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ABSTRACT 

Sensors have been widely implemented in vehicle systems 
for control, driving, and vehicle condition monitoring 
purposes. In a typical automotive vehicle, there are 60-100 
sensors on board and is projected to reach 200 sensors per car. 
Those sensors provide rich information to ensure safe vehicle 
operation. However, like any dynamic systems, sensors are 
vulnerable to degrade or fail over time, which leads to the 
need of real-time sensor fault diagnosis. Analytical 
redundancy has been the key model-based approach for 
sensor fault diagnosis. However, existing analytical 
redundancy approaches are limited to linear systems, or some 
special cases of nonlinear systems. In this paper, the 
analytical redundancy approach is extended to nonlinear 
systems in general to ensure the accuracy of sensor 
measurements. Parity relations based on nonlinear 
observation matrix are formulated to characterize system 
dynamics and sensor measurements. Robust optimization is 
designed to identify the coefficient of parity relations that can 
tolerate certain level of measurement noise and model 
uncertainties. At last, sensor fault diagnosis in an air intake 
system is employed to demonstrate the effectiveness of the 
proposed method. 

1. INTRODUCTION 

The benefit of automated monitoring and control procedures 
advances the research development and usage of sensing 
techniques in engineering systems. For example, in a typical 
automotive vehicle, there are 60-100 sensors on board and is 
projected to reach 200 sensors per car for control, driving, 
and vehicle condition monitoring purposes. Those sensors 

play important roles in providing rich information to ensure 
safe vehicle operations. However, sensors might work in a 
severe and fast-changing environment with high pressure, 
high temperature or strong vibration. Like any dynamic 
systems, they are vulnerable to fail or degrade over time. 
Both abrupt (e.g., caused by corroded contacts) or incipient 
(e.g., caused by deteriorated sensing elements) can generate 
non-permitted deviations from characteristic properties in 
sensors and result in inaccurate measurements from 
monitored target variables (Isermann, 1984). Consequently, 
a sensor malfunction can lead to wrong control efforts, 
mislead vehicle diagnostics and prognostics, and affect 
vehicle performance.  
 
To validate sensor measurements, both hardware redundancy 
and analytical redundancy approaches have been developed 
for sensor fault diagnosis. Hardware redundancy usually 
requires a high cost of extra sensor installation and 
maintenance, and often time is restricted by space and weight 
concerns. Analytical redundancy is more cost-effective and 
has been developed for many engineering applications. It 
employs mathematical models to describe the systems and 
generate residuals between the sensor measurements and 
model estimates for fault diagnosis. There have been many 
research studies of sensor fault diagnosis methods in linear 
systems, while for a nonlinear system, a common approach is 
to apply those methods after linearizing the nonlinear system, 
which often suffers from inaccuracy because of modeling 
errors. Therefore, sensor fault diagnosis in nonlinear systems 
still remains challenging. 
 
To conquer the challenge, this research aims at developing a 
real-time sensor fault diagnosis method in general nonlinear 
systems by proposing a model-based nonlinear analytical 
redundancy approach. Nonlinear observation matrix is 
employed to derive input-output equations to describe system 
dynamics and sensor measurements. Robust optimization is 
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designed to obtain best coefficients so that the generated 
residuals will be robust to noise and uncertainties, but 
sensitive to sensor failures.  
 
In the following, the literature review of sensor fault 
diagnosis is shown in Section 2 and the problem formulation 
of nonlinear analytical redundancy is presented in Section 3. 
In Section 4, the proposed modeling method for parity 
residual generation in a nonlinear system is proposed. The 
robust optimization is employed to obtain model coefficients. 
A case study of sensor fault diagnosis in an air intake system 
is detailed in Section 5 and the conclusion is in Section 6. 

2. LITERATURE REVIEW OF SENSOR FAULT DIAGNOSIS 

A general solution to validate sensor measurements in a real-
time environment is to add redundancy in the system. 
Hardware redundancy is the most intuitive approach that has 
been applied to many quality/safety-critical systems. It adds 
additional sensors to measure critical targets in a system and 
check the consistency among redundant sensors to detect if 
any sensor is faulty. However, additional sensors require 
extra cost, weight, and space. Even though the recent 
evolution of micro-technology has contributed to reducing 
the size and cost of sensors, the hardware redundancy 
approach is still not applicable in many industrial 
applications. Moreover, redundant sensors may fail or 
degrade in the same way of the primary sensor since they all 
work under the similar operating environment (Patton et al., 
1989). At last, when multiple sensors fail, the hardware 
redundancy approach tends to be infeasible to detect sensor 
failures under majority voting scheme (Broen, 1974). 
 
Analytical redundancy provides a promising solution that is 
independent of redundant sensors. Both qualitative and 
quantitative models have been developed to add analytical 
redundancies in systems to check the accuracy of sensor 
measurements. Qualitative models are mainly built based on 
qualitative and heuristic reasoning or causal relationship 
between observations and system performance. Quantitative 
models employ mathematical expressions to represent system 
dynamics and estimate sensor measurements under fault-free 
conditions. With a nominal model and real-time sensor 
measurements, residuals are generated to detect and isolate 
sensor failures using various methodologies. The successful 
deployment of analytical approaches highly relies on model 
accuracy, which is affected by different levels of 
measurement noise and model uncertainties under different 
operating conditions. 
 
The state-of-the-art modeling methods to achieve analytical 
redundancy for sensor fault detection and isolation can be 
further categorized into three: model-based methods, 
knowledge-based expert systems and data-driven methods 
(Jiang, 2011). The model-based methods such as parity 
relations (Chow and Willsky, 1984), Luenberger observers 

and Kalman filtering, (Clark, 1978; Tesheng Hsiao and 
Tomizuka, 2005; Du and Mhaskar, 2014) and parameter 
estimators (Upadhyaya and Kerlin, 1987) can develop 
quantitative models to generate for sensor fault diagnosis. 
However, those methods require thorough knowledge of 
target system dynamics to formulate high fidelity models, 
which is often not applicable for complex systems. 
Knowledge-based expert systems (Betta et al., 1995; Kim, 
1997) such as lookup table, fault tree and fuzzy logic based 
methods require comprehensive engineering domain 
knowledge of system behaviors under various normal 
conditions and faulty conditions. It has limited capability to 
handle dynamic systems especially during the initial 
development phase due to its rule-based mechanisms. Data-
driven methods such as artificial neural networks 
(Mathioudakis and Romessis, 2004; Elnokity et al., 2012) 
and multivariate statistical methods (Negiz and Cinar, 1992; 
Dunia et al., 1996; Huang et al., 2000) are able to handle 
complex systems but require sufficient data to learn data 
patterns or trends to represent system performance, and 
usually lack physical insights. In real practice, those methods 
can be integrated to leverage their own advantages and 
disadvantages so that to obtain representative symptoms for 
diagnostics/prognostics. Nevertheless, it is usually preferable 
to start with model-based methods when physical knowledge 
is available. 
 
In literature, the standard model-based analytical methods 
have been developed for linear systems (Chow and Willsky, 
1984; Qin and Li, 2001; Li and Shah, 2002). However, many 
engineering systems are nonlinear. Nonlinearity does not 
obey superposition principles, and tends to introduce 
discontinuity and unpredictable output into systems. Those 
properties make the implementation of nonlinear analytical 
redundancy difficult. Many efforts have been made to 
linearize nonlinear systems in order to apply linear analytical 
redundancy methods (Nguang et al., 2007). However, 
nonlinear systems suffer considerably from linearization 
since it may introduce errors and reduce model accuracy. The 
performance of model-based analytical redundancy methods 
is sensitive to inconsistencies between nominal models and 
actual system behaviors. Therefore, those errors will affect 
the effectiveness of linear analytical redundancy methods for 
sensor fault diagnosis in nonlinear systems. Other researchers 
explored nonlinear analytical redundancy methods for some 
special cases of nonlinear systems whose nonlinear 
observation matrix can be formulated into a linear form in 
terms of inputs and outputs (Yu and Shields, 2001; Shumsky, 
2008; Leuschen et al., 2005). However, those nonlinear 
analytical methods are only feasible for specific system types, 
therefore, lack generality. A general form of nonlinear 
analytical redundancy approach is still not available. 
 
To fill the gap, this study will investigate a model-based 
analytical redundancy method for the sensor fault diagnosis 
problem in general nonlinear systems in which, both input 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

3 

and output equations are nonlinear functions of states and 
inputs. Following the idea of the linear analytical redundancy 
method that utilizes observation matrix to construct input-
output relations to describe the relationships between system 
behaviors and sensor measurements, this study will employ 
nonlinear observation matrix that is derived from system 
dynamic equations in the control theory to build the input-
output relations with a parity space approach. The number of 
available analytical redundancies that can be added for sensor 
fault diagnosis will be determined by the rank of the 
nonlinear observation matrix.  

3. PROBLEM FORMULATION 

Consider a general nonlinear system with N states, Q 
measurable inputs and M sensors: 
 

𝑥 = 𝑓 𝑥, 𝑢 + 𝜀 
                𝑦 = ℎ 𝑥, 𝑢 + 𝛿                               (1)

 
                                                      

 
where 𝑥 ⊆ 𝑅- is the state vector, 𝑢 ⊆ 𝑅.	is the measurable 
input vector, 𝑦 ⊆ 𝑅0  is the sensor measurements, ε  is the 
system disturbance and δ is the measurement noise. Different 
from existing works, the system here is a general form, in 
which both the input equation and the output equation are 
nonlinear functions of states and inputs. Thus, the 
formulation of nonlinear analytical redundancy should be 
flexible to represent the dynamic behavior of the system by 
considering its dependence on both states and inputs. 
 
A model-based analytical redundancy method exploits the 
null-space of the state space observation matrix to generate 
residuals for fault diagnosis. Those residuals contain the 
complete information from sensor data and actuator inputs to 
detect any deviations from the nominal behavior of sensors. 
Existing works for nonlinear systems only have addressed 
those system models that can be linearized (Nguang et al., 
2007) or use a simplified nonlinear observation matrix to 
formulate a structure for residuals generation (Leuschen et al., 
2005). Those approximations will introduce a considerable 
amount of model errors so that, for general nonlinear systems, 
they sometimes can hardly provide effective solutions for 
accurate sensor fault diagnosis. 
 
In order to formulate effective analytical redundancy for 
general nonlinear systems, the notion of observability is 
employed. Observability is a fundamental measure in control 
theory, which reflects the possibility for estimating 
intermediate states based on input and output signals. 
 
Definition 3.1: The system is locally observable at 𝑥3  if 
there exists a neighborhood of 𝑥3 such that every x in that 
neighborhood other than 𝑥3 is distinguishable from 𝑥3. The 
mathematical expression for checking local observability is:        

𝑅𝑎𝑛𝑘 𝛻𝑂 𝑥3, 𝑢∗ = 𝑁                        (2) 
where N is the rank of x. For each output , ( ) 

𝑦;
𝑦;
𝑦;
⋮

=

𝐿>3

𝐿>?

𝐿>@

⋮

ℎ(𝑥3, 𝑢∗) = 𝑂(𝑥3, 𝑢∗)              (3) 

𝐿>C = 𝐿>(𝐿>CD?ℎ;) and 𝐿>3ℎ; = ℎ;               (4)  

𝐿>?ℎ; =
EFG
EH
𝑓 + EFG

EI
JI
JK
													               (5) 

where O is a nonlinear observation matrix, and 𝐿>?ℎ; is the Lie 
derivative of ℎ; with respect to f. In nonlinear systems, 
nonlinear observability is only feasible in its local space that 
is close to 𝑥3 and 𝑢∗. It also requires the system to be smooth 
so that the Lie derivative 𝐿>Cℎ;	exists. It is assumed that the 
major operating regime meets this requirement in this study. 
 
From the definition, it is seen that the second term EFG

EI
JI
JK
		 on 

the right-hand side of Eq. (5) is the main difference between 
this work and others. Existing methods do not consider the 
situation that the output 𝑦; is related to inputs. As a result, the 
effect of this term is neglected. In this research, a complete 
form of analytical redundancy structure for general nonlinear 
systems is proposed. 
 
Moreover, the locally observable property indicates that the 
observability in a nonlinear system is valid within a certain 
working region that is near the current states and inputs. In 
real practice, when various operating conditions exist, an 
operating regime with the same level of observability has to 
be identified, and the entire working space has to be 
partitioned according to different operational and 
environmental conditions. This paper assumes the operation 
conditions are pre-defined by engineering knowledge, while 
the automatic operating partition of space would be the future 
work. Moreover, this study will employ robust optimization 
method to identify the coefficients for local analytical 
redundancies in the pre-defined operating condition that 
around an operating point (𝑥3and 𝑢∗).  
 
To sum up, this study focuses on the formulation of the 
nonlinear analytical redundancy in general nonlinear systems. 
A complete form of analytical redundancy structure is 
proposed for sensor fault diagnosis. A robust optimization is 
designed to identify the model coefficients so that the 
generated residuals are projected to a space where they are 
sensitive to sensor failures but robust to noise and 
uncertainties. The resulting residuals generated from the 
proposed analytical redundancies can be utilized to identify 
sensor failures or quantify its degradation status. The 
diagnostic capability of the proposed method in nonlinear 
systems is demonstrated and validated with data from an air 
intake system. 

yi i = 1,...,M
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4. NONLINEAR ANALYTICAL REDUNDANCY IN GENERAL 
NONLINEAR SYSTEMS 

The model-based analytical redundancy method exploits the 
basic concept of observability, which contains key 
information of the system behaviors that can be inferred from 
the observation space. Also, a proper design of analytical 
redundancy is able to generate linearly independent residuals 
so that all detectable deviations from the system models can 
be accounted. In this section, the parity space method is 
employed to add analytical redundancies in the system. To 
address the sensor fault diagnosis problem in nonlinear 
systems, the traditional parity space model is extended from 
linear to nonlinear systems so that input-output equations can 
be formulated to generate residuals. Furthermore, robust 
optimization design is employed to obtain optimal 
coefficients for the parity space model so that parity residuals 
will be close to zero when only measurement noise and model 
uncertainty involve, while will have large magnitudes when 
sensor failures occur in the system.  

4.1. Parity Residual Generation 

The parity space captures key information of system 
dynamics from the observation space. As shown in Figure 1, 
parity relations characterize relationships among measurable 
inputs and sensor outputs so that a set of residuals can be 
obtained (Chow and Willsky, 1984). In addition, the linear 
independence property in parity space guarantees that every 
parity residual generated contains at least some information 
that has not been covered by other residuals. On the other 
hand, each observable deviation from the system model is 
covered by at least one of the parity residuals. 
 

 
Figure 1. Sensor fault diagnosis with the parity space 

approach 
 
The nonlinear observability imposes a prerequisite to 
construct the parity space that allows analytical redundancy 
for general nonlinear systems. In the following, based on 
Definition 3.1, the complete parity relations are derived, and 
the parity space is formed with 
 

𝛺N𝑂 𝑥3, 𝑢∗ = 0                                (6) 
 
where Ω is a vector of nonzero coefficients that transfers 
residuals from original space to parity (null) space.  
 
A straightforward approach to formulate the input-output 
equations for analytical redundancies in general nonlinear 

systems is to follow the methods in linear systems, which 
formulate analytical redundancy structures with linear 
functions of parameters (Chow and Willsky, 1984). However, 
due to the nonlinear form of both states and inputs, it is 
difficult to directly adapt the linear analytical redundancy 
structure for the general nonlinear systems. Also, since the 
output y depends on both states and inputs, it is also not 
applicable to simplify the nonlinear observation matrix, or to 
formulate the input-output equations as shown in (Leuschen 
et al., 2005). 
 
Instead of manipulating the observability matrix, the 
nonlinear observation matrix O is decomposed into two parts: 
one is with respect to x, denoted as 𝑂-Q while the other one 
is with respect to [𝑢, 𝑢, 𝑢,⋯ ]  denoted as EU. The 
observation matrix in Eq. (3) is revised as 
 
𝑂 𝑥3, 𝑢∗

=

ℎU
𝜕𝐿>3ℎU
𝜕𝑥

𝑓

𝜕𝐿>3ℎU
𝜕𝑥

𝑓
⋮ HW,I∗

+

0 0 0 0 0 ⋯

0
𝜕𝐿>3ℎU
𝜕𝑢

0 0 0 ⋯

0
𝜕𝐿>?ℎU
𝜕𝑢

𝜕𝐿>?ℎU
𝜕𝑢

0 0 ⋯

⋮ ⋮ ⋮ ⋱ 0 ⋮ HW,I∗

𝑢
𝑢
𝑢
⋮

 

= 𝑂-Q + 𝐸𝑈               (7) 
 
The first part 𝑂-Q in Eq. (7) is used to determine Ω in Eq. (6) 
so that the parity (null) space can be formulated. According 
to the nonlinear observability of general nonlinear systems, 
the Eq. (6) is re-derived as:  
 

𝛺N𝛻H𝑂-Q 𝑥3, 𝑢∗ = 0                         (8) 
 
where for the jth sensor 

∇H𝑂-Q 𝑥3, 𝑢∗ = ∇H

ℎU
EQ\

WF]
EH

𝑓
⋮

EQ\
^]F]
EH

𝑓
HW,I∗

           (9) 

 
The number of redundancies in this system is determined by 
the rank of each 𝛻𝑂 𝑥3, 𝑢∗ . For the jth sensor, the rank is 
determined as: 
 

𝑚U = 𝑟𝑎𝑛𝑘 ∇H𝑂 𝑥3, 𝑢∗                        (10) 
 

Here, the system can be either observable or unobservable.  
The number of independent analytical redundancies is 
denoted as: 
 

𝑛 − 𝑁 = 𝑚U + 10
Uc? − 𝑁                     (11) 
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n-N sets of independent W is determined to formulate the 
parity space i.e., the dimension of Ω  is 𝑚U + 10

Uc? −
N × (𝑚U + 1)0

Uc? . 
 
The second part - EU in the Eq. (7) mainly represents the 
information of inputs, and is used to construct analytical 
redundancy structure in parity space. EU is moved to the side 
of y in Eq. (3) so that parity relations for the general nonlinear 
systems can be formulated as: 
 

𝑃 = 𝛺N
𝑌?
𝑌@
⋮
𝑌0

−

𝐸?
𝐸@
⋮
𝐸0

𝑈 = 0                    (12) 

 
where P is parity residuals, which has the dimension of 

(𝑚U + 1)0
Uc? ×1  and ideally, will be nonzero only if a 

failure presents and the  matrix is derived as 

𝐸U =

0 0 0 0 0 ⋯ ⋯

0
EQ\

WF]
EI

0 0 0 ⋯ ⋯

0
EQ\

hF]
EI

EQ\
hF]
EI

0 0 ⋯ ⋯
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0
EQ\

^]ihF]
EI

EQ\
^]ihF]
EI

⋯
EQ\

^]ihF]
EI^]ih 0 ⋯

                (13) 

where E = 𝐸?		𝐸@ 		⋯ 𝐸0   is a (𝑚U + 1)0
Uc? ×max	(𝑚U)𝑄 

matrix when the rank of 𝑗KF  sensor is 𝑚U . U =
𝑈?		𝑈@ 		⋯		𝑈0  is a matrix with dimensionmax	(𝑚U)𝑄×1 

and 𝑈q = 𝑢q
JIr
JK

⋯ Jstu	(^])	Ir
JKstu	(^])

v
 for the 𝑞KF input.  

 
Essentially, the parity relations can be viewed as a weighted 
combination of sensor outputs and actuator inputs. The 
structure of a parity relation defines what should be included, 
while the coefficients of the parity relation determine the 
weights. 
 
Table 1 lists the comparison of parity residuals generation in 
linear systems and general nonlinear systems. It shows that 
the notion of nonlinear analytical redundancy with the parity 
relation method for general nonlinear systems is analogous to 
the notion of linear analytical redundancy.  

 
Table 1: Parity relations in linear systems vs. general nonlinear systems 

 Linear System Nonlinear System 

System 𝑥 = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝑐𝑥 + 𝑑𝑢 

𝑥 = 𝑓 𝑥, 𝑢 + 𝜀 
𝑦 = ℎ 𝑥, 𝑢 + 𝛿 

 𝑌 =

𝑦
𝑦
⋮

𝑦|]

=

𝑐
𝑐𝐴
⋮

𝑐𝐴|]

𝑥 −

𝑑
𝑐𝑑
⋮

𝑐𝐴|]D?𝑑

	

0
𝑑
⋮

𝑐𝐴|]D@𝑏

⋯0
⋯0
⋱ 0
⋯0

𝑢 Y =

𝑦;
𝑦;
𝑦;
⋮

=

𝐿>3

𝐿>?

𝐿>@

⋮

ℎ 𝑥3, 𝑢∗ ,				𝐿>?ℎ; =
𝜕ℎ;
𝜕𝑥

𝑓 +
𝜕ℎ;
𝜕𝑢

𝑑𝑢
𝑑𝑡

 

Number of P 
(redundancies) 𝑚U + 1

0

Uc?

− 𝑁 𝑚U + 1
0

Uc?

− 𝑁 

Null space 𝛺N𝑂Q 𝑥3, 𝑢∗ = 0   𝑂Q =

𝑐
𝑐𝐴
⋮

𝑐𝐴𝑚𝑗

 𝛺N𝛻H𝑂-Q 𝑥3, 𝑢∗ = 0,∇H𝑂-Q 𝑥3, 𝑢∗ = ∇H

ℎU
EQ\

WF]
EH

𝑓
⋮

EQ\
^]F]
EH

𝑓
HW,I∗

 

Parity residual 
structure 𝑃 = 𝛺N

𝑌?
𝑌@
⋮
𝑌0

−

𝐸?
𝐸@
⋮
𝐸0

𝑈  𝑃 = 𝛺N
𝑌?
𝑌@
⋮
𝑌0

−

𝐸?
𝐸@
⋮
𝐸0

𝑈  

 𝐸U =

𝑑U 0 0 0 0 ⋯ ⋯
𝑐U𝐵 𝑑U 0 0 0 ⋯ ⋯
𝑐U𝐴𝐵 𝑐U𝐵 𝑑U 0 0 ⋯ ⋯
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑐U𝐴|]𝐵 𝑐U𝐴|]D?𝐵 ⋯ 𝑐U𝐵 𝑑U 0 ⋯

 

 

𝐸U =

0 0 0 0 0 ⋯ ⋯

0
𝜕𝐿>3ℎU
𝜕𝑢

0 0 0 ⋯ ⋯

0
𝜕𝐿>?ℎU
𝜕𝑢

𝜕𝐿>?ℎU
𝜕𝑢

0 0 ⋯ ⋯
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0
𝜕𝐿>

|]D?ℎU
𝜕𝑢

𝜕𝐿>
|]D?ℎU
𝜕𝑢

⋯
𝜕𝐿>

|]D?ℎU
𝜕𝑢|]D?

0 ⋯

 

 

Ej
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4.2. Parity structure and coefficient design 

Given the general formulation of parity relations in the 
previous section, one is faced with the problem of finding the 
best structure and coefficients so that parity residuals are 
projected to a space where they are robust to noise but 
sensitive to sensor failures. The local property of nonlinear 
observability may lead to different parity structures under 
different operating conditions. Moreover, the statistical 
characteristics of parity residuals may be affected 
significantly from one operating condition to another because 
of different levels of measurement noise and modeling 
uncertainties. In order to provide accurate sensor fault 
diagnosis, the working space needs to be partitioned to 
determine local parity structures and coefficients. The 
automatic working space partition method will be the future 
work. While in this section, it is assumed that operating 
conditions are well defined. In many applications, 
measurement noise and model uncertainties in each operating 
condition will lead to the difficulty of selecting Ω such that P 
= 0. Therefore, the robust optimization is designed to find the 
best choice of coefficients that can make the candidate parity 
relations close to zero under no-failure conditions, and the 
resulting parity residuals can provide significant failure 
signatures to indicate anomalies or sensor failures. 
 
The Ω is determined so that the value of P is minimized in the 
existence of measurement noise and model uncertainties. The 
optimization formulation is shown as below: 
 

𝐽∗ = min
�
max
�,�

	𝑃@                             (14a) 

𝑃@ = {ΩN 𝑌 − 𝐸𝑈 }@           (3.14b) 
 

Here, the quantity of max
�,�

𝑃@ is the worst case effect of noise 
and model uncertainty on the parity relations. A conservative 
choice is attempted to find the parity coefficients by 
minimizing the worst case.  
However, it has a trivial solution that all coefficients are zero. 
To provide a meaningful solution, the coefficients Ω  are 
constrained to have unit magnitude. Moreover, based on the 
mechanism of parity relation, another constraint is that an 
optimal set of Ω  projects the observation matrix to a null 
space. Therefore, the complete formulation of a robust 
optimization design is shown as following:  
 

min
�
max
�,�

𝑃@ = 𝛺N 𝑌 − 𝐸𝑈 @ 

s.t. 𝛺N𝛺 = 1                                              (15) 
  𝛺N𝛻𝑂-Q 𝑥3, 𝑢∗ = 0      
 
Based on the number of analytical redundancies, n-M sets of 
independent W will be selected.  
 
Notably, the quantity of max

�,�
𝑃@ is dependent on state x and 

input u, which indicates that the coefficients should be 

computed at each time step when state x and input u are 
changing over time. However, it is not desirable to obtain 
new coefficient all the time. A more applicable approach is 
to schedule the coefficients based on the operating conditions 
since a set of coefficients is usually effective for a range of x 
and u. This indicates that when the state and the inputs are 
varying at a certain range, the corresponding coefficients are 
likely to perform closely to the optimum. In this case, 
appropriate coefficients will be learnt for each operating 
condition which is characterized by some nominal state x and 
input u during the training process and can be retrieved for 
use at corresponding operating conditions. 

5. A CASE STUDY 

The air intake system is a safety-critical system in automotive 
vehicles. It consists of three main parts: air filter, throttle 
body, and intake manifold. As shown in Figure 2, there are 
three critical sensors in this system - manifold absolute 
pressure (MAP) sensor, mass air flow (MAF) sensor and 
throttle position sensor (TPS). Right after the air filter, a 
MAF sensor measures the air flow rate entering the system. 
The throttle body controls the amount of air flowing into the 
engine, and a throttle position sensor provides feedback on 
the throttle plate position. A MAP sensor captures the intake 
manifold pressure information in the intake manifold whose 
main function is to distribute combustion mixture to each 
intake port in the cylinder heads evenly. 

This case study focuses on sensor fault diagnosis for both 
MAF and MAP sensors in an air intake system, considering 
the throttle position as a controllable input. It is assumed that 
input signals are known, and no faults are present in actuators. 

Due to the confidentiality required by our research sponsor, 
details of the system model are not listed. In the following, a 
general nonlinear system will be formulated based on the 
system dynamics of the air intake system. The diagnostic 
capability of the designed analytical redundancies will be 
demonstrated with normal data from a testbed and abnormal 
data by introducing simulated sensor faults into the normal 
data. 

 
Figure 2. The layout of an air intake system 
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5.1. Parity structure and coefficient design 

To validate the proposed method, a state space model for the 
air intake system is constructed as a general nonlinear system 
with one state, one actuator input, and two sensor 
measurements A and B.  
 

𝑥 = 𝑓 𝑥, 𝑢 + 𝜀 
𝑦� = ℎ?(𝑥, 𝑢) + 𝛿?                           (16) 
𝑦� = ℎ@(𝑥, 𝑢) + 𝛿@ 

 
By examining the observation matrix of 𝑦� and 𝑦�, the rank 
of each sensor measurement is one so that in total, three 
analytical redundancies exist in this system. The model 
estimations of 𝑦�  and 𝑦�  are compared with real sensor 
measurements. Figure 3 shows that the model accuracy 
differs under different operating conditions. Under operating 
condition 1, the estimation error of sensor A is much smaller 
than the error generated under operating condition 2. The 
main reason for this difference is model uncertainty and 
sensor measurement noise induced by different operating 
conditions. Here, the entire working space is partitioned into 
two operating regimes according to the speed of the 
production system.  
 

 
Figure 3. State space model estimation error of sensor A 

under different operating conditions 
 
Based on the observation matrix of the state space model in 
Eq. (16), the parity structure is formulated as: 
 

P = ΩN
𝑦�
𝑦�
𝑦�
𝑦�

−

0
EFh
EI
0
EF�
EI

𝑢                   (17a) 

 

and   𝑂-Q 𝑥3, 𝑢∗ =

ℎ?
EFh
EH
𝑓

ℎ@
EF�
EH
𝑓

                       (17b) 

 

Based on the rank of the observation matrix of each sensor, 
there are three independent analytical redundancies available 
so that three sets of parity coefficients Ω?, Ω@, and Ω�, are 
determined by the robust optimization design in Eq. (15) with 
nominal data from operating condition 1, shown in Table 2.  
 

Table 2: Selected parity coefficients under operating 
condition 1 

𝛀      

𝛀𝟏 -0.2125 -0.0081 0.9771 0 
𝛀𝟐 0 0 0.9998 -0.0125 
𝛀𝟑 0.9993 0.0369 0 0 

 

5.2. Parity structure and coefficient design 

In order to demonstrate the effectiveness of the designed 
parity relations based on the proposed method for sensor fault 
detection in the air intake system, different levels of sensor 
faults are introduced into sensors A and B, respectively. On 
the left side of Figure 3, different amounts of offsets are 
added to nominal sensor A measurements, while on the right 
side, different gains are added to sensor B. Those faults are 
labeled as N05, N15, and P05, P15. The letters N and P 
present negative and positive offsets/gains that are added to 
the sensor measurements. The number quantifies the amount 
of offsets/gains that are introduced into the sensor 
measurements. A larger number indicates more severe 
faults/degradation. 
 
Figure 4 shows that when offsets are added to sensor A, parity 
residuals governed by Ω?, and Ω� show deviations from their 
nominal condition, while when gains are added to sensor B, 
deviations only appear in those parity residuals with Ω? and 
Ω@. It indicates that under operating condition 1, the parity 
residuals with Ω?  contain both information from sensor A 
and B, while the parity residuals with Ω� and Ω@ only contain 
the individual information for sensors A and B, respectively. 
Moreover, when more severe faults are introduced into the 
sensor measurements, larger deviations can be found in the 
parity residuals from nominal values. Therefore, those parity 
residuals can provide effective information for sensor fault 
detection with the false alarm rate 1.06% under operating 
condition 1. 

yA  !yA yB  !yB
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Figure 4. Distribution of parity residuals under different 
levels of sensor faults (Left: offsets added to sensor A; 

Right: gains added in sensor B) 
However, when the parity coefficients determined by normal 
data from operating condition 1 are used to generate parity 
residuals with nominal data from operating condition 2, the 
false alarm rate is increased to 91.51%. As shown in Figure 
4, the deviations will lead us to misjudge system sensor 
measurement noise/model uncertainties as a sensor fault. 
Such high false alarm rate is because the performance of 
sensor fault detection via parity space is only feasible around 
a certain range of inputs and state due to the local 
observability property in nonlinear systems, and is sensitive 
to the inevitable uncertainty in the knowledge of system 
dynamics and measurement noise under different operating 
conditions.  

 
Figure 5. Distribution of parity residuals under different 

operating conditions 

6. CONCLUSION 

This research extends the model-based analytical redundancy 
from linear systems to general nonlinear systems, which fills 
the gap of analytical redundancy approaches for sensor fault 
diagnosis in general nonlinear systems, where input and 
output equations are nonlinear functions of both state 
variables and input variables. The notion of parity relations is 
derived based on the nonlinear observation matrix from 

system dynamic equations, which construct a parity space for 
sensor fault diagnosis in nonlinear systems. A robust 
optimization problem is formulated to find the best 
coefficient for the parity relations against the sensor 
measurement noise and model uncertainty under a certain 
operating condition. The case study validates the proposed 
method with data from an air intake system. The result shows 
that the proposed method is capable of identifying sensor 
degradation with different severity in a nonlinear system 
under the operating range it designed. It demonstrates the 
necessity of autonomous working space partition to construct 
local parity relations for sensor fault diagnosis, which could 
be a future work. 
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