithium-ion batteries with a
rated capacity of 1.1 Ah. Arbin BT2000 system was uti-
lized to conduct the charge and discharge of the battery. Fig.
5 shows the capacity degradation curves where the failure
threshold is set as 0.35 Ah. In other words, the battery is con-
sidered as failure when the capacity degrades to the defined
value.

4.1. Fault Dynamic Model

In this work, the deep belief networks are trained to depict
the battery capacity degradation curves. The main parameters
of the DBNs are shown in Table 1. In the training process,
samples are divided into training data sets and testing data
sets. In this work, two battery dataset CS2 35 and CS2 36
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Figure 5. The Li-ion battery degradation data.

are used to train the DBN model. The training input-output
data pairs are described as follows:


{x1, x2, ..., x119, x120} → x121

{x2, x3, ..., x120, x121} → x122

{x3, x4, ..., x121, x122} → x123
...

...

(23)

Table 1. Training parameters of DBN model

Parameters Value

The unit number of input layer 120
The number of RBM 2

The unit number of hidden layer 30
The unit number of output layer 20

Learning rate of RBM 0.1
Initial momentum of RBM 0.5

Iterations of each RBM 500
Iteration of conjugate gradient 0.5

The DBN model is then trained based on the above input-
output data set. To evaluate the performance of the trained
DBN model, a third battery dataset CS2 37 is used to test
the trained model. Fig. 6 shows the training results, which
demonstrates the performance of one step prediction.

In prognosis, however, it is of interest to assess whether the
trained DBN model can sufficiently and accurately depict the
battery capacity degradation. To test the performance of long

time prediction, the following testing process is conducted:
{x1, x2, ..., x119, x120} → x121

{x2, x3, ..., x120, x121} → x122

{x3, x4, ..., x121, x122} → x123
...

...

(24)

Figure 6. One step prediction result of trained DBN model.

Figure 7. Long-term prediction of trained DBN model.

Fig. 7 shows the result of long time prediction started from
the 120-th data point. It is clear that the trained DBN model
can accurately depict the battery capacity degradation. In or-
der to give an quantitative evaluation of the prediction per-
formance, root-mean-square (RMS) error defined in Eq. (25)
is used. For the results shown in Fig. 7, the RMS error of
the prediction is 0.0133, which indicates the superior perfor-
mance of prediction accuracy.

rmse =

√∑M
i=1(yi − ŷi)2

M
(25)
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4.2. FDP Results

For battery degradation, since the state and life are not ob-
servable, diagnostic and prognostic algorithm is used to esti-
mate the states, such as state of health (SOH), state of charge
(SOC), and RUL. In this section, the proposed approach
is tested with the battery SOH degradation with charge-
discharge cycles.

4.2.1. DBN based diagnosis and prognosis

In the proposed FDP method, the diagnosis and prognosis
model is the fault dynamic model trained with DBN. In the
diagnosis, a particle filter with 500 particles is used. The unit
number of the input layer is 120. Fig. 8 shows the diagnos-
tic results at the 500th cycle. Note that since the input size
is 120, the diagnosis is implemented from the 121st data and
the first 120 data are not shown in this figure. The upper sub-
figure shows battery capacity estimation (given by magenta)
compared with the measurements from the battery test system
(given by blue). The lower subfigure shows a comparison
of the initial baseline pdf (obtained from the battery before
degradation and given by green) against the real time estima-
tion pdf (from the proposed method and given by magenta) at
the 500th cycle.

Figure 8. Experimental result of DBN based diagnosis. Up-
per subfigure shows the comparison of estimated mean ca-
pacity (given by magenta) against the measurement (given by
blue). Lower subfigure shows the comparison of baseline pdf
(given by green) against the real-time estimation pdf (given
by magenta).

Prognosis is then conducted to predict the future battery ca-
pacity state and estimate the RUL. Prognosis predicts future
battery capacity degradation recursively until it reaches the
defined failure threshold. Since prognosis is time consuming,
20 particles are used in prognosis to reduce the computation
time. Fig. 9 shows the prognostic results at the 500th cycle,
which shows the mean value, 95% confidence interval of the
RUL pdf, and the estimated RUL pdf. The figure shows that
the predicted failure time is at the 852th cycle, and the RUL

is 352 cycles. The 95% confidence interval of the RUL pdf is
[345, 366].

Figure 9. Experimental result of DBN based prognosis.

This work adopts α-λ metrics (Saxena, Celaya, Saha, Saha,
& Goebel, 2010), which determines whether the prediction at
any particular time instance falls within a specified precision
range. Fig. 13 shows the α-λ metrics of the proposed method
with α=0.3. It is clear from this figure that the predicted RUL
at all the time instants always fall inside the defined α bounds
around the true RUL.

Figure 10. Experimental result of DBN based RUL.

4.2.2. Particle filter based diagnosis and prognosis

In order to demonstrate the effectiveness of the proposed FDP
method, it is compared with traditional particle filtering ap-
proach (B. Zhang et al., 2011). In the traditional particle fil-
tering FDP, the fault dynamic model is given by

C(t+ 1) = C(t)− β|p1(p2 + p3t+ p4t
2)|p5 + ω(t) (26)

where C is the battery capacity, t is the time given by
charge-discharge cycle, p1 ∼ p5 are the parameters of the
model given by p = [5e−5,−215, 4.8,−0.0135, 0.4], β ∼
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N(3.8e−3, 5e−5) is a hyper parameter, and ω is the model
noise.

To make the comparison fair, traditional particle filter with
500 particles and 20 particles are used in diagnosis and prog-
nosis respectively. Other parameters of the particles filter are
same with the parameters used in the proposed DBN-based
particle filter. Figs. 11 and 12 show the diagnosis and prog-
nosis results at the 500th cycle from traditional particle filter
approach. Fig. 13 shows the RUL prediction in terms of α−λ
metrics. It is clear that some of the RUL predictions fall out of
the α bounds of the true RUL, which indicates low accuracy
in prognosis.

Figure 11. Experimental result of particle filter based diag-
nosis. Upper subfigure shows the comparison of estimated
mean capacity (given by magenta) against the measurement
(given by blue). Lower subfigure shows the comparison of
baseline pdf (given by green) against the real-time estimation
pdf (given by magenta).

Figure 12. Experimental result of particle filter based prog-
nosis.

The comparison of the DBN based FDP and traditional model
based FDP in Figs. 8 and 11 shows that these two approaches
show comparable performance in diagnosis. The proposed

Figure 13. Experimental result of model based RUL.

DBN-based approach has a wider distribution of fault state
estimation. In terms of prognosis, it is clear from Figs. 10
and 13 that the proposed DBN-based FDP approach has bet-
ter performance in accuracy and precision than the traditional
model-based FDP approach. Moreover, the RUL prediction
of traditional model based FDP has very large fluctuation,
which indicates the inconsistency of prediction. On the con-
trary, the proposed DBN-based FDP approach has very stable
prediction performance, which greatly benefits the decision-
making. In summary, the comparison shows that the DBN-
based FDP approach has better performance than traditional
model-based FDP approach.

5. CONCLUSION

This paper proposes a DBN-based FDP approach that inte-
grates with particle filtering. The theoretical background of
DNB and particle filtering are discussed in details, along with
the training of DNB fault dynamic model. In the proposed
approach, the constructed DBN model is trained offline us-
ing the available historical data. The trained DBN model is
then integrated into the particle filtering algorithm for FDP. In
order to evaluate the performance of the proposed approach,
a case study of lithium-ion battery capacity degradation was
presented and compared with the traditional particle filtering
FDP approach. The results show great performance improve-
ment from the proposed approach. It is worth mentioning
that the proposed DNB-based approach can be integrated with
other algorithms such as Kalman filter, Extended Kalman fil-
ter, support vector machine, etc. From this prospective, the
proposed DBN-based approach is a generic solution that can
be applied to a variety of systems. Our future work will fo-
cus on introducing uncertainty management and improving
the training efficiency of the proposed approach .
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