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ABSTRACT

This paper studies the acoustic signals of left ventricular as-
sist devices (LVADs) as it relates to machine health. Cur-
rent LVAD condition monitoring requires examination from
trained medical professionals, and is both inefficient and
roughly-prognostic. To better quantify a patient's condition,
the diagnostic method must be robust, non-invasive, and sim-
ple to apply. The concept behind this work is to determine an
identifying pattern between the specific acoustics produced
by an LVAD with the related overall health of the patient.
Due to the cycle-to-cycle variance of heart sounds, the contin-
uous wavelet transform (CWT) is applied to the objective au-
dio signal so that a high resolution spectra is obtained. From
this, region specific image features are developed and subse-
quently used in a support vector machine (SVM) algorithm to
classify between health conditions. The preliminary goal is to
develop an accurate and non-invasive diagnostic method for
determining patient health that can be applied for any LVAD
variant. This process is validated through in vitro testing us-
ing a DC motor as an LVAD proxy.

1. INTRODUCTION

Implant graft stenosis (narrowing) and localized thrombosis
(clotting), among other failure modes, have limited the long
term viability of left ventricular assistive devices (LVADs),
as alternatives to orthotopic surgery. LVADs are motors im-
planted from the left ventricle to aorta that assist in blood
circulation of patients who suffer from heart disease and re-
lated illnesses. With current one year survival rates already
nearing that of surgery (Slaughter et al., 2007) there is strong
potential for LVADs to replace surgery as the long term al-
ternative, however doing so requires mitigation of the related
failure modes and issues of the devices.
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Current diagnostics and prognostics of ventricular assistive
devices is difficult given the range of devices, patients, condi-
tion severities, and technological limitations. Currently, the
most practical diagnosis requires a combination of several
indicators and tests administered by trained medical profes-
sionals. It has been well established and proven that tho-
racic sounds are definitive indicators of abnormal health con-
dition (Slaughter et al., 2007). Extrapolating upon this find-
ing, several other authors have shown that this holds true
for LVAD/artificial heart patients as well (Masson & Rieu,
1998) (Granegger et al., 2006). Furthermore, there have
been several successful attempts at using artificial intelli-
gence (Makino et al., 2005) (Kim et al., 1995) and classifiers
(Loghmanpour et al., 2015) to automatical identify related ab-
normalities/conditions.

A commonality among those that use machine learning rou-
tines is that the routine features are frequency spectrum (Yost,
Royston, Bhat, & Tatooles, 2016) (Kim et al., 1995) or differ-
entially (Wang & Simaan, 2013) determined. More advanced
techniques have been applied to thoracic sounds (Nogata et
al., 2012) (Tang, Li, Park, & Qiu, 2010) however not when
assistive devices are considered. This paper will examine the
viability of using time-frequency spectra image recognition
of LVAD acoustics to discern condition for the intent of issue
mitigation.

2. BIOLOGICAL SYSTEM

Accurately modeling the physicalities and characteristics of
the thoracic environment, in an in vitro setup, is required
for proper LVAD analysis. While simulating the local tho-
racic acoustics (cardiac, pulmonary, etc.) is impractical, we
are able to achieve the physiological LVAD boundary condi-
tions of left ventricular pressure, aortic pressure, and pulsatile
flow/phase. This is done using the system shown in Figure 1.

The system detailed is a single side heart phantom, specifi-
cally the left side, as that is the side of LVAD grafting. We
generate pulsatile flow within the system from a compressible
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Figure 1. Circulatory physiology simulator.

actuating polymer that mimics the left ventricle. From this
component we also have control over the ventricular pressure
of the system which is actuated through air compression. The
specific timing of the pulse is triggered via an external func-
tion generation. Unidirectional flow of the system is maintain
through biological heart valve phantoms. Both the mitral and
aortic valves (left chamber valves) are mimicked using pas-
sive bileaflet valves. They provide low resistance through-
flow, and minimal phase delay when closing. Just as with the
left chamber, when in systole (cardiac contraction) the aortic
bileaflet valve opens while the mitral bileaflet closes allowing
the ventricle surface to ”push” its retained fluid to the aorta.
When in diastole (cardiac relaxation), the contrary occurs, al-
lowing the ventricle to ”pull” fluid in, to then be released in
subsequent systole (cardiac compression).

The final motor boundary condition, aortic pressure, is
achieved through a series of retaining chambers. Flow be-
tween these chambers is controlled manually via a clamp (re-
sistance component) for the purpose of tuning the system to
the desired boundary conditions, and reducing bileaflet valve
delay. Whereas the pulsatile flow and ventricular pressure
conditions are controllable parameters, the aortic pressure
and specific magnitude of the flow are reliant on the cham-
ber to chamber resistance. In this way, the chamber-clamp-
chamber series acts as a capacitive-resistive-capacitive cir-
cuit, where the retained chamber fluid is indicative of system
capacitance. The first chamber (immediately after the aortic
valve, and before the clamp) is the aortic component, while
the latter (after the clamp, before the mitral valve) is the atrial
component. The atrial chamber is vented to ambient, and so
maintaining low atrial pressures is elementary, aside from the
fact that atrial pressure is not a direct boundary condition of
the potential assistive device. The aortic chamber however
does not vent for the purpose of mimicking biological com-
pliance.

C = ∆V/∆P (1)

Compliance, C, is the quantitative measurement of the elastic-
ity of biological arteries and veins. Depending on the stage of
the cardiac cycle, arteries and veins dilate and contract in re-
sponse to pressure and flow changes. Compliance itself is an
influencing factor in patients with hyper/hypotension which
merits incorporation into this work. Compliance is the quo-
tient of Volume, V, and Pressure, P, meaning that compliance
linearly scales with compressibility. Using this relationship,
we are able to implement a compliance factor through an
air pocket in the aortic chamber. When in systole, the fluid
pushes against the pocket, compressing it, mimicking circu-
latory dilation. Similarly, while in diastole the pressurized
pocket then expands, mimicking circulatory contraction. The
magnitude to which this occurs is too a direct result of the
resistance of the retaining chamber series, thus while not an
additional independent control surface it is sufficient.

Performance of the system can be quantified solely in terms
of the aortic pressure, assuming flow is correctly correlated.
Peak ventricular pressure strongly matches systolic pressure
(in non LVAD patients), while the diastolic pressure is regu-
lated via the retaining chamber series elements. These trends
are most applicable under no fault scenario as the load on the
assistive device is minimal, however the system’s behavior
becomes increasingly more nonlinear as the device load in-
creases. We approximately judge the fidelity of the system
through comparison to the idealized response of the Wiggers
diagram (model of physiological left chamber blood pres-
sures). The system can be tuned to accurately mimic healthy
cardiac operation (Figure 2), and so by then alternatively tun-
ing the system we can then simulate both abnormal condi-
tions (hypotension and hypertension) requiring assistive de-
vice implementation and healthy variation. Similarly, while
the assistive device is functional in the system loop the per-
formance can then be appropriately tuned to mimic the actual
physiological state that the device produces.

2.1. Assistive Device

For preliminary testing an Anself 12VCD brushless pump
was used in lieu of an LVAD (Noted that a HeartMate 2 is
procured for follow up trials) for several reasons, most no-
tably potential motor health effects. In order to classify be-
tween various health conditions the motor/graft is faulted sev-
eral ways. It was not known if this would harm the LVAD
or to what degree, and so we used a cheaper product as a
replacement. Both function in essentially the same manner
(neglecting control scheme) and so we can directly extrap-
olate our findings from one device to the other. It is also
more practical in these initial trials to have control of device
performance, as the motor is manually controlled via VDC
power source. Select assistive devices such as the Heart-
Mate 3 produce non-constant flow rates due to intentional
pulsating, which in and of itself is a failure mitigation pro-
tocol. Aside from the fact that an LVAD’s control module
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may innately interfere with the fidelity of the fault testing any
variations in pump performance will manifest in the related
frequency spectrum. While normally not a significant issue,
physiological heart sounds are non-stationary. ”Smearing” of
the individual spectra components would increase cross-term
components, proving analysis much more difficult. Similarly,
by having complete control over the pump allows for testing
over a more consistent and comprehensive range. For this
testing the motor is driven with a 6VDC signal, at 7800 revo-
lutions per minute.

In previous work (Yost et al., 2016) a silicone based molding,
EcoFlex 00-10, is used to facilitate thoracic acoustic trans-
mission between an assistive device and a stethoscope di-
aphragm. The same material is used for this work, however
with the purpose of vibration dampening rather than transmis-
sion. The motor is set in a 5.5x4x3.25” block of the molding,
reducing the motor’s vibrational output to the base of the sim-
ulator. The silicone molding was not de-aired for this testing.

2.2. Seeded-Fault Conditions

In this initial work only one fault condition is considered,
outlet graft occlusion. An occlusion blockage is positioned
downstream of the pump, prior to the aorta. This fault is
characterized by a 75% decrease in the graft cross sectional
area. The physical blockage is contained within a removable
component of the faulting piece, see Figure 3. This allows
for interchangeable faults into the system. When operating
nominally (no occlusion) we implement a 0% occlusion com-
ponent. Future trials will consider another severity of fault
(50% blockage) along with upstream (inlet graft) blockages.
Assuming the signal indicators of the fault manifest more

Figure 2. Physiological simulator health pressure curves
mimicked to the Wiggers model of ideal biological left cham-
ber pressures.

Figure 3. Blockage fault component with stethoscope posi-
tioned on the listening surface.

prominently with increasing fault severity, the 75% occlusion
is used to potentially elicit the most apparent results.

The blockage component is machined to have several flat in-
strumentation surfaces. For this work the only surface utilized
was the top-most so that no direct holding pressure is neces-
sary (Figure 3). The occlusion element used is indicative of a
generalized instance of outlet blockage (increased resistance,
geometrical alteration, etc.) however in a patient this block-
age would be more localized to the LVAD outlet stator.

2.3. Data Acquisition

In recent years a wide range of digital stethoscopes have
become available for listening to heart sounds. Both com-
mercial stethoscopes (Yost et al., 2016) and custom devices
(Song, Jia, Lu, & Tao, 2012) have been used for similar pur-
poses. For this work, a ThinkLabs Digital One is used (Fig-
ure 3). The Digital One utilizes a capacitive sensor instead of
a piezoelectric sensor to record heart sounds. For the test it-
erations the stethoscope is sampled at 10 kHz and is operated
in single channel wideband (20Hz to 2000Hz) streaming to
an National Instruments USB-6212 module. The stethoscope
diagram is placed atop a 1.3cm thick square of EcoFlex at the
top-most surface of the fault component to mimic thoracic
acoustic transmission. In order to sync periodic cycles, the
trigger signal of ventricular compression and decompression
is also recorded by the data acquistion module. This signal
is indicative of an EKG signal, which is assumedly readily
available in a medical environment, and offers the highest fi-
delity cycle syncing potential. For all iterations a trigger fre-
quency of .85 hz (50 beats per minute) is used to regulated
phase.

Two TDH40 pressure transducers are used to monitor ven-
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tricular and aortic pressures. Monitoring these parameters
enables control of the assistive device boundary conditions,
which allows us to meet various biological conditions. Flow,
while only monitored for verification, is attained using a
Transonic flow meter. These three parameters are used solely
for monitoring and recording the simulator states, i.e. they
are not directly used in a processing algorithm.

3. ACOUSTIC SIGNAL PROCESSING

Biological heart sounds are non-stationary signals that can
vary in both characteristics (murmurs) and frequency (rate).
The trigger frequency of the simulator can be globally fixed.
Because of system compliance the pressure boundary con-
ditions are not guaranteed to be globally consistent, and so
the system does carry innate variation. Similarly, as one
would expect, the sound and flow produced by the motor
varies across cycles. As such the simulator audio can be post-
processed in the same manner as physiological signals.

Using the stethoscope, a ten second audio sample is collected.
Using an auto-peak recognition algorithm on the trigger sig-
nal the individual cycles of the file are parsed, creating the
ensemble set. The individual cycles are then aligned and
subsequently averaged. Averaging the ensemble reduces the
variation of the individual cycles, while preserving significant
components. As is present in the shown ensemble of Figure 4,
three distinguishable components are preserved, while signif-
icantly decreasing the adjacent variation. Maintaining these
peaks, indicators of both systolic diastolic phase, are crucial
for further identifying potentially significant intervals of de-
vice operation.

x(t)ensemble = mean{x(t)i} (2)

Due to the utilization of the trigger signal the cycle set, x(t)i,
is always consistently synced. As asserted before the simula-
tor does not show the same physiological variation as a bio-
logical circulatory system and so given a fixed trigger signal
frequency, the resulting cycles will be of the same period, or
near same due to decimation. If this were not the case then the
data can be linearly/nonlinearly scaled to an assumed period.

3.1. Time-Frequency Analysis

Biological heart sounds are non-stationary, or are character-
ized by non-noise cycle-to-cycle variations. The specific tim-
ing of frequency varying events then becomes more important
to identify. For example the physical opening and closing of
heart valves are directly responsible for generating specific
low and high frequency spectrum content (Wood & Barry,
1995). Thus if we know at which timed frequency bands to
look, we can then identify physiological events and/or condi-
tions.

Figure 4. Ensembled average of unfaulted audio cycles
(bold). Ensemble is indicated by the background cycles.

We apply the Morlet basis continuous wavelet transform
(CWT) to the ensemble averaged acoustic signal to develop
the time-frequency spectra of the audio signal. The time scale
of the spectra is then normalized to a [0 1] space for a con-
sistent reference frame. Doing so in theory allows for valid
comparison between ensembles of various frequencies, how-
ever for this preliminary work such is not examined.

The faulted spectra shows to have both a greater intensity on
average (Figure 5) and a slightly different phase response as
compared to the unfaulted data. This however is only obvious
when comparing against the same intensity scaling which is
not practical for untested states/conditions. Instead the maxi-
mum and minimum values of the intensity matrix are used to
develop individual scalings, and we instead look for regions
where the ’shape’ of the spectra is the predominant indicator
of health. We term this subspace of the spectra the region of
interest (ROI).

The greatest signal intensity occurs about the three peaks pre-
served by the ensemble. When normalized this occurrence is
not apparent without the individual scalings and so we instead
look inbetween the peaks (S1-S2 cardiac beat). This corre-
lates to a frequency bound of [24, 28] hz and a normalized
time bound of [.4, .6]. Even when intensity normalized there
is a clear change in the spectra when faulted (Figure 6). The
motor frequency (128 hz) is more or less consistent in this
region, however the occlusion blockage increases the motor
load which manifests as various frequency components in the
ROI band.

From the ROI subspace we then convert each intensity matrix
to both a discrete 256 level grayscale image and a minimized
variance binary image (Figure 6). This enables us to develop
image specific features of each ROI. From the grayscale im-
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Figure 5. Consistent scaling unfaulted spectra (Top). Consis-
tent scaling 75% occulsion faulted spectra (Bottom)

age we develop a set of 13 texture features. Similarly, we de-
rive 18 shape features from the binary image. All 31 features
are scaled by their mean and deviation for a more consistent
classification basis, as is typical in classification algorithms.

4. CLASSIFICATION AND RESULTS

Classification between the faulted and unfaulted states is ac-
complished using a support vector machine (SVM), using the
31 image features as the classifier input. The SVM, while bi-
narily classifying between two condition classes, is trained
from a range of pressure states. These states are defined
by both the systolic (maximum aortic pressure) and dias-

tolic (minimum aortic pressure) ensemble pressures. This
is extremely beneficial for establishing comparable training
and testing regions, and for also evaluating the practicality
of those states/regions - specifically in terms of hypotension
(low blood pressure) and hypertension (high blood pressure).

Under the assumption that hypotension and hypertension are
in and of themselves potential indicators of health, the pri-
mary training and testing state region is the area between a
systolic pressure of 130-90 mmHg and a diastolic pressure of
80-60 mmHg. These boundaries are outlined by the dashed
lines of Figure 7. The training and testing states are limited to
this region in order to correlate to physiological healthy con-
ditions of LVAD operation within a patient, supporting the
fidelity of the acoustic signals produced.

Nevertheless several states mildly outside of this region were
used for increased variation, and validation purposes. A set
of 137 unique states are used in training the SVM, of which
69 were unfaulted. Of these states approximately 23% are in-
dicative of very mild hypotension or hypertension. The test-
ing states are compiled similarly, with 28% of the total 25
states indicating the same issues. Additionally, the majority
of both the training and testing states are localized along the
peak pressure (130/80 mmHg)to minimum pressure (90/60
mmHg) diagonal of the region.

Classifier performance is quantified in three metrics, overall
correct classifications, correct healthy classifications (posi-
tive predictive value - PPV) and correct faulted classifications
(negative predictive value - NPV).

The classifier generally performs more accurately on the
faulted states than on the unfaulted states (ignoring instances
when testing with the training space). Specifically in terms

Figure 6. ROI derived images. (a): Unfaulted ROI grayscle image. (b): Unfaulted ROI binary image. (c): Faulted ROI
grayscale image. (d): Faulted ROI binary image.
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Figure 7. Gaussian kernel SVM Results for no occlusion
states (top) and 75% occulsion states (bottom)

of the Gaussian kernel model (Figure 7), all faulted states are
correctly identified, even the outliers of the region. The un-
faulted states however have a much higher degree of misiden-
tification. The unfaulted region is much less dense than that
of the faulted states and so we theorize that this significantly
impacts the misidentifications of the unfaulted region. Out-
side of that area by large the validation states have few to no
adjacent training states, which confirms that expectation that
these states are the most susceptible to classification error.

Among the kernels trialed the polynomial (seventh order) ker-
nel performs best Table 1. This finding however only holds
for when using all 31 image features as classifier states. When
using either solely the grayscale texture features or the bi-
nary shape features the Gaussian kernel performs most con-
sistently.

Table 1. Classification success rates when using an indepen-
dent validation set (Training-Testing) or when using the train-
ing set as the validation set (Training-Training)

Classifier Score [%]
Classifier Test

Set
Linear
Kernel

Gaussian
Kernel

Polynomial Kernel
(7th order)

Testing 76.00 84.00 92.00
Testing (PPV) 58.33 66.67 84.61
Testing (NPV) 85.71 100.00 85.71
Training 80.29 92.70 100.00
Training (PPV) 81.16 95.65 100.00
Training (NPV) 79.41 89.71 100.00

5. CONCLUSION

Both the Gaussian and seventh order polynomial kernel
SVMs correctly identified the validation states at rates up-
wards of 80%. In the specific cases of misidentifications a
consistent trend among all models is that there is a believed
inverse relationship between the potential for misidentifica-
tion of a specific testing state and the density of that test
state’s adjacent training points. A comprehensive solution to
this would be to simply increase the quantity of training states
relative to test states.

Even when utilizing a small number of training states the
classifier does perform ”better” in terms of the identification
of faulted states as compared to unfaulted states. Medically
speaking, if this holds true even when trained with a more
comprehensive state set this is the less problematic scenario,
comparing against the opposite, to indicate a false health con-
cern when healthy, rather than to indicate health when that is
not true.

Additionally, with the feasibility of using the spectra ”shape”,
rather than intensity, being confirmed we can expect that this
method would directly apply to a range of other fault severi-
ties and potential other fault types. If we consider additional
fault types we may not necessary see the manifestations in the
elected ROI, however by augmenting with additional ROIs or
features we would expect to achieve similar results.
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