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ABSTRACT

Model-based diagnosis methods rely on a model that defines
nominal behavior of a dynamic system to detect abnormal
behaviors and isolate faults. On the other hand, data-driven
diagnosis algorithms detect and isolate system faults by oper-
ating exclusively on system measurements and using very lit-
tle knowledge about the system. Recently, several researchers
have combined model-based diagnosis techniques with data-
driven approaches to propose hybrid1solutions for fault di-
agnosis. Many researchers have proposed methods to inte-
grate specific approaches. In this paper, we demonstrate that
data-driven and model-based diagnosis methods follow a sim-
ilar procedure and can be represented by a general unifying
framework. This unifying framework for fault detection and
isolation can be used to integrate different methodologies de-
veloped by two communities. As a case study, we use the
proposed framework to build a crossover solution for fault di-
agnosis in a wind turbine benchmark. In this case study, we
show that it is possible to achieve a better diagnosis perfor-
mance by using a hybrid method that follows the proposed
framework.

1. INTRODUCTION

Model-based diagnosis methods use analytical redundancies
in the system model for fault detection and isolation. Model-
based approaches, such as graphical methods (Mosterman &
Biswas, 1999; Bregon et al., 2014), observer-based methods
(Alcorta-Garcia & Frank, 1997), and parity equations and
analytical redundancy relations (ARR) (Gertler, 1998) have
been successfully applied for fault detection and isolation

Hamed Khorasgani et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
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(FDI) in dynamic systems. Model-based methods are com-
putationally efficient. Moreover, it is easy to understand and
interpret the diagnosis results of these approaches. However,
for complex systems, model building can be expensive, and
it is often infeasible to derive a sufficiently accurate model
for the system that generates correct diagnosis results. When
sufficiently accurate models are not available, data-driven di-
agnosis methods have been developed as a promising alterna-
tive to model-based fault detection and isolation (Venkatasub-
ramanian et al., 2003). Data-driven diagnosis approaches use
historical data of system operations to find patterns that do not
conform to the expected systems behavior. These patterns,
called anomalies or outliers, typically correspond to single or
a small group of data points that appear to be sufficiently dif-
ferent from the expected operational behaviors of the system
(Chandola et al., 2009).

Yang & Rizzoni (2016) compared the performances of a
model-based fault detection method based on analytical re-
dundancy relations with a data-driven scheme for fault detec-
tion and isolation using linear discriminant analysis applied
to an internal combustion engine. Their analysis showed that
both methods deliver high detection rates and low false alarm
rates for engine diagnosis. However, in many practical cases
we cannot expect high diagnosis performance from model-
based or data-driven methods alone for the following reasons:

• Incomplete models: for complex systems, the system di-
agnostics models are not easy to develop, and keep up-
dated during the system life-cycle. Therefore, reliable
models of these systems are not always available. Even
when models are available, they are often incomplete
and plagued by uncertainties in tracking system behavior.

1Note that in the literature the term hybrid is also used for systems that show
combine continuous behaviors interspersed with discrete changes (e.g., due
to switching in complex, embedded systems) (Hofbaur & Williams, 2004).
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This can lead to high false positive or high false negative
rates in model-based diagnosis.

• Insufficient historical data: in the real world, we usu-
ally do not have access to enough training data to learn
the system normal behaviors in all the operating modes.
Having access to labeled data for faulty operations is
even more expensive and difficult. This can lead to unsat-
isfying diagnosis performance in data-driven methods.
Furthermore, the quality and scope of the data can play a
critical role in the performance of the machine learning
methods that are employed to derive diagnostic models
from the data.

Several researchers have combined model-based diagnosis
with data-driven approaches to address some of these prob-
lems (Tidriri et al., 2016). Jung et al. (2016) used a model-
based approach for fault detection. To achieve better fault
isolation, they used the residual outputs from previous fault
scenarios to generate models for different fault modes. They
trained a one-class support vector machine (1-SVM) to de-
tect each fault. If the new sample does not correspond to the
nominal or one of the known fault modes, it is labeled as a
likely unknown fault. The classifiers were expected to be-
come more accurate as more data was collected over time.
Data-driven methods have also been used to learn uncertain
and incomplete models (Talebi et al., 2009).

Benkouider et al. (2012) developed a hybrid approach that
combines extended Kalman filtering (EKF) and neural net-
work classifier for fault detection and isolation in chemical
reactors. In their method, the system measurements and the
estimated parameters by EKF are the inputs to the neural net-
work, while the outputs of the classifier are fault types in the
reactor. Sheibat-Othman et al. (2014) used Support Vector
Machines (SVM) for fault detection and applied an observer-
based diagnosis approach for fault isolation. When the SVM
detects no fault in the system, they use the data to update
the observer parameters. Narasimhan et al. (2010) applied
TRANSCEND diagnosis approach (Mosterman & Biswas,
1999) to reduce the set of possible faults, and then applied
a data-driven approach to best distinguish among the remain-
ing faults.

Mack et al. (2017) combined a diagnosis reference model
developed by domain experts with a tree augmented naive
Bayesian (TAN) learning algorithm to develop a diagnosis
method that combines the expert knowledge and historical
data to improve the accuracy in differentiating between nom-
inal and faulty situations. Khorasgani & Biswas (2017) de-
veloped a hybrid diagnosis approach that combines the use
of historical data with the available physics-based knowl-
edge of the system to achieve better diagnosis performance
in smart buildings with incomplete models. By combining
model-based diagnosis and data-driven anomaly detection,

they could overcome the limitations of the incomplete system
model and improve the diagnosis accuracy.

This paper makes the following contributions.

• We demonstrate that data-driven and model-based diag-
nosis methods follow a similar procedure and can be rep-
resented by a general unifying framework.

• We use the general unifying framework to build hybrid
solutions that integrate techniques developed by different
research communities. Unlike previous hybrid diagnosis
methods (Tidriri et al., 2016), our proposed framework
is not limited to specific model-based and data-driven
methods and can be used to combine different methods.

The rest of this paper is organized as follows. Our general
framework for unifying data-driven and model-based diag-
nosis methods is presented in Section 2. Section 3 uses our
unifying framework to build a crossover solution for fault di-
agnosis for a wind turbine benchmark. This section demon-
strates diagnosis performance improvement can be achieved
through a hybrid solution. Section 4 presents the conclusions
of the paper.

2. TOWARDS A UNIFYING FRAMEWORK FOR DATA-
DRIVEN AND MODEL-BASED DIAGNOSIS METHODS

In this section, we use the similarities between diagnosis
methods, whether model-based or data-driven, to propose a
general unifying diagnosis framework. Our common frame-
work can be used for comparison and integration of different
diagnosis solutions. Both model-based and data-driven diag-
nosis solutions apply system measurements for fault detec-
tion and isolation. Therefore, data acquisition is the first step
in our unifying framework. After the data acquisition, data-
driven methods typically apply a feature selection or feature
extraction technique to extract a set of relevant features from
measurement data or select a subset of measurements that are
sensitive to the faults. Among feature extraction methods,
Principal Components Analysis (PCA) is the most widely
used (Bengio et al., 2012). It generates a set of orthogonal
bases in the directions where the data has the greatest vari-
ances.

On the other hand, model-based techniques use residuals for
fault detection and isolation. A residual is an analytical re-
dundancy relation between known variables in the system
such as parameters of the system, process measurements, and
inputs. To detect a fault f , model-based approaches generate
a residual sensitive to the fault and, at the same time, invariant
or at least robust to noise and uncertainties. To isolate a fault
fi from another fault fj , the model-based methods require a
residual sensitive to fi and at the same time insensitive to fj
(Frank & Ding, 1994). Residuals are used to capture inconsis-
tency among the measurements. Therefore, we can consider
a residual as a feature extracted from a set of measurements.
In fact, Gertler et al. (1999) showed the equivalence between
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PCA, which is a common unsupervised data-driven feature
extraction method and parity relations, which is a common
model-based residual generation technique for linear systems.
Considering each residual as a feature extracted from system
model, we define feature extraction as the second step in our
unifying diagnosis framework.

In the next step, a diagnosis solution maps the features to the
nominal operating mode or different fault modes. We call
this step fault diagnosis. Several survey and review articles
(Chandola et al., 2009; Hodge & Austin, 2004) have cate-
gorized data-driven fault detection approaches based on the
method applied for fault classification in this step. Generally,
they fall into two main groups: 1) supervised, and 2) unsu-
pervised. In model-based methods, to make a diagnoser ro-
bust to noise and uncertainties, typically, a hypothesis test is
used to determine if a residual deviation is statistically signif-
icant. Then, a fault isolation algorithm, uses a decision logic
to generate possible fault candidates based on the hypothe-
sis tests outputs. Hypothesis test followed by decision logic
techniques do not include learning normal and faulty classes
from training data and, therefore, can be categorized as unsu-
pervised diagnosis methods.

Our proposed common framework to represent data-driven
and model-based diagnosis methods is shown in Figure 1.
We use this general presentation to develop a framework for
unifying data-driven and model-based diagnosis algorithms.
Data sets generated from different sources can be used to-
gether to achieve a better understanding of system behavior
specially with respect to fault modes (Leturiondo, 2016). In
the feature extraction step, the set of features can be expanded
by using union of features from several methods. It is also
possible to combine two different methods by using one of
the methods for feature extraction and the other one for fault
diagnosis. In the rest of this section, we present a detailed de-
scription of each component in our framework and provide a
strategy, and guidance to combine different methods in each
part of the framework.

2.1. Data acquisition

A key aspect of any fault diagnosis method is the selection of
the input data. The input data is generally system measure-
ments collected by sensors that are part of the system, and
provide information on system operations. The input data can
also include data generated by conducting experimental tests
on the physical process, or from simulation data generated by
system simulators of sufficient fidelity. In other words, we
can categorize the input data for the diagnosis methods into
two main groups.

• Field or experimental data: Field data is sensor data
generated during the system operation. The ultimate goal
of any health monitoring strategy is to detect and isolate
faults in real operational situations, sometimes in real

Data Acquisition Feature extraction Fault Diagnosis

Model-based 

(residuals) 

Domain 

Knowledge  

Data-driven  

Supervised 

Unsupervised 

Simulation 

Data (Physical 

Model) 

Field or 

Experimental 

Data

Figure 1. Our unifying framework to represent model-based
and data-driven diagnosis methods.

time as faults occur. Therefore, it is important to use field
data for design and validation of diagnosis solutions. Ex-
perimental data is sensor data generated during a specific
experimental study. Experiments can be done to under-
stand the effect of faults and how they evolve over time.
The experimental data can be used for designing fault de-
tectors and diagnosers, and also for testing the existing
approaches.

• Simulation data: Simulation data is generated using an
executable form of a system model (e.g., state space
equations) to imitate situations that may occur in the real
world. Fault data from actual operations may not al-
ways be available. Moreover, in many cases, real normal
data is not also available for all the operating modes. In
these cases, system experts can use simulators to gener-
ate faulty or even normal data, which can then be used
to design detectors and diagnosers, much like the case of
experimental data.

A combination of data sources can be used to generate hybrid
diagnosis methods. Sheibat-Othman et al. (2014) used col-
lected data during the system operations (field data) as nor-
mal data and introduce actuator and sensor faults in an ex-
perimental study to collect faulty data (experimental data).
Leturiondo (2016) proposed a hybrid monitoring approach,
which combines field data and data generated using the sys-
tem physical model (simulation data) to address the lack of
sufficient faulty data in real world diagnosis applications.

Since the models are not always completely accurate, the field
data and experimental data are typically more reliable than
simulation data. For the operating conditions and the fault
modes where the field data and experimental data are not
available, simulation data can be used to enrich the dataset.
Note that simulation data is often generated at different levels
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of detail compared to field and experimental data. In real
systems, there are limited number of sensors with specific
sampling rates, however, in simulation experiments, we can
record any variable at any desired rate. To blend the simula-
tion data with real world data, the users can only use the vari-
ables associated with system sensors and apply a re-sampling
approach to create consistent sampling rates in data coming
from different sources.

2.2. Feature extraction

Feature extraction is the most critical step in designing a di-
agnosis algorithm. We categorize feature extraction methods
into three main groups.

• Data-driven: Typically, data-driven diagnosis methods
use sensor data as the set of features for fault detection
and isolation. When measurements are noisy or there are
irrelevant measurements in the dataset, it becomes chal-
lenging to detect and isolate faults by only monitoring
the raw data. Therefore, as part of developing a diagno-
sis approach, we have to devise methods for defining new
features, or selecting a subset of measurements that are
sensitive to system faults as the features. There are dif-
ferent data-driven methods such as mutual information
(Peng et al., 2005) to select a set of features that have
maximum relevance to the fault classes.

• Domain knowledge: Domain experts can play an im-
portant role in feature selection. They can identify im-
portant features for detecting and isolating each fault.
Moreover, they can help to define new features by pro-
viding critical information about nominal behavior of
each measurement with respect to others. For exam-
ple, a bipartite graph developed by domain experts that
represents the relationship between features and system
faults, called the diagnosis reference model has been
used widely in monitoring complex systems, such as sub-
systems of Boeing 777 aircraft (Mack et al., 2017).

• Model-based: The system model can be used to gen-
erate residuals which represent analytical redundancy
relations among measurements during nominal opera-
tion. Residuals are used to capture inconsistency among
the measurements. There are three main approaches
for residual generation; 1) observer-based (Frank &
Ding, 1997), 2) identification methods (Isermann, 1993),
and 3) parity equations and analytical redundancy
approaches (Gertler, 2012; Samantaray et al., 2006).
Model-based methods use different approaches such as
sensitivity analysis (Khorasgani et al., 2014) to select a
set of residuals that are sensitive to the faults.

The union of domain knowledge-based features, model-based
residuals, and data-driven features can be used as the set of
features for fault diagnosis. In the case study, we will show

additional features can improve diagnosis performance sig-
nificantly.

2.3. Fault diagnosis

Diagnosis algorithms use the extracted features to detect and
isolate faults. We categorize the diagnosis methods into two
main groups.

• Supervised: Supervised approaches use training data to
learn normal and fault classes. These methods typically
apply classification methods such as neural networks or
Bayesian networks to map the features to the operating
modes (Hodge & Austin, 2004).

• Unsupervised: Unsupervised approaches do not start
with labeled data. These methods typically make the im-
plicit assumption that normal instances are far more fre-
quent than anomalies in the test dataset and use hypoth-
esis tests or clustering approaches to divide up the data
points into normal and fault conditions (Li et al., 2011).

As we mentioned earlier model-based methods typically ap-
ply hypothesis tests to detect faults, and then apply generic
logic-based approaches to generate fault hypotheses and then
refine them to isolate faults. A fault hypothesis is a set of
faults that is consistent with the observed residual outputs.
Data-driven approaches typically use classification methods
to map the features to the operating modes. Classification is
a supervised diagnosis method that uses labeled training data
to learn a set of predefined fault classes. On the other hand,
clustering or unsupervised learning methods can be used to
detect new modes of operation some of which may be labeled
as faulty situations. This analyses can be done without start-
ing with labeled data that is linked to specific faults. Note
that classification and clustering techniques are not limited to
data-driven methods, and model-based techniques may also
use classifiers or clustering algorithms to map the residual
outputs to normal and fault classes. Jung et al. (2016) devel-
oped a hybrid diagnosis method by using historical data to
train a one-class support vector machine (1-SVM) to map the
residual outputs to the operating modes.

Table 1 summarizes fault diagnosis methods that can be ap-
plied for different scenarios. When training data for both nor-
mal and fault modes is available, we can use a classifier, such
as support vector machine to distinguish fault modes from
nominal operation. The input to the classifier is the set of
features and the output is the system operation modes. Us-
ing classifiers improves diagnostic performance (Jung et al.,
2016). However, faulty data is not always available for train-
ing diagnosers. When we only have access to normal data or
we have access to the system model to generate normal data,
we can apply hypothesis testing to compare nominal feature
values (derived from the data), against newly observed values,
to identify feature values that are significantly out of range.

Typically, hypothesis testing schemes like the Z-test (Biswas
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Table 1. Fault diagnosis methods for different scenarios.

Normal Data Faulty Data Fault detection and isolation
Available Available Classifier
Available Unavailable Hypothesis tests

Unavailable Unavailable Clustering

et al., 2003) assume the data is normally distributed, and only
require the means and variances of feature values of the nom-
inal data when comparing against new operational data to de-
tect faults. The system is in a fault mode when the hypoth-
esis tests indicate that one or more features are out of their
nominal operating ranges. A decision logic unit uses the set
of features out of nominal interval to isolate the fault mode.
When normal data is not available, it is reasonable to assume
that there is no fault in the early stages of operation and there-
fore, the data in this operational period is normal. However,
in many cases the data from the early stages is not available
for all the operating modes of the system. In this situation,
we can apply a clustering method to detect and isolate fault
modes. In the first step, an algorithm such as Calinski and
Harabasz method (Calinski & Harabasz, 1974) can be applied
to detect the number of clusters in the dataset. Next, we can
apply a clustering algorithm such as hierarchical clustering to
detect the clusters in the dataset. The small clusters are can-
didates for the fault modes. To show our proposed framework
is general and can represents different diagnosis methodolo-
gies, we use the framework to represent previous data-driven,
model-based and hybrid diagnosis solutions in Table 2.

3. CASE STUDY

In this section, we use our framework to combine two di-
agnosis solutions for a wind turbine benchmark competition
challenge (Odgaard et al., 2013) and generate a hybrid so-
lution with better diagnosis performance. We use the same
notation as reference (Odgaard et al., 2013) when referring to
the diagnosis solutions: Gaussian Kernel Support Vector Ma-
chine (GKSV) (Laouti et al., 2011), and Estimation-Based
(EB) (Zhang et al., 2011). In the next subsection, we use
the proposed framework to present the aforementioned ap-
proaches.

3.1. Solutions for the wind turbine benchmark competi-
tion challenge

A simulator is used to generate data in normal operation and
in nine different fault scenarios. This means the physical
model approach has been used for data acquisition in all the
methodologies. However, each research group chose a dif-
ferent feature extraction and fault diagnosis methodology. A
summary of each solution is presented as follows.

• GKSV uses domain knowledge to define a set of features
and applies SVM to classify fault modes. SVM is a su-
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Figure 2. Wind turbine block diagram.

pervised diagnosis method because it uses training data
for both normal and anomalous operations.

• EB uses observers-based approach to generate the set of
residuals. The hypotheses test is not discussed in the pa-
per.
Table 2 shows how the two solutions can be expressed
using our unifying framework. Note that we can use our
proposed general framework to make more specific and
useful comparison among different diagnosis methods.
For example, Odgaard et al. (2013) only used the overall
diagnosis performance of each method for the compar-
ison in the benchmark challenge. However, using our
framework it is possible to fix the diagnosis step to the
same method for all the solutions and compare the per-
formance of different features in different methods, or
use the same features and compare the performance of
different diagnosis techniques in classifying the normal
and faulty operating modes. In the next subsection, we
use our framework to develop a hybrid solution for the
wind turbine challenge.

3.2. Combining different diagnosis methods

We demonstrate the effectiveness of our proposed framework
for building hybrid solutions by combining the GKSV and the
EB solutions for wind turbine competition. The wind turbine
as it is shown in Figure 2 has four subsystems: 1) blade and
pitch, 2) drive train, 3) generator and converter and 4) con-
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Table 2. Different diagnosis solutions presented in our common framework.

Method Data Acquisition Feature extraction Diagnosis
Model-based solution

Yang & Rizzoni (2016)
Simulation data
(physical model)

Observer-based residuals
(model-based)

CUSUM test
(unsupervised)

Data-driven solution
Yang & Rizzoni (2016)

Simulation data
(physical model)

Linear discriminant analysis (LDA)
(data-driven)

CUSUM test
(unsupervised)

Sheibat-Othman et al. (2014)
Normal filed data +

faulty simulation data
(hybrid)

Observer-based residuals +
sensor data (hybrid)

SVM classifier
(supervised)

Benkouider et al. (2012)
Experimental data +
simulation data for
a hazardous fault

EKF-based residuals +
sensor data (hybrid) Neural networks (supervised)

Jung et al. (2016) Simulation data
(physical model)

Residuals
(model-based)

simple threshold +
consistency-based analysis +

1-SVM
(hybrid)

Mack et al. (2017) Field data Experts
(domain-knowledge)

TAN classifier
(supervised)

Narasimhan et al. (2010) Simulation data
(physical model)

Residuals
(model-based)

simple threshold +
consistency-based analysis +

1-SVM
(hybrid)

GKSV solution
Odgaard et al. (2013)

Simulation
data

(physical model)

Experts
features

(domain knowledge)
SVR

(supervised)

EB solution
Odgaard et al. (2013)

Simulation
data

(physical model)

Observer-based
residuals

(model-based)
*

troller. In this work, we did not have access to the wind speed
data and the complete model of the blade and pitch system,
therefore, we only model the three other subsystems (the blue
boxes in Figure 2) and assume the blade and pitch subsystem
supplies constant torque to the drive train subsystem.

3.2.1. Wind turbine physical model

The drive train model can be represented by the following
equations.

Jrω̇r(t) = τ(t)−Kdtθ∆(t)− (Bdt +Br)ωr(t) +
Bdt
Ng

ωg(t)

Jgω̇g(t) =
ηdtKdt

Ng
θ∆(t) +

ηdtBdt
Ng

ωr(t)

−(ηdtBdt
Ng

2 +Bg)ωg(t)− τg(t)

θ̇∆(t) = ωr(t)−
1

Ng
ωg(t),

(1)

where the generator torque, τg(t), is the input to the subsys-
tem, and ωr, the rotational speed of the rotor, ωg , the rota-
tional speed of the generator, and θ∆, the torsion angle of the
drive train, are the state variables. The subsystem parameters
are presented in Table 3.

The generator and converter can be modeled with following

first-order equation.

τ̇g(t) = −αgcτg + αgcτgr, (2)

where αgc is the generator and converter model parameter
and τgr is the reference torque computed by the controller
unit. The power produced by the generator is

Pg(t) = −ηgωg(t)τg(t), (3)

where ηg is the generator’s efficiency rate. The controller
starts at mode 1. In this mode, we have

τgr(t) = Kopt(
ω(t)

Ng
)
2

, (4)

where Kopt is the controller parameter. The controller
switches to mode 2 if ωg becomes greater than the nominal
generator speed, ωnom, or Pg becomes greater than reference
power, Pr. In mode 2, we have

τgr(t) =
Pr
ηgωg

. (5)

There are two sensors for rotor speed, ωr, two sensors for
generator speed, ωg , a sensor for generator power, Pg , and a
sensor for generator torque, τg . Each sensor is modeled as
a sum of actual variable value and a stochastic noise. The
sensor parameters are presented in (Odgaard et al., 2013).
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Table 3. Wind Turbine Parameters Used in the Benchmark Model.

Parameter Name Value and unit (SI)
Moment of inertia of the low speed shaft Jr 55× 106 kg.m2

Torsion stiffness of the drive train Kdt 2.7× 109 N.m/rad
Torsion damping coefficient of the drive train Bdt 775.49 N.m.s/rad

Viscous friction of the high speed shaft Bg 45.6 N.m.s/rad
Gear ratio Ng 95

Moment of inertia of the high speed shaft Jg 390 kg.m2

Efficiency of the drive train ηg 0.98
Generator and converter model parameter αgc 50 rad./s

Controller parameter Kopt 1.2171
Reference power Pr 4.8× 106 W

3.2.2. Data

We use the wind turbine physical model to generate training
and test data sets as described in the competition (Odgaard et
al., 2013). We consider the following fault scenarios in the
training data:

• f1 (rotor speed sensor fault): in this fault scenario the
first rotor speed sensors has an additive bias equal to 1.4
rad/s from 1500s to 1600s.

• f2 (generator speed sensor fault): in this fault scenario
the first generator speed sensor has a gain factor equal to
.9 from 1000s to 1100s.

• f3 (generator speed sensor fault): in this fault scenario
the second generator speed sensor has a gain factor equal
to 1.1 from 1200s to 1300s.

• f4 (generator actuator fault): in this fault scenario the
generator generates 100Nm more than the reference
torque from 3800s to 3900s.

We consider the following fault scenarios in the test data:

• f1 (rotor speed sensor fault): in this fault scenario the
first rotor speed sensors has an additive bias equal to 0.9
rad/s from 1500s to 1800s.

• f2 (generator speed sensor fault): in this fault scenario
the first generator speed sensor has a gain factor equal to
1.1 from 700s to 1000s.

• f3 (generator speed sensor fault): in this fault scenario
the second generator speed sensor has a gain factor equal
to 0.8 from 1100s to 1400s.

• f4 (generator actuator fault): in this fault scenario the
generator generates 200Nm more than the reference
torque from 3700s to 4000s.

More details of the wind turbine model and fault scenarios
are presented in (Odgaard et al., 2013). Next, we present the
GKSV solution for fault diagnosis.

3.2.3. Hybrid solution for fault diagnosis

Laouti et al. (2011) extracted a set of features and applied
several Gaussian kernel support vector regressions to detect

different faults. In this paper, we are interested in comparing
different methods with our hybrid approach. Therefore, we
use the same features as GKSV solution, but to have an iden-
tical approach in the second step we use linear support vector
classifier for diagnosis. The set of features in GKSV solution
are as follows.

x =



|ωr,m1
(k)− ωr,m2

(k)|
|ωr,m1

(k + 1)− ωr,m1
(k)|

|ωr,m2(k + 1)− ωr,m2(k)|
|ωg,m1(k)− ωg,m2(k)|
|ωg,m1

(k + 1)− ωg,m1
(k)|

|ωg,m2
(k + 1)− ωg,m2

(k)|
| τg(k)∗ωg,m1

(k)

Pg(k) |
| τg(k)∗ωg,m2 (k)

Pg(k) |
| τg(k)∗ωr,m1

(k)

Pg(k) |
| τg(k)∗ωr,m2

(k)

Pg(k) |
||τgr(k)− τg(k)|

|Pg(k)
tgr
− (

ωg,m1
(k)+ωg,m2

(k)

2 )|



(6)

where ωr,mi
(k) is the rotor speed sensor i value at sample

time k, ωg,mi
(k) is the generator speed sensor i value at sam-

ple time k, τg(k) is the generator torque sensor value at sam-
ple time k, τgr(k) is the generator reference torque set by the
controller at sample time k, and Pg(k) is the generator power
sensor value at sample time k.

When we use this feature set to train the classifier and ap-
ply the test data to measure the accuracy of the diagnosis ap-
proach, we can detect and isolate the faults with 4.5% false
positive rate and 19% false negative rate. On the other hand,
Zhang et al. (2011) implemented the method described in
(Zhang et al., 2008) as a solution for the diagnosis competi-
tion. The method uses an observer-based approach to design

7
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Table 4. Diagnosis performances for the wind turbine benchmark

Method False Positive Rate False Negative Rate
GKSV solution 4.5% 19%

EB solution 4.6% 16.6%
Hybrid solution 0.5% 6.7%

the following residuals.

˙̂
θ∆1 = ωr,m1 −

1

Ng
ω̂g1 + k1(ωg,m1 − ω̂g1)

˙̂ωg1 =
1

Jg
(
ηdtKdt

Ng
θ̂∆1 +

ηdtBdt
Ng

ωr,m1 − (
ηdtBdt

Ng
2 +Bg)ω̂g1

−τg) + k2(ωg,m1 − ω̂g1)
r1 = ωg,m1 − ω̂g1

(7)

˙̂
θ∆2

= ωr,m2
− 1

Ng
ω̂g2 + k1(ωg,m1

− ω̂g2)

˙̂ωg2 =
1

Jg
(
ηdtKdt

Ng
θ̂∆2

+
ηdtBdt
Ng

ωr,m2
− (

ηdtBdt

Ng
2 +Bg)ω̂g2

−τg) + k2(ωg,m1
− ω̂g2)

r2 = ωg,m1
− ω̂g2

(8)

˙̂
θ∆3

= ωr,m1
− 1

Ng
ω̂g3 + k1(ωg,m2

− ω̂g3)

˙̂ωg3 =
1

Jg
(
ηdtKdt

Ng
θ̂∆3

+
ηdtBdt
Ng

ωr,m1
− (

ηdtBdt

Ng
2 +Bg)ω̂g1

−τg) + k2(ωg,m2 − ω̂g2)
r3 = ωg,m2 − ω̂g3

(9)

˙̂
θ∆4

= ωr,m2
− 1

Ng
ω̂g4 + k1(ωg,m2

− ω̂g4)

˙̂ωg4 =
1

Jg
(
ηdtKdt

Ng
θ̂∆4 +

ηdtBdt
Ng

ωr,m2 − (
ηdtBdt

Ng
2 +Bg)ω̂g4

−τg) + k2(ωg,m2
− ω̂g4)

r4 = ωg,m2
− ω̂g4

(10)

˙̂τg = −αgcτ̂g + αgcτgr − λ(τ̂g − τg)
r5 = τ̂g − τg

(11)

where λ, k1 and k2 are the observer gain parameters designed

to make the residual dynamics stable. In this case study, we
select λ = 5, k1 = .05 and k2 = .2.

Zhang et al. (2011) did not describe the diagnosis step in their
method. To be consistent, we use the same linear support
vector classifier in the diagnosis step. The EB solution can
detect and isolate the faults with 4.6% false positive rate and
16.6% false negative rate. In this case study, we use the gen-
eral framework to combine the EB solution feature set and the
GKSV solution feature set to propose a hybrid solution for the
wind turbine diagnosis problem. In this method we use the
union of GKSV features and EB residuals as the set of fea-
tures. To make the comparison easy, we use the same linear
SVM in the diagnosis step. The hybrid approach can detect
and isolate the faults with 0.5% false positive rate and 6.7%
false negative rate. This is a significant improvement com-
pared to the original methods. Table 4 shows a comparison
between the two solutions for the wind turbine benchmark
competition challenge and the proposed hybrid approach.

4. CONCLUSIONS

In this paper, we proposed a general framework to represent
data-driven and model-based diagnosis methods in an unified
way. The proposed framework can be used to compare the di-
agnosis methods in a more specific way. In addition to the tra-
ditional approach of comparing the overall results, our frame-
work makes it possible to compare a specific step in each di-
agnosis method. Moreover, our framework can be used to
combine different diagnosis methods and build crossover so-
lutions with better diagnosis results. We demonstrated the
application of our unifying framework to propose hybrid so-
lutions through a case study for the wind turbine challenge.
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