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ABSTRACT

This paper presents the design of a Fault Detection and Isola-
tion scheme to improve the reliability of a cryogenic engine
test bench operation, focusing specifically on its cooling cir-
cuit. The proposed fault detection consists in an extended
unknown input observer, a cumulative sum algorithm and an
exponentially moving average chart. A dynamic parity space
approach is then proposed to isolate one or two simultane-
ous faults in the cooling circuit. The initial system model, for
each line composing the cooling circuit, is augmented with
constraints based on the mass flow rate continuity and the
energy conservation for the overall system. Time delays in
the transients are accounted for by recursive equations over a
sliding window. The method allows settling adaptive thresh-
olds that avoid pessimistic decision about the continuation of
tests while detecting and isolating faults in the transient and
permanent states of the system. The model structure and the
estimation method were validated on the real Mascotte test
bench (ONERA/CNES) data. The fault detection and isola-
tion scheme was validated in realistic simulations.

1. INTRODUCTION

The need for increased launch safety and launcher’s engines
reliability leads to the development of health monitoring sys-
tems. The monitoring of test benches and engines is a major
challenge in the development and integration of new propul-
sion systems for rockets, including reusable ones. The ex-
perience acquired during the years of Ariane 5 system’s ex-
ploitation has pointed out the complexity of the implementa-
tion of cryogenic propulsive systems as well as the necessity
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to get a specialized expertise on the physical phenomenon.
In terms of traditional engines the objective is the improve-
ment and the reliability of the implementation (see (Iannetti,
Marzat, Piet-Lahanier, Ordonneau, & Vingert, 2014)). The
methods commonly used nowadays consist in checking if the
measured values exceed a predetermined redline during the
test. This type of approach requires selecting multiple thresh-
olds for each test, which can be complex and can possibly
lead to a pessimistic attitude about the continuation of the
test. To handle emergency situations arising from actuator
failures that can affect the engine performances, the failure
should be detected quickly, then isolated and its causes should
be identified. For that purpose, Fault detection and isolation
(FDI) methods have been developed to evaluate failures and
take a decision using all available information with the help
of explicit or implicit models. The most common model-
based approach makes use of observers to generate residuals.
Faults are detected by setting a fixed or variable threshold on
each residual signal as in (Basseville, Nikiforov, et al., 1993).
Those FDI methods assume that the mathematical model used
is representative of the system dynamics. This is challeng-
ing in practice because of the presence of modeling uncer-
tainties and unknown disturbances. To tackle the problem of
unknown disturbances, a simple class of full order observers
for linear systems with unknown inputs can be used. It con-
sists in a coordinate system transformation that decouples the
disturbance effect on the system outputs. The observer re-
sulting from such an approach is called Unknown input ob-
server (UIO) (see for example (Darouach, Zasadzinski, & Xu,
1994)). In the case of non-linear systems one of the developed
techniques is to linearize and design an Extended unknown
input observer (EUIO) as described in (Witczak, 2007).
The parity space-based fault detection approach is also one of
the most common approaches to residual generation by using
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parity relations. Those relations are rearranged direct input-
output model equations subjected to a linear dynamic trans-
formation. The design freedom obtained through the trans-
formation can be used to decouple disturbances and improve
fault isolation. Parity space approaches have been proved to
be structurally equivalent to the observer-based though the
design procedures differ (Gertler, 2017). However, the par-
ity space methodology using the temporal redundancy has its
specific advantages, especially for discrete-time systems. For
example, a way to overcome time delays is to use recursion
over a sliding window (Wang, Tian, Shi, & Weng, 2010). In
most existing works, the projection matrix for a parity check
is chosen arbitrarily (Gao, Cecati, & Ding, 2015). Some re-
cent works have proposed a new parity space approach in-
cluding methods to design the projection matrix for realis-
tic situations considering the general system including sys-
tem and measurement noises and accounting for actuator and
sensor faults, simultaneously (Kim & Lee, 2005). However,
this work assumes that the fault is constant on the interval
of parity spaces order. Another method to isolate faults is to
establish a relationship between parity-space based fault de-
tection and a minimization problem (Zhong, Song, & Ding,
2015). In this paper a FDI method for the cooling circuit of a
cryogenic combustion bench, Mascotte (CNES/ONERA), is
studied. This bench has been developed to study heat trans-
fers in the combustion chamber and jet separation in nozzles
in the same conditions as for Vulcain 2 motor. Due to high
combustion temperatures and high heat transfer rates from the
hot gases to the chamber wall, the thrust chamber cooling re-
quires major design consideration. The optimization of the
chamber pressure value for a high-performance engine sys-
tem is mostly limited by the capacity and efficiency of the
chamber cooling system. In turn, chamber pressure will af-
fect other design parameters such as nozzle expansion area
ratio, propellant feed pressure, and weight. The method pro-
posed here is based on a physical model giving the output
pressure and mass flow rate of the cooling circuit (Section 2).
The fault has its own known dynamic which allows us to use
direct fluid mechanics constraints. To generate residuals we
estimate the state with the help of an EUIO (Section 3). The
proposed method permits to deal with measurement and pro-
cess noises, as well as unknown inputs without solving min-
imization problems. Then the residuals are analyzed with a
Cumulative sum (CUSUM) algorithm using an Exponentially
weighted moving average (EWMA-C) chart to detect a mean
shift (Jiang, Shu, & Apley, 2008; Ryu, Wan, & Kim, 2010;
Basseville et al., 1993) and a recursive parity check for the
overall system achieves fault isolation. This complete FDI
method coupling a model-based observer and a parity space
approach permits to localize an actuator additive fault in spite
of unmeasured information and have been validated with off-
line tests based on real data and realistic Carins (CNES sim-
ulation software) simulations.

2. SYSTEM DESCRIPTION

The cryogenic combustion bench Mascotte (Figure 1) per-
forms an oxygen / hydrogen operation with pressures and
mass flow rates comparable to an injection element of the
Vulcain 2 engine. The cooling system makes use of water
as coolant. This circuit permits to cool the ferrules of the
combustion chamber and an axisymetric nozzle. The detec-
tion of a leak or an obstruction is a critical safety task for the
bench operation. The water cooling circuit consists in differ-
ent pipes sections with multiple pressure release valves and
a tank at the inlet. The available measurements are pressure,
mass flow and temperature. Sections are separated by sliding
valves with additional pressure measurements.

Figure 1. Mascotte test bench - (ONERA - CNES)

The circuit can be modeled by a succession of cavities defined
in pressure and temperature linked by orifices where friction
forces and heat flux exchanges are taken into account, see
(Iannetti et al., 2014). A pressure regulator (actuator) permits
to regulate the input cavities pressures of the water cooling
circuit.
The performances of the algorithms are evaluated by two
means. The first one is based on off-line tests realized with
real measurements of the project Conforth (CNES/ONERA).
During those trials, pressures (cavities 1 and 2), temperatures
(cavities 1, 2 and wall) and output mass flow rate have been
recorded. The second one is based on a simulation software,
Carins (CNES). The simulator an identical bench permits to
simulate failures for the evaluation of performances with var-
ious faults.

2.1. Model of the cooling circuit

In this section we denote ṁ the mass flow rate (kg/s), ρ the
density (kg/m3), S the surface (m), c the velocity of sound
(m/s), u the fluid velocity (m/s), P the pressure (Pa), D the
orifice diameter (m), Dh the hydraulic diameter (m), L the
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length (m), µ the dynamic viscosity (Pa.s) and V the volume
(m3), dt the time step (s).

The tests have been performed for a particular configuration
with a two-dimensional nozzle and a visualization window
located at the nozzle throat. The nozzle cooling part of Mas-
cotte cooling circuit is modeled by a succession of cavities
and orifices in parallel (Figure 2):
- The total pressure after the sphere is of 39 bars (element 100
on the synoptic),
- The part before the visualization window composed of 3
lines with a mass flow rate of 2.5 L/s (94),
- The part cooling the walls before the visualization window
with a mass flow rate of 0.5 L/s (96,97,57,58),
- The part cooling the bottom before the visualization window
with a mass flow rate of 1.5 L/s (98,59),
- The part after the visualization window composed of 4 lines
with a mass flow rate of 0.75L/s each (102).
- The part cooling the walls after the visualization window
with a mass flow rate of 0.2 L/s (109,110,79,80),
- The part cooling the bottom after the visualization window
with a mass flow rate of 0.2 L/s (111,90),
- The line cooling the helium throat with a mass flow rate
of 0.15 L/s. An obstruction has been simulated on the part

Figure 2. Mascotte cooling circuit - Carins

before the visualization window of the cooling circuit. The
faults have been simulated for each case on one or two differ-
ent lines (96, 97 or 98).
For our model, we consider 3 input cavities (20, 53, 54), giv-
ing input pressures, linked by orifices (57,58,59), giving the
mass flow rates, to 3 output cavities (64,65,66), giving the
output pressures. The flow is assumed to stay monophasic, is
ideal (no force due to viscosity acts) and incompressible fol-
lowing Euler equations. The cavity section is assumed con-
stant and the velocity of sound is defined as for an isentropic

reaction in the orifice. We assume that the fluid flow velocity
is small in comparison to the velocity of sound.
The flow crossing cavities respects the mass balance equa-
tion, after integrating this equation along the cavity length,
we obtain:

∂P

∂t
=
c2

V
(ṁe − ṁs) (1)

with ṁe and ṁs respectively the input and output mass flow
rates. The flow crossing the orifice between the two cavities
respects the momentum balance equation with friction forces,
expressed with the Darcy-Weisbach and Blasius equations for
moderate turbulent flows in a smooth pipe (Nakayama, 1998).
After integrating this equation along the orifice length we ob-
tain:

1

S2

∂ṁ

∂t
+

∆P

V
= −λpdc

L

Dh

ṁ2

2ρV S2
(2)

with λpdc the friction coefficient. The model for each line of
this part of the cooling circuit is then:{

∂ṁe

∂t = θ1ṁ
7
4
e − θ2∆P

∂P
∂t = −θ3∆ṁ

(3)

with θ1 := −0.316
(

4
πDµ

)− 1
4 L
Dh

1
2ρV , θ2 := S2

V , θ3 := c2

V

For a circular pipe, the hydraulic diameter Dh is equal to the
diameter of the pipe.

The previous model (Iannetti et al., 2014) presented approx-
imations in the transient of the test bench inducing the pres-
ence of a pressure difference square root, moreover, the mass
flow rate dynamics was not modeled. The model presented
here permits to determine the pressure but also the mass flow
rate and it is now possible to model their evolution during
the motor speed transients. The model has been studied and
validated in (Sarotte et al., 2018).

For improving readability, the synoptic is simplified as in Fig-
ure 3 with the input cavities (1,2 and 3) and the output cavities
(4,5 and 6) linked by orifices.

Figure 3. Mascotte cooling circuit - Conforth configuration -
Carins
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3. FAULT DETECTION AND ISOLATION

3.1. Unknown Input Observer design

The first step is to design an observer to estimate the state
in the presence of unknown inputs. The system (3), can be
rewritten as a linear time-varying system with an unknown
input by linearizing around a steady-state equilibrium trajec-
tory corresponding to the mass flow trajectory to estimate the
engine speed transients. Then, the system can be transformed
into an equivalent discrete-time state space system with an
Euler explicit scheme:{

Xk+1 = Ak(X̄)Xk +BUk + EDk

Yk+1 = CXk+1
(4)

whereXk is the state vector, Yk is the measured output vector,
Uk is the known measured input vector, Dk is the unknown
input vector and X̄ is the equilibrium trajectory.

Xk :=


ṁ4,e,k

P4,k

ṁ5,e,k

P5,k

ṁ6,e,k

P6,k

, Y := [P4,k P5,k P6,k]T ,

U := [P1,k P2,k P3,k]T , D := [ṁ4,s,k ṁ5,s,k ṁ6,s,k]T

Where ṁ4,5,6,e are input mass flow rates, P4,5,6 are the pres-
sure of output cavities, P1,2,3 are the pressure of input cavities
and ṁ4,5,6,s are output mass flow rates.

With Ak the state matrix, B the known input distribution ma-
trix, E the unknown input distribution matrix et C the output
distribution matrix.

Ak :=

 A1,k 02,2 02,2

02,2 A2,k 02,2

02,2 02,2 A3,k

,B :=

 B1 01,2 01,2

01,2 B2 01,2

01,2 01,2 B3


E :=

 E1 01,2 01,2

01,2 E2 01,2

01,2 01,2 E3

,C :=

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



Ai,k :=

[
1 + dt

7θi,1 ¯̇mj,e,k

3
4

4 −dtθi,2
dtθi,3 1

]
Bi :=

[
dtθi,2 0

]T
Ei :=

[
0 −dtθi,3

]T
With

θi,1 := −0.316(
4

πDiµ
)−

1
4
Li
Di

1

2ρVi
, θi,2 :=

S2
i

Vi
, θi,3 :=

c2

Vi

and i = 1, ..., 3, j = 4, ..., 6, ¯̇mj,e,k the input mass flow rate
equilibrium trajectory.

The overall system and detection method is equivalent to
three independent observers, one for each line.

The first objective is to design an observer depending only on
known input and output measurements. We propose to use an
EUIO with the following structure (Witczak, 2007):{

Zk+1 = Nk+1Zk +Kk+1Yk +GUk
X̂k+1 = Zk+1 +HYk+1

(5)

The above matrices are designed in such a way as to ensure
unknown input decoupling as well as the minimization of the
state estimate error.

ek = X̂k −Xk = Zk −Xk +HYk (6)

To reduce its expression to a homogeneous equation we im-
pose:

G = TB (7)
TAk −Nk+1T −Kk+1C = 0 (8)

TE = 0 (9)

With T = In −HC and n the dimension of the state.
A necessary condition for the existence of a solution is
rank(CE) = rank(E). A particular solution is then:

H = E((CE)T (CE))−1(CE)T (10)

The matrix Nk+1 should be Hurwitz to make the observer
converge asymptotically.
This is the case if we choose:

Nk+1 = TAk −Kk+1C (11)

The gain matrix Kk+1 is chosen to minimize the variance of
the state estimation error. For a linear estimator under gaus-
sian hypotheses, this translates into:

Kk+1 = TAk+1PkC
T (CPkC

T −Rk)−1 (12)

The covariance matrix is then given by:

Pk+1 = TAk+1PkTA
T
k+1 −Kk+1CPkTA

T
k+1

+ HRk+1H
T + TQkT

T (13)

The state estimation error (6) is taken as a residual.

3.2. FDI with an adaptive CUSUM and EWMA-C shift
estimator

The FDI mechanism is supposed to detect any relevant fail-
ure that could lead to engine performance degradations. This
shall be done sufficiently early to set up timely safe recovery.
One way to proceed to detect faults is to evaluate the residual
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Table 1. Parameters for fault detection

Parameters Values
δ+,min 4e-2
δ−,min -4e-2
λ 1.1055

Threshold coefficient 4.5e4

corresponding to our state estimator error. The objective is
then to be able to detect a residual mean shift for a nominal
behavior, see (Basseville et al., 1993).

The two hypotheses considered are then:

H0: The mean value of the residual is nominal µ = µ0

H1: The mean value of the residual has a shift µ = µ1

In most common practical cases µ1 is unknown. This can be
overcome by using Adaptive CUSUM (ACUSUM) algorithm
which estimates this value as in (Jiang et al., 2008).
As mean shift amplitudes can vary drastically for a class of
failure, the estimator designed for δ is a generalization of the
Exponentially Weighted Moving Average (EWMA) which
presents enhanced efficiency for estimation of large mean
shifts under the form:

δ̂k = δ̂k−1 + Φγ(ep,k) (14)

With ep,k = rk − δ̂k−1 the prediction error, Φγ is defined as
a Huber score function.

Φγ :=

 ep + (1− λ)γ , ep < −γ
λep , |ep| ≤ γ

ep − (1− λ)γ , ep > γ

With γ ≥ 0, usually fixed constant.

This leads to the following ACUSUM Statistic:

sk =
±
∣∣∣δ̂±∣∣∣
σ2

(rk − µ0 ±

∣∣∣δ̂±∣∣∣
2

) (15)

where for a mean shift increase or decrease:

δ̂+ := max (δ+,min, δ̂k), δ̂− := min (δ−,min, δ̂k)

δ+,min and δ−,min are here the minimum mean shifts ampli-
tudes to detect (Table 1).
The threshold λ is chosen to be a security coefficient times
δ̂+.

γ is defined here at each step by γ :=| rk − δ̂k−1 | /2. With
this choice of γ, the algorithm is more efficient for the de-
tection of small shifts. This generalization is referred to as
an EWMA-C statistic. To select the coefficients values and
test the algorithm performance, three faults have been simu-
lated with Carins for different profiles of the cooling circuit
inflow valves closures and openings. The objective of this

fault detection system is to be able to detect abrupt changes
and to differentiate state perturbations from speed transients
(first peak in the residuals - see Figures 4,5 and 6) character-
ized by slower variations than those of a failure.

The first fault simulated is an abrupt obstruction with a large
mean shift on the line 1, the second is the same on the line
2 and the third one on the line 3. It is sufficient to simulate
faults in this part of the circuit since the method used will
remain the same in the other part with 4 lines (see Figure 2).
The total time of the simulation is 1090 seconds with a time
step of 1 millisecond. The cadence of the estimation and the
detection is 1 time step per 3 milliseconds (Table 2).

Table 2. Simulated faults

Fault tbegin(ms) tend(ms)
Fault 1 651 1092
Fault 2 651 1092
Fault 3 678 1099

Figure 4. Pressure residual

Figure 5. Pressure residual

The EUIO from the previous subsection permits to estimate
outputs and generate the residual as the state estimator error
defined by rk := Yk − CX̂k (Figures 4,5,6). After eliminat-
ing the effect of process input signals, filtering the effect of
disturbances and model uncertainties on the residual, a resid-
ual evaluator has been designed by choosing an evaluation
function and determining the threshold.

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Figure 6. Pressure residual

4. FAULT ISOLATION METHOD

We consider in this part an additive actuator failure on the
system. Once the fault has been detected by an on-line and
real-time first fault detection mechanism the goal is to isolate
the fault by a parity check.

To perform a parity check, we define the faulty system as:{
Xk+1 = AkXk +BUk + EDk + Ffk

Yk+1 = CXk+1
(16)

The fault distribution matrix could be different from the un-
known input distribution matrix. In this case, the projection
matrix for the parity test will remain of the same form but its
coefficients will change. In the studied system (the cooling
circuit) and for the type of simulated fault (an obstruction),
those matrices are the same.
The previous balance equations can be augmented in order
to define parity relations. After a linear dynamic transforma-
tion, these relations can be used for disturbance decoupling
and isolation. Modeling the dynamics of our system dur-
ing the transient phase requires to integrate time delays in the
model. The fault dynamics for the next time step is not only
determined by the current state but also by its former values.
Considering these equations from time instant k − L to time
instant k is a solution to overcome this problem and to en-
sure a temporal redundancy (over this window we assume the
matrix Ak to be constant in time):

YL,k = ALXk−L +BLUL + EL(DL + fL) (17)

Assuming AL :=


C
CA
. . .
CAL

 ,

BL :=


0 0 . . . 0 0
CB 0 . . . 0 0
. . . . . . . . . . . . . . .

CAL−1B CAL−2B . . . CB 0


and

EL :=


0 0 . . . 0 0
CE 0 . . . 0 0
. . . . . . . . . . . . . . .

CAL−1E CAL−2E . . . CE 0

.

The aim is to design a residual signal which is near zero
in fault free case and non zero when a fault occurs in the
monitored system. Then, for the parity check we search HL

in such that:

HL(YL −BLUL − ELDL) = HLALXk−L +HLELfL
(18)

HL(YL −BLUL − ELDL) = HLELfL (19)

With HL the projection matrix. The projection matrix for the
parity check can then be chosen by augmenting our previous
system of equations with the following relations (20), (21),
(22), (23). The parallel lines have to respect the mass flow
rate continuity and the energy conservation. An obstruction
in a line induces an increase of the mass flow rate in the other
lines and a pressure drop in a line induces a pressure increase
in the other lines.
The mass flow rate continuity gives:

ṁ0,k = ṁ1,k + ṁ2,k + ṁ3,k (20)

We can then use Euler conservation equations for an incom-
pressible fluid.

Pi,k+1 − Pi,k = −dt
c2

Vi
(ṁi,k,e − ṁi,k,s) (21)

ṁj,k+1,e − ṁj,k,e = −dtS
2
i (Pj,k − Pi,k)

Vi

+
kpdtṁ

2
j,k,e

2ρVi
(22)

Pj,k+1 − Pj,k = −dt
c2

Vi
(ṁj,k,s − ṁj,k,e) (23)

for i = 1, ..., 3, j = 4, ..., 6.

This yields

ṁ0,k = ṁ4,k,e +
V1(P1,k+1 − P1,k)

dtc2
+ ṁ5,k,e

+
V2(P2,k+1 − P2,k)

dtc2
+ ṁ6,k,e

+
V3(P3,k+1 − P3,k)

dtc2
(24)

For an established flow, with the residuals generated we can
consider that the transients end at the 150th iteration. The
detection algorithm is then activated after the transient to not
consider them as failures in a first time.

Assuming that a failure impacts proportionally the mass flow
rate: ṁj,k,e := (fr,i,k + 1)ṁj,k,e,nominal or again:

6
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ṁj,k,e := (fr,i,k + 1)
√

2S2(∆Pnominal)
kp

− 2ρV (∆ṁe,nominal)
kpdt

.

We can write the expression of faults in each line fr,i,k for the
case of a single fault and 2 simultaneous faults (full expres-
sions are given in Appendix 1). With the help of those ex-
pressions we can then find the projection matrices. We have:

Yk+1 − CBUk − CEDk = CEfk + CAkXk (25)

Since CB = 0, we have:

Yk+1 − CBUk − CEDk = Yk+1 − CEDk (26)

CEDk =

 −
c2dt
V1
ṁ4,k,s

− c
2dt
V2
ṁ5,k,s

− c
2dt
V3
ṁ6,k,s

 (27)

and

ṁj,k,s = ṁj,k,e −
Vi(Pj,k+1 − Pj,k)

c2dt
(28)

for i = 1, ..., 3, j = 4, ..., 6. Then:

Yk+1 − CEDk =

c2dt
V1

(ṁ0,k − ṁ6,k,e − ṁ5,k,e)− (P1,k+1 − P1,k)

−V2(P2,k+1−P2,k)
V1

− V3(P3,k+1−P3,k)
V1

+ P4,k

c2dt
V2

(ṁ0,k − ṁ4,k,e − ṁ6,k,e)− V1(P1,k+1−P1,k)
V2

−(P2,k+1 − P2,k)− V3(P3,k+1−P3,k)
V2

+ P5,k

c2dt
V3

(ṁ0,k − ṁ5,k,e − ṁ4,k,e)− V1(P1,k+1−P1,k)
V3

−V2(P2,k+1−P2,k)
V3

− (P3,k+1 − P3,k) + P6,k


(29)

With:

ṁj,k,e =√
2S2

i ρ(Pj,k − Pi,k)

kp
− 2ρVi(ṁj,k+1,e − ṁj,k,e)

kpdt
(30)

for i = 1, ..., 3, j = 4, ..., 6. The projection matrix H has to
verify:

HCAkXk = 0 (31)

Using (24), H appears to be equal to:

H :=

 h1 h2 h3

h1 h2 h3

h1 h2 h3


With: hi :=

ωi,k

3
dtc

2

Vi
ṁj,k,e+3Pj,k

, i = 1...3, j = 4...6 and

ωi,k := ṁ0,k − 3(ṁj,k,e − V1(Pi,k+1−Pi,k)
dtc2

)

Since:

Pj,k = Pj,k+1 +
dtc

2

Vi
(ṁj,k,s − ṁj,k,e) (32)

Pj,k = Yi,k+1 − (CEDk)i −
dtc

2

Vi
ṁj,k,e (33)

for i = 1, ..., 3, j = 4, ..., 6.
Then:

HL :=


H 0 ... 0
0 H ... 0
... ... ... ...
0 0 ... H


L

The estimate of faults fL is then obtained from (see Figure 7
for results on the example):

fL = (HLEL)
−1
HL(YL − ELDL) (34)

To isolate the fault we can compare the variation of faults.

Figure 7. Case 1 reconstructed faults

-If the variation is of the same sign for two pipes and the resid-
ual of the third pipe is under the threshold fixed by the sum
of the other pipes fault variations, the fault occurs in the first
2 pipes: an obstruction in two lines implies their mass flow
rate decrease so that the mass flow rate continuity allow us to
conclude that the mass flow rate increases in the last line. To
differentiate the one fault case to the two faults case we can
set a threshold based on the sum of the faults variations in the
faulty lines (see equations (38) and (39)).
-If the variation is negative for two pipes then the fault occurs
in the other pipe (one fault case): an obstruction implies a
mass flow rate decrease in the impacted line so that the mass
flow rate continuity for the overall system allow us to con-
clude that the mass flow rate increases in the other lines.
-While the sign of variations remain the same, faults are per-
sisting.

This analysis is resumed in Tables 3 and 4. The signatures are
given in Tables 6 and 7. The terms −max,+max,−min,+min

indicates if a fault in a line is of greater amplitude than the
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fault in the other line.The arrows indicates if the mean values
of the residuals increase or decrease.

Table 3. Residuals variations - 1 failure cases

Failure Case 1 Case 2 Case 3
r1 +/- ↓/↑ ↓/↑
r2 ↓/↑ +/- ↓/↑
r3 ↓/↑ ↓/↑ +/-

Table 4. Residuals variations - 2 failures cases

Residuals Case 4
r1 + − −max +max +min −min
r2 + − +min −max −max +min

r3 ↓ ↑ / ↓ ↑ /

Residuals Case 5
r1 + − −max +max +min −min
r2 ↓ ↑ / ↓ ↑ /
r3 + − +min −max −max +min

Residuals Case 6
r1 ↓ ↑ / ↓ ↑ /
r2 + − −max +max +min −min
r3 + − +min −max −max +min

To evaluate the effectiveness of the designed algorithm, the
good detection and false detection rates (GDR, FDR) have
been calculated. For simultaneous faults we consider to be a
good detection the simultaneous detection and localization of
the faults in the two impacted lines, if at least one detection
is false then we consider it to be a false detection.

-Case 1 : fault in line 1.
-Case 2 : fault in line 2.
-Case 3 : fault in line 3.
-Case 4 : fault in lines 1 and 2.
-Case 5 : fault in lines 1 and 3.
-Case 6 : fault in lines 2 and 3.

Those rates, which are satisfying, (Table 5) have been calcu-
lated from ten runs for each simulation and the settings have
been chosen to optimize the good detection rate and minimize
the false detection rate of abrupt mean shifts.

Table 5. Detection rates

Fault GDR FDR
Fault 1 96.06% 0.00%
Fault 2 91.07% 4.51%
Fault 3 90.40% 4.51%
Fault 4 80.29% 4.51%
Fault 5 93.06% 3.75%
Fault 6 90.21% 3.75%

Table 6. Isolability table - 1 failure cases

Failure Case 1 Case 2 Case 3
f1 1 0 0
f2 0 1 0
f3 0 0 1

Table 7. Isolability table - 2 failures cases

Failure Case 4 Case 5 Case 6
f1 1 0 0
f2 0 1 0
f3 0 0 1

5. CONCLUSION

In this paper a new model was proposed for the evolution
of pressure and mass flow rates in the cooling circuit of a
cryogenic test bench. This model has been validated on real
data of the ONERA/CNES Mascotte test bench. Faults in the
actuators are detected by the FDI method based on a fault
estimator and an EUIO. This FDI method consists in a first
detection with observer-based residual generation. Residuals
are analyzed with the means of an ACUSUM. Then a parity-
space based method has been proposed to isolate faults, using
a projection matrix defined by dynamics fluid mechanic rela-
tions for the overall system.
Those methods have been tested with good results on simu-
lations of the bench for different cases of failures, including
simultaneous ones. This method permits to differentiate tran-
sients from failures and to detect failures during those tran-
sients if needed. Future work will address the design of a
method to improve the performances during transients by fix-
ing predetermined nominal trajectories.
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APPENDIX

In the case of an obstruction in the line 1:

fr,1,k = (
ṁ0,k√
ρ
− c2

V2
√
ρ

(P2,k+1 − P2,k)

−

√
2V2

kpdt
(dt

S2
2

V2
∆P5,2,k + (ṁ5,k+1,e − ṁ5,k,e))

−

√
2V3

kpdt
(dt

S2
3

V3
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− c2

V1
√
ρ
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− c2

V3
√
ρ
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1√
2S2
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+
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kpdt

− 1 (35)

fr,2,k = (
ṁ0,k√
ρ
− c2

V2
√
ρ

(P2,k+1 − P2,k)− (fr,1 + 1)√
2S2
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kpdt

−

√
2V3

kpdt
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3
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√
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√
ρ
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2S2

2∆P5,2,n,k

kp
+
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fr,3,k = (
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kpdt

− 1 (37)
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In the case of 2 failures, for example in lines 1 and 2:

(fr,1,k + 1)√
2S2

1∆P4,1,n,k

kp
+

2V1(ṁ4,k+1,e,n − ṁ4,k,e,n)
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