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ABSTRACT 

This paper proposes use of passive thermal age sensors and 

empirical correlation models to project remaining useful life 

of thermally degradable products and materials.  Thermal 

age sensors, comprising a selected polymeric matrix and 

conductive fillers, change resistance as the matrix thermally 

degrades in the same thermal environment as the monitored 

product or material.  Thermal age sensor resistance 

represents the integrated time-temperature condition of the 

sensor at its characteristic activation energy.  Empirical 

models correlate sensor resistance to a selected property of 

the material utilizing multi-temperature thermal aging data 

of the monitored material. These correlation models project 

the current condition of the selected product property, or, if 

end-of-life properties are specified, these models project the 

percentage of remaining design life of the material.  Several 

applications of this approach are discussed utilizing thermal 

age sensors attached to monitored materials.   An approach  

utilizing two thermal age sensors is introduced that allows a 

single tag to predict selected properties of many different 

materials. PHM tags utilizing passive thermal age sensors 

do not require an internal source of electrical power or 

internal memory, eliminating the need for batteries and 

significantly reducing data management issues.  This 

approach can be expanded to a wide range of products and 

materials when sufficient thermal age data is available. 

1. INTRODUCTION 

Projecting remaining thermal life of products and materials 

is a complex undertaking requiring collection of data 

representing the entire thermal history in which the target 

material exists.  It also requires an understanding of the 

effect of the thermal history on one or more selected 

properties of the material.  It is well known that most 

materials are affected by other environmental conditions 

such as humidity, gases, and ionizing and non-iodizing 

radiation.  An exhaustive evaluation of material degradation 

in a complex environment is extremely complex and beyond 

the scope of this paper.  However, the thermal environment 

of many materials is often the primary environmental 

stressor, and a simple method which is capable of adjusting 

the expected life of a material based on thermal conditions 

only is very useful, especially when it provides an 

economical improvement over simple “shelf life” methods 

where the thermal environment must be assumed. 

A common method of incorporating thermal history in both 

diagnostic and prognostic analysis is the use of thermal data 

loggers in conjunction with physics-based modeling or 

empirical algorithms. For example, thermal data, such as 

thermal history from data loggers can be used together with 

algorithms to predict the future reliability of electronic 

products, (Vichare, Pecht, 2006). 

The approach utilized in the present method utilizes an 

empirical model to project a selected material property 

based on the current thermal age of the material.  The 

current thermal age of the material is represented by the 

resistance of a thermal age sensor thermally associated with 

the material. The empirical models require multi-

temperature aging data of the selected property of the target 

material or product.   

The thermal age sensor comprises a conductive composite 

sensor element whose resistance at any time represents the 

integrated time and temperature at its characteristic 

activation energy (Ea).  These thermal age sensors are 

placed in the same or similar thermal environment as the 

product or material they are monitoring. 

If an end-of-life value of the selected property is specified, 

these empirical algorithms can predict the remaining 

thermal life of the product or material as a percentage of 

remaining life.  Or, they can predict the remaining life in 

time with an assumed effective temperature or use of a 

similar temperature environment in the future. 

Kenneth Watkins. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

2 

2. THERMAL AGE SENSORS 

The methodology of this paper utilizes a conductive 

composite thermal age sensor as the primary sensor element 

for predicting material or product thermal degradation.  

Thermal age sensors act as “coupons” of the target material 

or product in that they respond to the thermal environment 

of the product.  They are small, light and low cost since they 

inherently integrate time and temperature without batteries 

or memory requirements. Electrical power to read the sensor 

comes from a reader such as a multi-meter or RFID reader. 

The thermal age sensors of this method comprise conductive 

composite elements that employ conductive fillers dispersed 

in a polymeric matrix.  Sensors utilize electrodes to allow 

measurement of the sensor resistance.  The resistance of the 

sensor depends on many factors including the matrix 

selected, the conductive filler, the geometry of the sensor 

element, and the processes used in mixing, curing and 

conditioning of the sensor.  Thermal age sensors are 

typically hermetically sealed so that they respond to thermal 

environments only and minimally affected by the presence 

of humidity and other gases which may affect the sensor. 

Figure 1 below shows the so-call electrical percolation 

curve for a conductive composite.   

 

Figure 1: Electrical percolation curve for a conductive 

composite material. 

 

The resistivity of the conductive composite decreases as the 

volume fraction of the conductive filler increases due to 

reduced distance between conductive particles.  Note the 

large change in resistivity with small changes in volume 

fraction of the conductive filler in the steep portion of the 

curve.  This amplification effect is useful in a thermal age 

sensor, where shrinkage of the matrix due to chemical and 

physical aging mechanisms is very small.  

Figure 2 below shows an example of a sensor element with 

an epoxy matrix, carbon black conductive filler, and 

embedded electrodes.  Sensor packaging provides desired 

sealing, mechanical protection, and electrical connectivity to 

a PHM tag. 

 

Figure 2.  Photograph of epoxy-based thermal age sensor 

element. 

 

Multiple aging effects on the sensor matrix including 

chemical and physical aging mechanisms result in changes 

of sensor resistance with time.  For example, chemical 

reactions such as crosslinking and oxidation and physical 

reactions such as loss of volatile fractions result in 

volumetric fraction changes in the conductive composite 

element over time.  These reactions normally result in a 

decrease in the volume fraction of the matrix with a 

resulting decrease in sensor resistance.  Since these 

reactions are temperature dependent, the rate of sensor 

resistance change with time increases with temperature.  

This effect is shown in Figure 3 below for a cellulose 

acetate (CA) matrix sensor element. 

 

Figure 3: Thermal age sensor resistance vs. age time.  Note 

temperature dependence on rate of resistance decrease. 

 

The temperature-dependence on the rate of resistance 

change allows numerical and graphics-based analysis of this 

dependence for use as a thermal age sensor.  For example, 

time-temperature superposition (TTS) may be used to 

determine Arrhenius behavior and activation energy (Ea) of 

the aging processes as suggested by Gillen, Bernstein and 

Celina (2017). TTS can also be used to determine Arrhenius 

behavior of the resistance decrease phenomenon of a 
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conductive composite sensor.  An experimentally 

determined time shift or acceleration factor is applied to 

sensor resistance data for each temperature so that the 

resistance-time curves are superimposed.   The figure below 

shows a TTS graph of the resistance-time response of the 

CA sensor data of Figure 3 at multiple temperatures. 

 

Figure 4: Time temperature superposition graph of the 

resistance response of CA thermal age sensors at multiple 

temperatures. 

 

Table 1 shows the acceleration factors (AF) at each 

temperature (base temperature 100C) which produce the 

superposition shown in Figure 4.   

Table 1: Acceleration Factors (AF) for sensor resistance vs. 

time for superposition. 

TEMPERATURE (C) ACCELERATION 

FACTOR 

100 1.0 

115 2.5 

130 8.0 

 

Since the acceleration factors above represent the reaction 

rate of sensor resistance to temperature, they can be used to 

determine the Arrhenius behavior of sensor resistance to 

temperature during aging. By plotting the natural logarithm 

of this acceleration factor (representing the relative rate of 

the reaction at different temperatures) to the inverse 

absolute temperature, linearity can be used to determine 

Arrhenius behavior of the thermal age sensor. The figure 

below shows Arrhenius behavior for the sensor example 

above. 

 

Figure 5: Arrhenius plot of natural logarithm of the 

acceleration factors and inverse absolute temperatures of 

Table 1. 

 

The high linearity of the data as shown in Figure 5 

demonstrates the excellent Arrhenius behavior of resistance 

of the thermal age sensor over the temperature rages of this 

data.  Arrhenius calculation of the activation energy of 

thermal age sensor resistance under the test conditions of the 

thermal aging yielded 86 kJ/mol. 

Ideally, a thermal age sensor responds only to the integrated 

time and temperature of its environment.  In practice, sensor 

resistance is also affected by measurement temperature, 

humidity, applied voltage, mechanical shock and other 

factors.  For example, thermal age sensors show both 

temperature and humidity coefficients of resistivity.  These 

coefficients can be measured and compensated for if 

necessary, by ambient temperature and humidity 

measurements.  Temperature compensation for many 

matrixes does not require compensation unless measured 

under extreme thermal conditions.  Humidity effects can be 

eliminated by hermetic sealing of the sensor package.  

Applied voltage and mechanical shock sensitivities are 

typically very low and normally do not require 

compensation. 

 Below is a photograph of a packaged thermal age tag 

having the thermal properties described above.  Multi-meter 

probe connectors allow measurement of thermal age sensor 

resistance with an ohmmeter or multi-meter.  Use of an 

epoxy container for the tag provides hermetic sealing and 

mechanical protection for use in industrial applications such 

as electrical equipment and structures. 
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Figure 6: Photograph of a packaged thermal age tag having 

a CA matrix. 

 

3. TARGET MATERIAL PROPERTY ANALYSIS 

The empirical correlation models of this approach utilize 

Arrhenius analysis of a selected target material property 

with aging time at multiple temperatures.  The material 

property is normally selected to provide an indication of 

remaining usable life of the material or product. 

The approach is similar to that of the Arrhenius analysis of 

thermal age sensor resistance.  Ideally, the selected material 

property follows Arrhenius behavior during thermal 

degradation. An example of a selected property of a generic 

product or material comprising polymers during thermal 

degradation is shown in Figure 7 below. 

 

Figure 7: Characteristic degradation of a selected property 

of a product undergoing thermal degradation. 

   

The rate of degradation of the property depends on the 

temperature environment with the rate typically being faster 

for higher temperatures.  If a design threshold value of this 

property is established, as indicated by the red line of Figure 

7, the design thermal life at any temperature or the current 

percentage of remaining life for a partially aged product 

may be determined. 

The selected property for analysis ideally provides a 

reasonable “marker” for projecting target material end-of-

life conditions.  This property data may be chemical 

properties, or they may be mechanical properties, physical 

properties or even biological properties as long as the 

property generally follows a repeatable temperature-

dependent rate such as those properties displaying consistent 

Arrhenius behavior.   

Product and material degradation are complex processes 

involving multiple chemical reactions including 

crosslinking, chain scission and oxidation reactions, 

physical processes such as volatile fraction loss, and in 

some cases biological or nuclear reactions.  However, the 

thermal response of many products and components will 

show reasonable Arrhenius response over a limited 

temperature range when other environmental conditions are 

controlled or properties selected where other environmental 

stressors are of limited influence.   

The selected material property data should be taken at 

multiple temperature aging conditions where other 

environmental factors such as humidity, gaseous 

environments or hermetically sealed conditions of the 

material approximate operational conditions as closely as 

possible. This data may be available from material or 

product manufacturers, industry or trade organizations, or in 

some cases available from the literature.  Where the 

multiple temperature test data under relevant conditions is 

not available, trials may be necessary to provide this data. 

An example of a material chemical property aging is shown 

below for degree of polymerization (DP) measurements 

made on kraft paper transformer insulation thermally aged 

in dried, degassed transformer oil (Lundgaard, Hansen, 

Linhjell, & Painter, 2004).  Reduction of DP of the kraft 

insulation over time results in loss of mechanical properties 

of the insulation and the ability of the transformer to 

withstand mechanical, thermal and electrical stresses 

resulting from surges, overloads and other transient 

conditions the equipment is subject to.  Although DP of 

kraft insulation is a very complex degradation process 

affected by a number of environmental stressors such as 

moisture and oxygen, loss of DP can be predicted for sealed 

conditions at different temperatures over extended aging 

periods as demonstrated by the authors. 

Time temperature superposition analysis of the multi-

temperature target material property data such as that of 

Figure 8 is used to determine Arrhenius behavior. The 

90C/110C and 130C data is used in this analysis so that 70C 

data can be used for approach verification as described in 

section 4. 
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Figure 8: Degree of Polymerization of kraft paper 

transformer insulation in oil and aged at 130C, 110C, 90C 

and 70C (Lundgaard et al., 2004). 

 

Figure 9 below shows the TTS analysis of the DP aging data 

of Figure 8. 

 

Figure 9: Time temperature superposition of transformer 

insulation DP data of the previous figure. 

 

Table 2 shows the acceleration factors determined in the 

TTS of Figure 9. 

 

Table 2: Acceleration factors determined from the TTS 

analysis of transformer insulation DP. 

 

TEMPERATURE (C) ACCELERATION FACTOR 

90 1.0 

110 10 

130 36 

Since acceleration factors are a measurement of the reaction 

rate of DP response at a given temperature, they can be used 

to evaluate the Arrhenius behavior of DP to temperature. 

Figure 10 below is a graph of the natural logarithm of the 

acceleration factors vs. the inverse absolute temperatures of 

the data of Table 2.  The good linearity of the data in this 

graph suggests good Arrhenius behavior of DP degradation 

over time within the temperature range of the data. 

 

Figure 10: Plot of Ln of the acceleration factors vs. inverse 

absolute temperature of Table 2. 

 

Arrhenius calculation of the activation energy of DP 

degradation under the test conditions of the Lundgaard et al. 

data yielded 109 kJ/mol. 

4. EMPIRICAL CORRELATION MODELS 

Empirical models are used to correlate thermal age sensor 

resistance with properties of target materials, products or 

components for which aging data is available.  Two 

methods that are used in this approach are direct correlation 

of thermal age sensor resistance and thermal age data, and 

Arrhenius modeling of property data.  The Arrhenius 

modeling approach of thermal age sensor data provides the 

effective temperature (TEFF) over the total calendar time. 

Empirical correlation models provide a means for projecting 

approximate target material/product condition without 

embedment of the thermal age sensor or tags in the material 

or sealed environment of a product.  However, empirical 

modeling requires multiple temperature aging data taken 

under environmental conditions as similar as possible to 

product conditions for reasonable accuracy.  And empirical 

models will not forecast material or product property 

degradation due to product defects.  Both models require 

analysis for Arrhenius behavior of the target material 

degradation process in order to provide reasonable 

confidence in the correlation.  
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4.1. Direct Correlation Model 

 A direct correlation model is the simplest approach and 

requires only sensor resistance as an input to predict the 

current property of the target material once the model 

algorithm has been developed for a target material.  

Direct correlation models can be made by numerical 

approaches or by plotting thermal age sensor resistance and 

the selected material property at the same age time and 

temperature.  Unless thermal age sensors and target material 

are co-aged, this will normally require adjustment of sensor 

resistance to the target material product data age time by use 

of acceleration factors of the sensor determined from target 

aging temperatures. An example of a direct correlation of 

CA thermal age sensor to the transformer DP data of Figure 

8 is shown below. 

 

Figure 11: Direct correlation model of normalized sensor 

resistance to normalized degree of polymerization. 

4.2. Arrhenius Model 

A second approach utilizes a sensor acceleration factor 

determined by the calendar time for which the sensor has 

been associated with the product (assumed to be the total 

age time if the sensor has been associated with the target 

material since production) divided by the time required for 

the sensor to reach that value at the lowest calibration 

temperature.  For the example here, the age time for the 

100C curve of Figure 3 (the base or lowest test temperature) 

would be used for a CA sensor associated with a target 

material.  

Figure 5 can be used to determine the effective temperature 

TEFF of the sensor.  TEFF is defined as that temperature, 

which if held constant for the calendar time of the sensor 

reading, provides the same resistance change as the actual 

(variable or complex) thermal history of the sensor.  If the 

assumption is made that TEFF of the target material is the 

same as TEFF of the sensor, current target condition may be 

projected by determining the target AF from Figure 10 and 

applying it to the base temperature (90C) data of Figure 8.  

Figure 12 below shows projected DP vs. experimental data 

at 70C using Figure 8 data (70C) outside of that used in 

development of the model.  This approach provides a first 

level of model verification requiring extrapolation of target 

aging data. 

 

Figure 12: Projected vs. experimental DP for 70C aging 

using Arrhenius modeling. 

 

Supervised learning models, such as support vector machine 

(SVM) approaches may be employed to provide improved 

accuracy of correlations and projections.  

 

5. UNIVERSAL THERMAL AGE TAG 

In constant temperature aging conditions, matching of the 

activation energies of thermal age sensors and the target 

material is not an issue.  For example, thermal age sensors 

of any Ea, co-aged with a target material will project the 

same thermal life of the target material.  However, in real-

world conditions, this is not the case since thermal aging is 

highly non-linear with temperature.  Use of a time-average 

temperature will always project longer target material life 

than actual life since aging at temperatures above the mean 

proceed at a rate higher than the compensation of slower 

aging below the mean.   

A significant limitation to the direct correlation and 

Arrhenius approach when using a single thermal age sensor 

is that reasonable projection agreement with experimental 

data across a variable (real world) temperature range 

requires good agreement of the Ea of the thermal age sensor 

and the effective Ea of the property data of the target 

material or component.  Errors increase with the difference 

in Ea of the sensor and material property Ea, and the 

magnitude of temperature variation.  Development of 
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thermal age sensors that provide good agreement with the 

activation energy of all degradation properties of all 

materials and components of interest represents a very 

significant development effort. 

One approach which eliminates the need for a large number 

of sensors for many different materials and/or properties is 

utilization of two thermal age sensors with different Ea in a 

single thermal age tag. A modeling approach which projects 

the TEFF at any activation energy in a complex thermal 

environment means that a single tag that is associated with 

one or more materials or components provides the resistance 

data required to project current properties of any of the 

materials or components in that environment for which 

adequate thermal age data is available.  

This approach utilizes the sensor resistance of each sensor, 

representing integrated time-temperature at the Ea of the 

sensor and calendar time to determine TEFF for each sensor 

as described in 4.2.  An empirical relationship of TEFF at 

each sensor Ea is established to allow projection of TEFF at 

the Ea of a selected material property. 

An example is shown in the following figures utilizing three 

thermal age sensors of different Ea aged under constant 

temperature conditions (Figure 13) and three thermal age 

sensors of the same Ea aged under a sequential two-

temperature aging profile (Figure 14).  The constant 

temperature conditions are representative of laboratory oven 

aging as described previously.  The sequential aging of 

Figure 14 sensors was 50% time aging at 57C, followed by 

50% time aging at 65C. TEFF determined by the method 

described previously is shown for each sensor, and time 

average temperature (TAVE) is shown for the two 

temperature aging. 

 

Figure 13: TEFF as a function of thermal age sensor Ea under 

fixed (constant) temperature conditions.  Note relative 

independence of Ea on TEFF. 

 

 

Figure 14: TEFF as a function of thermal age sensor Ea under 

two-temperature aging conditions.  Note high dependence of 

Ea on TEFF. 

 

The relative insensitivity of Ea in the fixed temperature 

aging of Figure 13 is expected.  The high dependence of Ea 

on TEFF in Figure 14 is also expected, since aging is highly 

non-linear, resulting in significant aging during the higher 

temperature time portion as compared to aging at a constant 

temperature.  The results of this show that TEFF is higher for 

higher Ea, and higher that the average temperature TAVE.  

Use of a single tag with multiple sensors having different Ea 

allows determination of TEFF for a wide range of processes 

or materials for which aging data is available for correlation.  

Selection of thermal age sensors with a significant 

difference in Ea allows interpolation of TEFF projection.   

A photograph of encapsulated single and dual sensor 

thermal age tags are shown in the Figure 15 below. 

 

Figure 15: Photograph of encapsulated single sensor (left) 

and double-sensor (right) thermal age tags. 

 

6. APPLICATIONS OF THE APPROACH 

Simplicity, low cost, small size and elimination of the 

requirement for complex data management and battery 

replacement issues associated with data loggers are the 

motivating factors for application of thermal age tags in 
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applications where shelf life,  fixed replacement and “run-

to-failure” methods are insufficient.  They offer significant 

cost reductions resulting from reduced unscheduled 

downtime for rapidly aged equipment, and reduced 

premature replacements where equipment is replaced on a 

fixed replacement time scenario.   

Thermal age tags have potential applications in virtually any 

industry or market segment where improvements over 

simple shelf life or fixed replacement time systems are 

needed.  For example, the tag of Figure 6, bonded to the 

case of an electric motor, generator or transformer can be 

used to predict thermal aging of winding insulation by 

correlating sensor resistance to NEMA life ratings 

(corrected for case/winding temperature drops).  Or, a 

thermal age tags on building roof systems provides a simple 

indicator that the system is nearing end-of-life based on its 

actual thermal exposure. Other applications include 

projection of remaining life of foods and pharmaceutical 

products, medical devices, wire and cable insulation, 

structural components, industrial and consumer rubber 

products, and propellants. 

 

Figure 16: Measuring a thermal age tag attached to an 

electrical motor at a municipal water facility.  The tag 

projects remaining winding insulation thermal life. 

 

The passive nature of thermal age tags lends well to passive 

Radio Frequency Identification (RFID) tag approaches 

where a thermal age sensor is utilized in a passive RFID tag 

to both track a product and predict remaining thermal life.  

An example of a passive RFID tag is shown in the 

photographs of Figure 17 below. 

Additional tag capabilities can be expanded with additional 

sensor capabilities including chemical sensors and 

shock/vibration sensors.  Polymer Aging Concepts has 

shown feasibility of a passive thermal/humidity age tag 

capable of predicting material properties under both variable 

thermal and variable humidity conditions. 

 

   

Figure 17: Passive RFID with thermal age sensor (left) and 

encapsulated tag (right) 

7.  CONCLUSIONS 

Thermal age sensors offer a simple, low-cost approach to 

identify prematurely aged materials and components and to 

extend the shelf life of materials and components which are 

optimally transported and stored.  

Empirical modeling approaches can be employed that 

correlate the resistance of the thermal age sensor 

(representing the integrated time-temperature of the tag 

environment) to current target material or product condition.  

Accurate correlation requires multiple target material 

property data at multiple temperatures and property 

threshold data for “Red light/Green light capability.  These 

empirical approaches will not detect product degradation 

due to product manufacturing defects. 
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