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ABSTRACT

We apply model-based fault-isolation to an electro-
mechanical linear actuator, and demonstrate its use on an
unmanned underwater vehicle mass-shifter. Models incorpo-
rating the physics of the motor and of the load, and the effect
of the servo-controller, are derived for nominal operations,
overload faults, and coupling loss faults. A simple parameter
identification method based on close-form solutions during
startup and at steady-state is used, and is shown to produce
good agreement with measurements. Fault-isolation is done
by representing the system as a time-dependent mixture of its
models, and selecting the model with the smallest error resid-
ual. We tested this in three situations — an actual overload
fault, an actual coupling fault, and a false-alarm — and found
that the correct model was successfully isolated in each case.

1. INTRODUCTION

Unmanned underwater vehicles generally use electro-
mechanical actuators to perform flight control tasks — e.g.
thruster, elevator, rudder, mass-shifter, variable buoyancy
system, etc. — (Webb, Simonetti, & Jones, 2001; von Alt,
2003; Wernli, 2000). Model-based fault detection was dis-
cussed extensively in (Gertler, 1998; Patton, Frank, & Clark,
1989). Moseler and Isermann applied it to fault detection
of DC motors (Moseler & Isermann, 2000). Nandi et al.
extended this to condition monitoring (Nandi, Li, & Toliyat,
2006). More recently, Fagogenis et al. (Fagogenis, De Car-
olis, & Lane, 2016) used a Bayesian model with a hidden
switch variable to detect partial loss of thrust.

Kemp et al. (Kemp & Raanan, 2017) applied a steady-state
model-free fault-detection approach to an electro-mechanical
linear actuator — a mass-shifter. The method was subse-
quently extended with success to a thruster (Kemp, 2017), but
failed when applied to rudders and elevators — unlike thrusters
and mass-shifters, rudders and elevators are in a constant state
of change.
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One of the difficulties extending Kemp et al.’s approach
(Kemp & Raanan, 2017) to fault isolation can be illustrated
with an overload fault: when an obstacle stands in the way,
the servo-controller increases current until the obstacle is
overcome — or until overload-protection circuitry shuts the
system down. Because the current is higher than usual, fault-
detection is straightforward. However, because the current
continuously increases, the decision boundary is unneces-
sarily large. We observed similar limitations with coupling
faults, where the motor and the mass become kinematically
decoupled and the gap between the two increases with time.

This paper presents a model-based approach to fault-isolation
of a linear actuator, and its specialization to a mass-shifter.
The paper is organized as follows. Section 2 describes the
electro-mechanical linear actuator model. Section 3 describes
the parameter identification procedure. Section 4 presents the
fault-isolation results. Section 5 discusses the results, and
Section 6 summarizes the paper.

2. MODEL
2.1. System Description

The system under consideration is a mass-shifter, an electro-
mechanical linear actuator that functions to move a large
mass - the vehicle battery — back-and-forth in order to ad-
just the pitch of the vehicle. The mass-shifter consists of
a DC brushed motor, a planetary gear connected to a large
mass through a lead screw, a voltage source, and a PI servo-
controller operating in constant velocity mode using position
feedback from a quadrature encoder. The monitored quanti-
ties are the voltage applied to the motor terminals, the current
to the motor, and the position of the mass relative to a fixed
point.

The mass is constrained to move along parallel rails on four
wheels — front and back, left and right. At either extremity,
the rails are terminated by hard travel limits — blocks of alu-
minum designed to stop the wheels.

The mass-shifter has two modes of failure. The first is a
current overload, where because position is estimated from
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the motor encoder, wheel slippage, encoder noise, or back-
driving can each cause the position to shift. The second mode
of failure is a loss of coupling, which occurs when the set-
screw connecting the lead-screw to the nut comes loose. Un-
like the overload failure, coupling failures occur suddenly.

2.2. Electro-mechanical Model

The three models described below consist of three coupled
differential equations in three variables. The first equation,
the mechanical model of the motor, is associated with the an-
gular velocity of the motor, w. The second equation, describ-
ing the constant-speed PI controller, is associated with the the
error integral, I. The third equation, the motion of the mass,
is associated with mass position relative to a fixed point, z.

The mechanical model of the motor is:

o _
dt
where J is the effective moment of inertia, and 7,,,, is the ap-
plied torque. The effective moment of inertia J accounts for
the combined effect of the motor shaft, gear box, and mass.
The applied torque accounts for the combined effect of fric-
tion and load.

Knbi - Tapp (1)

The model for the DC electrical motor consists of a voltage
source Vj in series with a source resistance R, a motor resis-
tance R,,, an inductance L, and a back-emf voltage propor-
tional to angular velocity:
. di
Vs=Ri+L— + Kpw
dt
where ¢ is the motor current, w is the motor’s angular veloc-
ity, R is the sum of the two resistances, and K, is the mo-
tor torque constant. For efficiency reasons, the input to the
motor is a PWM voltage train rather than a DC current. We
assume that the motor inductance is large enough to smooth
the current, and replace this equation with its time-averaged
equivalent:
V:e = Ri+ me (2)

where Vj is the time-averaged source voltage - equal to the
PWM duty cycle times the source voltage.

Motor speed is controlled by an external servo-controller. The
controller’s inner loop controls current, and its outer loop
controls motor velocity. In position mode, a commanded po-
sition change is converted into a trapezoidal velocity profile
— constant acceleration phase, followed by constant veloc-
ity phase, followed by constant deceleration phase. Com-
manded acceleration, deceleration, and velocity are uploaded
at power-up.

The outer loop uses a PI controller to compute the com-

manded current .;,,4:
icmd(t) - Kp(wcmd(t) — w(t)) + KZI (3)

Here, wemq is the commanded speed, K, and K; are the pro-
portional and integral gains, and I is the error integral:

t
Iz/
tref

where the integral is initialized to O at power-up (¢,¢y).

dt' (Wema() — w(t')), 4)

Because the PWM duty cycle cannot exceed 100%, the source
voltage cannot exceed the supply voltage V4

Vv < Vma:z:~ (5)

Because the inner loop responds much faster than the outer

loop, the current is approximately equal to the commanded

current. Combining these gives:

icmd(t) Rzomd(t) + me S ‘/nm;c

Vmaa: - me
R

i(w, I, t) =
( ) otherwise

(6)

where i..,4 is defined in Equation (3).
2.3. Nominal Model
Two elements are required to specify the nominal model:
e The applied torque consists of a component due to fric-
tion — motor, drive train, and mass — and one due to grav-

ity. We assume Coulomb friction, and make the small
vehicle pitch approximation:

Tapp = Sgn(w)A + B6 7

where A is the zero-pitch friction, B is the friction slope,
and 0 is the pitch of the vehicle,

e Because the mass is kinematically coupled to the motor,
the rate of change of the mass’ position x is proportional
to motor speed,

Incorporating these into the electro-mechanical model gives
the nominal model:

dw .
JE = Kpi(w, I,t) — Tapp
% - wcm,d(t) — W (8)
dzr
— =D
at Y
where
Tapp = sgn(w)A + B0, )

where the current function i(w, I, t) is defined in Equations
(6) and (3), and where D, the kinematic ratio, measures the
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distance traveled per motor radian. D is determined by the
gear ratio of the gearbox and the pitch of the lead-screw.

2.4. Current Overload Model

‘When contact with the travel limit occurs, the servo-controller
increases its output to maintain speed. The extra torque
causes compression of the wheel, and deformation of the
mass assembly. Wheel compression is non-linear due to the
variable contact area and wheel composition; we model it
with a quadratic dependence relative to the point of contact.

Accordingly:
dw )
JE = Kml(w7 I, t) — Tapp
dl
E = wcmd(t) —w (10)
dx
where
Clz —x.)? .
app = sgn() A+ BO+ { Eon? ar )
0 T < Ze

where the compression factor E accounts for the linear defor-
mation of the mass assembly, C'is a stiffness constant, and z,.
is the point of contact.

2.5. Loss of Coupling Model
When the coupling fails, three things are affected:

e the mass stops moving,
e the moment of inertia decreases,

e the torque is no longer a function of vehicle pitch.

Accordingly:
d
J’di; = Kpi(w, I,t) — Tapp
dI
i Wema(t) — w (12)
dx
)
dt
where
Tapp = sgn(w)A’ (13)

and where J’ and A’ are the new moment of inertia and zero
pitch friction.

2.6. Residual Calculation

The error residual is calculated by comparing prediction to
measurement. We consider a 3-vector of residuals, with com-

ponents:

€ = i(w7 I, t) — tmeasured
(14)

€x = T — Tmeasured

€ =W — (Vmeasured - Rmimeasured)/Km

3. PARAMETER IDENTIFICATION

Parameter identification is done using a combination of man-
ufacturer data (Maxon A-max 22-110138 motor; Maxon
GP 22B-110357 planetary gear head; Nook lead-screw with
Imm/rotation pitch), direct measurements, pre-set values,
and model identification. Table 1 summarizes the parameters,

their values, and how they were determined.

Table 1. Model parameters.

parameter name value method
R motor resistance 20.2Q2 manuf
Ko torque constant 21.2mNm/A manuf
D kinematic ratio 1.9e-6m/rad manuf
Vinax supply voltage 15.1V measure
Wemd commanded speed  410rad/s preset
Qemd commanded accel 6edrad/s? preset
K, proportional gain 1.1e-3 As/rad ID

K; integral gain 0.45 A/rad ID

J moment of inertia 4.7e-Tkgm?> ID

A zero pitch friction ~ 4.6e-4Nm 1D

B friction slope 2.3e-5Nm/deg ID

R source resistance 0.8Q ID

C stiffness constant 85N/m 1D

E compression factor  0.52 D

A’ decoupled friction ~ 3.4e-4Nm ID

J’ decoupled inertia 4.6e-Tkgm?> 1D

3.1. Nominal Model Parameters

We measured motor current using a shunt resistor in-line with
the motor (NI-DAQ 9227), a voltage sensors across the mo-
tor terminals (NI-DAQ 9229), and an absolute position sensor
connected to the moving mass (Tensor Solutions SP1-4 sam-
pled by NI-DAQ 9229). The measured voltage is the motor’s,
i.e. source voltage minus source resistance loss:

Vmeasured =V - Rsl (15)

Data was passed through 100 dB anti-aliasing filters at the
Nyquist frequency, and sampled at 1600 samples per second
at 24 bits. Time-synchronization between the channels was
maintained by a National Instruments Compact-DAQ 9174
chassis.

The servo controller (AllMotion EZSV23) used a quadra-
ture encoder to close the loop on velocity (Maxon MR-M,
32 counts per revolution).

Figures 1-3 shows motor voltage, motor current, and motor
speed vs time during nominal operation. Speed was calcu-
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lated from the current and voltage as:

Wmeasured = (Vmeasured - Rmimeasured)/Km (16)

Four phases were observed:
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Figure 1. Comparison of measured (blue) and modeled (red)
motor voltage versus time for nominal operation.
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Figure 2. Comparison of measured (blue) and modeled (red)
motor current versus time for nominal operation.

e 0-7ms: acceleration — rapid increase of the current, volt-
age, and speed.

e 7-50ms: voltage saturation.
e 50-250ms: stabilization

e 250ms ++: steady-state.

Different factors are active in each phase. This allows the
sequential identification of the parameters:

The source voltage is constant during the saturation phase.
The first consequence is that the source resistance R, is equal
to the slope of the measured voltage versus current, and that
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Figure 3. Comparison of measured (blue) and modeled (red)
motor speed versus time for nominal operation.

the source voltage is equal to the intercept. The second con-
sequence is that the equation of motion for w is first order and
linear; accordingly, the solution is a saturated exponential:

w = we(l — exp(—t/7)) where 7 = RJ/K,,>  (17)

where w, is the steady-state angular velocity, i.e. the moment
of inertia J can be derived directly from the time constant.

During the stabilization phase, the source is not saturated.
The equation of motion for w is second order and linear, i.e. it
admits closed-form expressions for the oscillation frequency
and decay time:

Tdecay — QJ/(Kpr)
wgscillation = KmKl/J - 1/thecay

allowing the proportional gain K, to be derived from the first
equation, and the integral gain K; from the second.

(18)

During the steady-state phase, the load is proportional to cur-
rent. The zero-pitch friction A and friction slope B can be
found by linear regression of torque versus pitch.

3.2. Overload Model Parameters

Figure 4 shows motor current vs distance after contact with
the travel limit is made. As described by the overload model,
the increase is nearly quadratic. The stiffness constant C
and contact point z. were calculated by fitting the data to
a quadratic model (solid line). The compression factor was
calculated by linear fit of the measured position x vs motor
angular position.

3.3. Coupling Fault Model Parameters

A’ and J’ were found using the same procedure as above: J’
from the voltage saturation phase, and A’ from the steady-
state phase.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

300

T T
——measured
——model

250 |-

(mA)

motor current

50 -

position (mm)

Figure 4. Comparison of measured (blue) and modeled (red)
motor current versus distance for an overload fault. Position
is measured relative to the contact point.

4. FAULT ISOLATION
4.1. Time-Dependent Mixture Model

The purpose of fault-isolation is to determine what particu-
lar failure mode is responsible for an anomalous event, or
to classify it as a false-alarm. Fault-isolation is done after
the anomaly is detected — by an external fault-detection algo-
rithm.

The proposed fault-isolation algorithm is as follows: The sys-
tem is represented by a time-dependent Gaussian mixture of
faulty and nominal components; the mean of each component
is computed by propagating the respective equation of motion
forward in time, and the variance is assumed constant.

Let A;(¢) be the vector of residuals of model ¢ at time t, where
the residuals are calculated using Equation (14). We define a
residual scalar by scaling the vector by the covariance matrix
and taking the norm:

For simplicity, we assume that the covariance X is diagonal
and identical across models.

Figure (5) shows the error residual of each model when an
overload fault is present. Note that in this figure and the next
two, we arbitrarily picked t=3s as the moment when the (ex-
ternal) fault-detection algorithm detected an anomaly. Both
the nominal and the coupling fault models predict large error
residuals, i.e. have very small probabilities of occurrence; as
a result, the algorithm correctly isolates the overload fault.

Figure 6 shows the error residual when a coupling fault is
present. Both the nominal and the overload fault models pre-
dict large error residuals, i.e. have very small probabilities
of occurrence; as a result, the algorithm correctly isolates the
coupling fault.
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Figure 5. Evolution of the error residual when an overload
fault is present. The fault-isolation algorithm is assumed to
start after detection of an anomaly at t = 3s by an external
fault-detection algorithm. The overload fault is correctly iso-
lated by the algorithm.
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Figure 6. Evolution of the error residual when a coupling
fault is present. The coupling fault is correctly isolated by the
algorithm.

Figures 7 shows the error residual when no fault is present,
i.e. when a false-alarm is called. Both the overload and the
coupling fault models predict large error residuals, i.e. have
very small probabilities of occurrence; as a result, the algo-
rithm correctly isolates the false-alarm.

5. DISCUSSION
5.1. Robustness

The issue of robustness to parameter change is important in
model-based isolation. Robustness depends on how much pa-
rameter variability is present, and how sensitive the method
is to that variability. Although fault-detection is not directly
addressed in this paper, to provide context we start with a dis-
cussion of fault-detection robustness.
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Figure 7. Evolution of the error residual when no fault is
present. The false-alarm is correctly isolated by the algo-
rithm.

5.1.1. Fault-Detection

Model-based fault-detection works by comparing the resid-
uals of the nominal model to a threshold. As figures (1) to
(3) show, the dynamics of the system consists of a 250 ms
transient followed by steady-state. Despite the good appar-
ent agreement between the nominal model and the data, the
residual is fairly large during the transient, and sensitive to
parameter selection. The main reason for this is the large im-
pact the voltage saturation has on the phase of the oscillation.
The result is a high false-alarm rate during the transient.

In contrast, the steady-state only has a mild dependence on
the parameters. In fact, in section 3 we showed that only two
of the parameters are relevant - specifically the applied torque
parameters A and B. As shown in (Kemp & Raanan, 2017),
the 1-o variability of A and of B is only 10%.

An expedient way of decreasing the fault-detection sensitiv-
ity would be to gate-out fault-detection during the transient.
When this is done, 90% probability of detection and 2% prob-
ability of false alarm are observed (Kemp & Raanan, 2017).

Another method is to use an observer, e.g. a Luenberger ob-
server, to periodically fuse the nominal prediction and the
data into a better state estimate — and in the process reduce
the phase sensitivity during the transient.

5.1.2. Fault-Isolation
Four events can trigger a fault-detection:
e the current residual is abnormally high due to an incipi-
ent overload,

e the position residual is abnormally high due to a loss of
coupling,
e afalse-alarm,

e an un-modeled fault.

We start with the first three cases. As in the nominal case,
the dynamics when a fault occurs is essentially adiabatic, and
the only relevant parameters are those that model the applied
torque. Based on measurements taken across multiple runs,
the 1-o variability of the relevant parameters are: loss of cou-
pling parameter A’: 10%, point of contact x.: 1mm, stiffness
constant C: 15%, compression factor E: 5%.

We argue that the method is insensitive to parameter vari-
ability because the individual models move towards vastly
different regions of phase space. After a loss of coupling,
the system stays at a fixed point; when nominal, the position
of the mass continuously increases; during an overload, the
error integral (i.e. the current) continuously increases. Be-
cause of the increasing separation between the three models,
the model associated with the actual fault will eventually be
closest to the data; as a result, we believe that the method is
asymptotically robust.

The situation is more nuanced when an un-modeled fault oc-
curs. Because it is not represented explicitly, an un-modeled
fault will be incorrectly identified as one of the other three
models. Ideally, the algorithm would be capable of rejecting
these model if none provided a good explanation. The resid-
ual in Equation (19) appears a natural measure of quality, as it
scales each error residual by the measurement variance; how-
ever, it is only valid if the effect of measurement error is larger
than parameter variations. Addressing this issue in a conclu-
sive manner is under investigation.

5.2. Short Time Ambiguity

For a brief time after an overload fault, the nominal and the
overload fault models have similar residuals (Figure 5). This
is due to a combination of factors:

e Initialization error. When the models are invoked, they
are initialized with the latest state estimate; estimation
error causes artificial transient behavior.

e Variability. Variability from run to run, particularly due
to small misalignments of the mass, cause absolute posi-
tion sensor errors. As a result, the actual location where
contact with the travel limit tab first occurs is variable.

e Detection time delay. The overload model assumes that
the torque due to the travel limit is a function of the dis-
tance traveled after contact. As explained above, the lo-
cation of the point of contact is uncertain. To overcome
this, we made the assumption that detection is immedi-
ate, and initialized the model under the assumption that
x = x. atinitialization. The delay between detection and
actual contact introduces a prediction error.

e Modeling error. We assumed that the force against the
travel limit increases quadratically. Figure 4 shows that
this is a fair but imperfect assumption.
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5.3. Parameter Identification

Prediction quality is a function of parameter selection. The
three models are described by 16 parameter, 10 of which were
derived by data fitting. The approach we followed is mini-
malist and partitioned, i.e. as few parameters as the physics
requires, and sequential parameter identification using inde-
pendent data. We believe that this procedure is robust, and
that it leads to models that fit the data remarkably well.

5.4. Next Steps

We’re in the process of improving the method using analytical
redundancies, and of developing a hardware implementation
for an autonomous vehicle:

e Current and voltage provide an estimate of angular
speed; they therefore provide a redundant position es-
timate that can be used to isolate position sensor faults.

e The commanded current can be estimated from the time
history of angular velocity, i.e. it provides a redundant
current estimate.

e The quadrature encoder data currently used by the servo
controller can be used as an independent position mea-
surement.

e A strap-down system that implements this algorithm is
under development for an autonomous underwater vehi-
cle. The system is expected to undergo sea-trials in 2019.

6. CONCLUSION

We developed a model-based framework for fault-isolation
of an electro-mechanical linear actuator, and tested its perfor-
mance on a mass-shifter. We derived physics-based models of
the system’s nominal operation, of an overload fault, and of a
coupling fault. We developed a sequential procedure for pa-
rameter identification, and used experimental data to populate
the models. We implemented fault-isolation using a mixture
of time-dependent components, whose parameters are com-
puted from the models. We found that 1-the models accu-
rately represented the system, and 2- that they isolated the
correct faults successfully. We are in the process of adding
analytical redundancies to the system, and are developing a
hardware implementation for an autonomous underwater ve-
hicle.
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