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ABSTRACT

Industrial System Health Monitoring relies usually on the
monitoring of well-designed features. This requires both,
the engineering of reliable features and a good methodology
for their analysis. If traditionally, features were engineered
based on the physics of the system, recent advances in ma-
chine learning demonstrated that features could be automatic-
ally learned and monitored. In particular, using Hierarchical
Extreme Learning Machines (HELM), based on random fea-
tures, very good results have already been achieved for health
monitoring with training on healthy data only.

Yet, although very useful and mathematically sound, random
features have little popularity as they contradict the intuition
and seem to rely on luck. This tends to increase the “black-
box” effect often associated with Machine Learning. To mit-
igate this, in this paper, we propose to modify the traditional
HELM architecture such that, while still relying on random
features, only the most useful features among a large popula-
tion will be selected.

Traditional HELM are made of stacked contractive auto-
encoders with `1- or `2-regularisation and of a classifier as
last layer. To achieve our objective, we propose to opt for
expanding auto-encoders instead, but trained with a strong
Group-LASSO regularization. This Group-LASSO regular-
isation fosters the selection of as few features as possible,
making the auto-encoder in reality (or in testing condition)
contractive. This deterministic selection provides useful fea-
tures for health monitoring, without the need of learning or
manually engineering them.

The proposed approach demonstrates a better performance
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for fault detection and isolation on case studies developed for
HELM evaluation.

1. INTRODUCTION

Context and Related Works: Recently, the number of in-
dustrial assets equipped with condition monitoring devices
has been rapidly increasing. Decreased costs for data trans-
mission and storage are increasingly enabling real-time ac-
cess to high resolution signals that have previously partly only
been used within system control of critical systems. Often,
refurbishments of complex systems are used as an opportun-
ity to install or upgrade condition monitoring systems and
make the information on system condition available in real
time for interventions and system health management. One of
the further developments triggered by the industrial internet
of things is that the information is not only collected centrally
but that the connected systems can exchange the information
of the operating conditions and system states in a decentral-
ized way, enabling thereby transfer of operating experience
and fault types.

Large amounts of condition monitoring sensors enable also
measuring secondary effects of faults, in cases where primary
effects are either not accessible or not measurable. This en-
ables detecting and predicting faults that have not been ob-
servable and detectable before.

Even though physics of failure approaches provide detailed
and well understood fault pattern evolution and prediction
(Pecht & Jie Gu, 2009; Tinga & Loendersloot, 2014), the
models are often only available for a limited number of sys-
tems and components. While data-driven prognostics and
health management (PHM) approaches have been exceed-
ingly growing in last years, particularly with the use of deep
learning approaches (Gugulothu et al., 2017; Ince, Kiran-
yaz, Eren, Askar & Gabbouj, 2016; Michau, Palmé & Fink,
2017; Sateesh Babu, Zhao & Li, 2016), new challenges are
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arising for PHM applications based on high-dimensional,
high-frequency condition monitoring data.

In this context, feature engineering which requires expert
knowledge (Vachtsevanos, Lewis, Roemer, Hess & Wu,
2006) can be very time consuming, especially in high dimen-
sional condition monitoring applications. Yet, it involves sys-
tems engineers in the PHM design process and enables a bet-
ter interpretability of the results. Therefore, it is still often
favoured for real applications. Contrary to the feature engin-
eering approach, feature learning approaches do not rely on
expert knowledge, they enable end-to-end learning and are
much faster to implement and to transfer to new applications
(Michau, Yang, Palmé & Fink, 2017).

Baseline: Recently, a deep learning approach for a combined
fault detection and isolation has been proposed (Michau,
Palmé & Fink, 2017), based on stacked autoencoders a one-
class classifier representing the system health, namely Hier-
archical Extreme Learning Machines (HELM). The proposed
approach is trained on healthy data only and demonstrates
a robust performance in detecting abnormal conditions and
isolating the sources of such abnormalities. It does neither re-
quire any prior knowledge on faults, nor labels for classes. As
such, it does not aim at classifying different unhealthy condi-
tions nor separate inputs, neither in the feature space, nor in
the output layer. The primary goal is to learn a representation
of “healthy” system conditions and to compare the newly ob-
served conditions to those known as being “healthy”. The
matter of making the method robust to more operating con-
ditions than those experienced by a single unit and enlarging
the representation of “healthy” system conditions, has been
discussed from a fleet perspective in (Michau, Palmé & Fink,
2018).

As the features in HELM are random (but the weights to these
features are not), it is difficult to link them to any physical
meaning and interpretation. Even though HELM is achieving
convincing results on fault detection, this randomness lowers
acceptance: Only within the fault isolation module could the
patterns for different fault types be analysed by the experts.

Contributions: In the present paper, we propose a new hier-
archical neural network that combines a fast and efficient
end-to-end learning process with a feature selection process.
The proposed approach extends the work discussed above
(Michau, Palmé & Fink, 2017; Michau, Yang et al., 2017).
By implementing feature selection among a large popula-
tion of randomly drawn features, one might hope to select
the most informative features. In this paper, we demonstrate
that this approach provides informative features for health
monitoring as the performance in fault isolation is increased
compared to pure HELM applications. This deterministic se-
lection of the best performing features, or selection of the
“fittest”, reduces the randomness, improves the performance

and aims at contributing to increasing the acceptance of data-
driven algorithms in PHM applications.

Similarly to HELM, the approach has a two-level hierarchical
structure. At the first level, a population of random features
is generated, based on the framework of Extreme Learning
Machines. Yet, only the best subset of features with respect
to the auto-encoding of the healthy input is selected. At the
second level, the learned features are used in a one-class clas-
sifier extreme learning machine in order to estimate if the data
is healthy (conform to training) or is experiencing deviations
from the healthy conditions observed so far.

The rest of the paper is organised as follows. First, in Sec-
tion 2, the historic motivations for hierarchical structures are
presented. Then, in Section 3, the new methodology, Feature
Selecting Hierarchical Neural Network (FSHNN) is detailed
while put in perspective with other similar approaches. Last,
in Section 4, FSHNN is applied to fault detection and isola-
tion, the results are compared to HELM and discussed.

Notation: In the following, we denote by ‖ · ‖ the element-
wise norm for matrices: e.g.,

‖X‖p = p

√∑
ij |Xij |p

‖X‖p,q =
q

√(∑
j

p
√∑

iX
p
ij

)q (1)

2. HIERARCHICAL DEEP NEURAL NETWORKS

In the development of neural networks, it is well-known that
deeper structures often lead to better results. In fact, the num-
ber of parameters to learn grows exponentially with the num-
ber of layers, giving the networks more and more degrees of
freedom to adapt to complex models. This “deepening” is at
the expense of computational efficiency, recently largely mit-
igated by the rise of computational power. Yet, one of the
limitations with achieving deeper structures is the difficulty
to train the network: The loss of the network, that is, its dis-
tance to the objective, is computed at the last layer and usually
fed backward in the network with back propagation. Back
propagation relies on the chain rule for derivatives, to com-
pute at each layer the gradient1, with respect to the weights at
that layer, based on the gradient computed at the next layer.
As a learning process, this happens to be quite often ineffi-
cient, as the impact of the “earliest” layers on the loss are mit-
igated by all the layers coming next. This makes the gradient
often vanish, sometimes explodes and necessitates high num-
bers of iterations to reach convergence of the learning pro-
cess. In addition, in multi-objective optimisation, it appears
that convergence is usually ensured for learning steps smal-
ler than a value based on the Lipschitz constant of the object-
ive function (Briceño-Arias, Combettes, Pesquet & Pustelnik,

1or its generalisation in case of non-differentiable functions as sub-gradient
or proximity operator
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Figure 1. Hierarchical Neural Networks. The architecture
consists in stacked single layered neural network where each
hidden layer is the input of the next layer. It mimics tradi-
tional deep architecture while allowing for sequencing and
independent training, one layer at a time.

2011). For deep structures, computing this constant would be
cumbersome, requiring the computation of the gradient, and
traditionally, an arbitrary very small learning step is chosen
instead. This sub-optimality in the choice of the learning
step increases even more the number of iterations needed to
achieve convergence.

A solution to such limitations is the sub-division of the net-
work in smaller structures, each trained with their own object-
ives. For, example, one can use a set of single layered feed
forward neural networks (SLFN) and order them hierarchic-
ally such that each network uses as inputs the hidden layer
of the previous one. These are the Hierarchical Neural Net-
works (HNN). Conceptually, the chain composed of the input,
the successive hidden layers and the output mimics perfectly
the traditional deep architecture for feed-forward neural net-
works.

In theory, the first networks in hierarchical structure can be
designed and trained with respect to any objective. Yet, the
idea in using HNN is to avoid the computation of the final
objective gradient at earliest layers of the network. Therefore,
it is natural to look for architectures where the first neural
networks would be trained in an unsupervised way while the
last one would be trained for the objective. In many works,
HNN are composed of a succession of auto-encoders and of
a last regression or classification layer. The concept of HNN
with auto-encoders is illustrated in Figure 1.

It has been demonstrated that, given enough neurons, it is
possible to approximate any function with a SLFN where the
weights between the input and the hidden layer are drawn ran-
domly and only the weights between the hidden layer and the
output are learned (G.-B. Huang, Chen, Siew et al., 2006).

Figure 2. HELM for Fault Detection and Isolation. It con-
sists of a first layer for feature learning and of a second layer,
using the features for health monitoring. Features are used
for identification once abnormalities have been detected.

This is a computationally much simpler hence faster optim-
isation problem to solve, which explain the strong interest
such networks raised. This kind of SLFN are called Extreme
Learning Machines (ELM). Combining both ideas of HNN
and ELM leads to the architecture commonly known as Hier-
archical Extreme Learning Machines (HELM) (Tang, Deng
& Huang, 2016).

Hierarchical Extreme Learning Machines have been applied
in many fields (G. Huang, Huang, Song & You, 2015; G.-B.
Huang, Wu & Wunsch, 2018; Man & Huang, 2016), includ-
ing PHM (Michau, Palmé & Fink, 2017, 2018; Michau, Yang
et al., 2017; Yang, Fink & Palmé, 2016). In PHM, the in-
terest for Hierarchical Networks lies in that they actually im-
itate the traditional approaches: The auto-encoders, by learn-
ing the important components and relationships between the
input signals are doing feature learning while the last layer,
by combining the feature to assess the conformity of the data
with the training is used as an health monitoring tool. In par-
ticular, in (Michau, Palmé & Fink, 2017), it has been shown
that with the right architecture, HELM can be used in an un-
supervised framework. Instead of the traditional fault classi-
fication, a one class classifier is used as a last layer and the
HELM is trained with healthy data only. This methodology
demonstrated excellent ability to detect abnormal operating
conditions and to isolate the source of abnormality thanks to
the auto-encoders. This framework is illustrated in Figure 2.

3. FEATURE SELECTING HIERARCHICAL NEURAL
NETWORK

3.1. From Single Layer Networks to Hierarchical Neural
Networks

Traditional Single Layer Feed Forward Network consists in
performing the following operation:

Y = B · g (A ·X) , (2)
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where X and Y are the input and output, of size Di and Do

dimensions, K samples. A and B are respectively the input
and output weights of size H × Di and Do × H , H being
the number of neurons in the network. g is the activation
function. In addition to weights, biases can be considered and
simply consists in concatenating to X and then to g (A ·X)
an additional dimension filled with ones. The biases are then
the corresponding elements in A and B.

In the case of Extreme Learning Machines, A is drawn ran-
domly. Given an training set XTrain and a target output T ,
training an ELM consists therefore in solving the following
optimization problem:

B̂ = Argmin
B
‖BH − T‖σ1

u + λ‖B‖σ2
v (3)

where H = g
(
A ·XTrain

)
. In the vast majority of works,

u = σ1 = 2: the `2 norm is continuous and easily differen-
tiable while also measuring the euclidean distance between
target and output. The second term of the objective func-
tion is called the regularisation term. It models properties
of the learned variable, that one wish to encourage. A com-
mon choice is that of also using v = σ2 = 2. This aims
at avoiding diverging coefficient in B. In case of correlated
variables, this avoids in particular that their coefficient com-
pensates each others, thus, over-fit the problem. This corres-
ponds therefore to the following Ridge Regression problem:

B̂ = Argmin
B
‖HB − T‖22 + λ‖B‖22 (4)

which has a closed form solution:

B̂ =
(
λ · I+H>H

)−1
H>T. (5)

3.2. Auto-encoders in FSHNN

In previous works (Michau, Palmé & Fink, 2017; Michau,
Yang et al., 2017; Tang et al., 2016), it has been suggested to
use the `1 norm for the regularisation of the auto-encoders,
that is, v = σ2 = 1. The idea is that, by encouraging sparsity,
and therefore as few features-to-signals connections as pos-
sible, the obtained features would be of higher quality. In
fact, a good feature is expected to be very informative on part
of the signal. Yet, in HELM, the features are randomly drawn
and this assumption is hard to verify. Therefore, in practice,
it often appears that the regularisation parameter that would
indeed bring strong sparsity need to be high, at the expense of
the reconstruction error (measuring the auto-encoder quality).
In consequence, best results of the final HELM are achieved
for low sparsity in the auto-encoder, in contradiction with the
premise on which the idea of the `1 norm has been developed.
In addition, as the input weights are drawn randomly, the
features represented by the hidden neurons g (A ·X) are a
priori meaningless. They only make sense once the output
weights B have been learned, in that their connection to the

reconstructed input indicates the participation of each feature
to the signal. This a posteriori interpretation of the random
feature is conceptually unsettling.

With these two points in mind, we propose in this work to im-
pose group-sparsity on the output weights B. That is, a reg-
ularisation that will shut-down all connections from features
that are the least participating to the signal reconstruction. Al-
though the features are randomly generated, in the final solu-
tion, only the most meaningful features will be selected and
used in the Feature-Selecting HNN (FSHNN). This problem
is referred to in the litterature as the Best Subset Selection
Problem (Friedman, Hastie & Tibshirani, 2001; Hocking &
Leslie, 1967) and consists in solving

B̂ = Argmin
B
‖HB −X‖22 + λ‖B‖2,0 (6)

Problem (6) is not a linear nor a convex problem. Recent
advances have shown that it is solved with Mixed Integer Op-
timisation (Bertsimas, King & Mazumder, 2016). Yet, in con-
vex optimisation, the Group-LASSO is usually used as a sur-
rogate for solving the problem. Studies have shown that it
is actually very competitve with other methods (Hastie, Tib-
shirani & Tibshirani, 2017). It consists, in the case of our
auto-encoder, in solving:

B̂ = Argmin
B
‖HB −X‖22 + λ‖B‖2,1 (7)

where

‖B‖2,1 =
∑
j

√∑
i

B2
i,j . (8)

The `2,1-norm has a proximity operator (Pustelnik, Chaux &
Pesquet, 2009):

proxγ`2,1(X) =


(
1− γ√∑

|x|2

)
x if

√∑
|x|2 ≥ γ

0 otherwise.
(9)

Therefore Problem (7) can be solved thanks to the FISTA al-
gorithm described in Algorithm 1, chosen here for its effi-
ciency and computational simplicity (Beck & Teboulle, 2009;
Chambolle, Dossal et al., 2014).

Once Problem (7) is solved, we identify the unused features
(empty columns in Bk) and remove their corresponding ele-
ments from A and B. Then, the optimal B for auto-encoding
is obtained by solving one last time the ridge regression, us-
ing Equation (5).

3.3. The One-class classifier

As a last layer of the FSHNN, we use a one class classi-
fier (Khan & Madden, 2009). As demonstrated in previous
works (Michau, Palmé & Fink, 2017, 2018; Michau, Yang et
al., 2017; Yang et al., 2016), once good features are identified,
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Algorithm 1 FISTA

Input: H, X, λ ≥ 0, δ ∈]0, 1[, ε ≥ 0
1: γ ← δ

1+‖H‖2
2: k ← 0, Bk ← 0, yk ← 0,
3: tk ← 1, Crit←∞,
4: while Crit ≥ ε do
5: ck = yk − 2 · γH> (Hyk −X)
6: Bk+1 = proxγλ`2,1(ck) . (cf. Eq. (9))

7: tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
8: yk+1 = Bk+1 +

tk−1
tk+1

(Bk −Bk+1)

9: Crit = ‖Bk −Bk+1‖2
10: k = k + 1
Output: Bk

Algorithm 2 FSHNN Training

Input: λl21 , λAE , λ1C ≥ 0, N ∈ N, XTrain

1: X1← XTrain

2: for i = 1, . . . , N do . Stacked FS AE ELM
3: Generate: Ai random weights
4: Hi = g(Ai ·Xi)
5: Bi = Argmin

B
‖B ·Hi −Xi‖22 + λl21‖B‖2,1

. (cf. Alg. 1)
6: cB ← index of non empty columns in Bi
7: Ai = Ai[cB, :])
8: Hi = g(Ai ·Xi)
9: Bi = Argmin

B
‖B ·Hi −Xi‖22 + λAE‖B‖22

. (cf. Eq. (5))
10: Xi+1 = Hi

. Upper layer ELM
11: XN+1 = [XN+1, IK ]
12: Generate: AN+1, random weights
13: HN+1 = g(AN+1 ·XN+1)
14: BN+1 = Argmin

B
‖B ·H−1‖22+λ1C‖B‖22 . (cf. Eq. (5))

Output: {Ai,Bi}1≤i≤N+1

Algorithm 3 Running FSHNN

Input: X, FSHNN(λAE , λ1C , N, X
Train)

1: X1← X
2: X2 = g(A1 ·X1)
3: Xrec = B1 ·X2
4: for i = 2, . . . , N do
5: Xi+1 = g(Ai ·Xi)

6: XN+1 = [XN+1, IK ]
7: Y = BN+1 · g(AN+1 ·XN+1)

Output: Y,Xrec

the one-class classifier ELM is efficient at detecting any con-
ditions that have not been represented in the training dataset.
As such, it provides excellent detection results.

In our work, the one-class classification problem is formu-
lated as a ridge regression problem (cf. Problem (4)), where
the target is the value 1, representing healthy conditions. The
distance between the output of the classifier in testing condi-
tion and the value 1 is monitored. If it increases compared
to that measured during validation, the data is labelled as ab-
normal. More precisely, we set a fault-detection threshold as
follows:

Thrd = γ · percentilep(|1− Y Val|) (10)

where percentilep is the pth-percentile function, p and γ ≥ 0

are hyper-parameters, and Y Val is the validation output. The
class Z is then expressed as

ZTest
i = sgn

(
Thrd− |1− Y Test

i |
)

(11)

3.4. Training and Running FSHNN

The algorithms to train and run the FSHNN are described in
Algorithm (2) and (3). N is the number of auto-encoders
(N = 1 in our work). In the training, λH , the regularisa-
tion parameter for the Group-LASSO can either be set as an
hyper-parameter, or, with few iterations, the value giving an
a priori fixed number of features can be heuristically looked
for. We implemented this second alternative.

4. FSHNN FOR FAULT DETECTION AND ISOLATION

In previous works (Michau, Palmé & Fink, 2017; Michau,
Yang et al., 2017), extensive comparisons have demonstrated
the very good abilities of HELM for fault detection and isol-
ation. The two simulated case studies compared different
methods including (1) a one-class classifier ELM alone, (2) a
Principal Component Analysis (PCA) with a one-class classi-
fier ELM, (3) a Support Vector Machines (SVM), (4) a PCA
with a SVM and last (5) a Deep Belief Network.

On the same two case studies, we compare in the following
the results of HELM and FHSNN. To do so, we fix the num-
ber of neurons in the Auto-encoder layer, as it is where the
difference between HELM and FSHNN lies, and do a grid
search on other hyperparameters for both HELM and FSHNN
independently. In order to fix the number of neurons in the
FSHNN, we initialise a population of features, five times big-
ger than the number of desired neurons, and search the right
λH in Algorithm (2) that would select exactly this desired
number of neurons. This requires 5 iterations on average.

Hyper-parameters for both models are:

• λAE : the regularization coefficient in the autoencoder
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• λ1C : the regularization coefficient in the one-class clas-
sifier

• nAE: the number of neurons for the autoencoder

• n1C: the number of neurons for the last layer one class
classifier

• γ: the factor used in the decision rule (11)

In both case studies, the methodology for generating the data-
sets that resemble real condition monitoring applications con-
sists in generating 5 “base” signals from which 200 sensors
will be simulated. The 5 base signals represent the inner di-
mension of the dataset. Then, a random Gaussian noise of
1% is added to the readings. Finally, faults will impact either
one base signal or the reading directly. This approach imit-
ates ”real“ fault types affecting an entire subsystem of fault
types only affecting the measurements.

For both simulated case studies, the signals before the fault
are split into training, validation and testing data. The training
contains 7000 samples, validation and non-faulty testing 1000
each. Faulty sets contains 1000 samples per fault generated.

The validation dataset is used to estimate the detection
threshold as per Equation (11). Among the testing data, the
non-faulty set enables the computation of the reconstruction
error (with the root mean square error (RMSE) and of the
True Negatives (TN) (complementary to the False Positives
(FP)), while the True Positives (TP), complementary to the
False Negatives (FN), are obtained from the datasets with
faults.

For each dataset and each fault, if the threshold in Equa-
tion (11) is exceeded at least once, then it is considered as
TP (if the dataset has a fault) or as FP otherwise.

In all case studies, the results are discussed and quantified
with the following indicators:

• Accuracy per fault:

Acc =
TP + TN
2 ·Nexp

· 100 (12)

where Nexp is the number of times the experiment has
been repeated (100 times in each case).

• Isolation: Once the fault has been detected, we propose
to compute for each signal its residual before and after
the first sample detected as faulty. The signals with the
biggest residual differences are those considered as isol-
ated. Results show the percentage of signals correctly
isolated.

• Reconstruction: From the non-faulty testing data, it is
possible to measure the reconstruction error on the re-
constructed signals using the auto-encoder. This is done
using the root mean square error (RMSE).

Table 1. Accuracy per fault comparison for the random signal
readings case study for (H) HELM and (F) FSHNN. 6 faults
are tested and the best accuracies are summarised for different
number of neurons used in the auto-encoder (nAE).

Fault no 1 2 3 4 5 6
nAE (H) (F) (H) (F) (H) (F) (H) (F) (H) (F) (H) (F)

3 77 56 92 57 75 57 61 57 67 60 60 57
5 78 60 97 63 77 57 58 61 70 67 58 61
7 81 65 98 70 80 63 60 63 69 75 63 69
10 78 65 98 76 83 66 64 66 73 83 60 72
15 82 68 98 86 80 69 62 68 72 89 60 79
20 81 71 98 91 83 70 65 71 76 89 61 80
30 80 75 96 98 81 73 66 73 90 97 65 86
40 80 76 98 98 80 76 71 74 93 98 73 86
50 83 77 99 95 86 78 75 79 93 98 75 89
70 83 73 100 93 84 75 80 82 97 98 78 91

4.1. Random Signal Readings Case Study

In (Michau, Yang et al., 2017) the case study consisted in
the generation of 5 “base” signals. These base signals are
drawn according to a uniform distribution in [0, 1]. Then, 200
sensors are simulated: each sensor performs a random read-
ing of one of these base signals according to an internal read-
ing function fs(XBase) = αs ·XBase

i + Cs + ε where s is
the sensor ID, αs is the reading amplitude, Cs is a sensor de-
pendant constant and ε is an additive random Gaussian-noise
of 1%.

At a given time step, a fault is simulated which can impact
either one base signal in XBase (Fault (1) to (3)) or the
sensors themselves (Fault (4) to (6)). Simulated faults are:

• (1) and (5): 20% amplitude change. The signal amp-
litude is multiplied by 1.2

• (2) and (6): 50% amplitude change. The signal amp-
litude is multiplied by 1.5

• (3) and (7): 20% stepwise deviation. A constant value
computed as 20% of the signal amplitude is added

The experiments are run 100 times.

Results for this case study are summarised in Figure 3 and
Table 1. In Table 1, the best accuracies achieved by searching
the best set of hyper-parameters independently for each fault
for both models ((1) HELM, (2) FSHNN) are gathered. It is
interesting to note that HELM is performing overall better on
faults (1) to (3), impacting the base signals, while FSHNN
is performing better on faults (4) to (6) impacting the signals
directly. This is also illustrated in Figure 3a and 3b. On these
figures, the set of hyper-parameters maximising the average
accuracy of the three faults ((1) to (3) and (4) to (6)respect-
ively) is looked for and the resulted are plotted. In Figures 3c
and 3d, the isolation performances are illustrated demonstrat-
ing that FSHNN features are more useful as they enable the
isolation of a higher number of impacted signals (100% of
isolation for the faults impacting signals directly). This is
supported by Figure 3e, showing that the reconstruction is
much better using FSHNN auto-encoder.
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(a) (b)

(c) (d) (e)

Figure 3. Random Signal Readings case study: Comparison of HELM and FSHNN. (a) average accuracy for faults (1) to (3)
impacting the base signals only, (b) average accuracy for faults (4) to (6) impacting the readings, (c) average isolation for faults
(1) to (3), (d) (c) average isolation for faults (4) to (6), (e) reconstruction RMSE of the healthy signals.

4.2. Linear Combination of Random Piecewise Linear
Signals

The second case study is similar to that presented in (Michau,
Palmé & Fink, 2017). It also consists in the generation of 5
base signals. This time, to simulate signals with high dimen-
sionality and high correlation, the base signals are randomly
constructed piecewise linear. The random piecewise linear-
ity is used to prevent the possibility for HELM to simply
learn temporal patterns. Using random linear combinations of
signals pairs (random pairs with random weights), 200 read-
ings are created. At fault, one of the two signals of the pair
changes for one of the other base signals. This simulates a
fault impacting one part of the system only and changing par-
tially the correlations within the readings.

Results are summarised in Figure 4 and Table 2. As seen in
Figure 4, the accuracies achieved both by HELM and FSHNN
are in competition, and do not show any statistical differ-
ences. This generalises to both the reconstruction and the
isolation performances when more than 30 neurons are in
use in the auto-encoder. Yet, when the number of neurons
is closer to the real inherent dimensionality of the problem (5
base signals), it is where FSHNN has an advantage. Its fea-
tures are of higher value both for reconstruction and isolation.
FSHNN reaches performances close to the best achieved with
10 neurons only.

In addition to the performance of the algorithms, Table 2 also

Table 2. Results comparison for the LCRPLS case study for
(H) HELM and (F) FSHNN. nAE is the number of neurons
in the auto-encoder and n1C the number of neurons in the
one-class classifier for the model with best accuracy.

nAE n1C Accuracy Isolation Reconstruction
(H) (F) (H) (F) (H) (F) (H) (F)

3 500 50 54 62 56 63 0.55 0.15
5 500 100 53 74 55 72 0.78 0.11
7 500 100 83 77 55 84 0.75 0.09
10 500 200 88 87 70 92 0.50 0.07
15 500 300 89 86 87 94 0.29 0.06
20 300 300 92 91 92 95 0.21 0.06
30 500 200 92 89 98 97 0.12 0.05
40 500 300 92 91 100 96 0.08 0.05
50 500 300 93 94 100 95 0.07 0.05
70 500 300 93 94 94 94 0.07 0.05

shows the number of neurons used in the one-class classifier
layer for the model that achieved best results. It is interesting
to note that HELM seems to require as many neurons as pos-
sible (500 was the maximum number of neurons tested) while
FSHNN achieve its best performances with a lower number of
neurons. This observation also supports the expectation that
the features used as inputs of the one-class classifier are more
informative for the classifier when stemming from FSHNN.
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(a) (b) (c)

Figure 4. Linear Combination of Random Piecewise Linear Signals (LCRPLS) : (a) Accuracy (b) Isolation of faulty signals (c)
Reconstruction RMSE over all signals in healthy conditions.

4.3. Real application of fault detection in a generator

Both in (Michau, Palmé & Fink, 2017; Michau, Yang et al.,
2017), the results where tested on a real case study, a H2

cooled generator from a electricity producing plant. The gen-
erator is working on nominal load, with changing operating
conditions and thus, variations in the parameters. The evalu-
ated dataset consist of nine months (275 days) and includes
data from 320 sensors, measuring physical quantities. They
can be grouped in 5 families: Partial discharge monitoring,
Rotor shaft voltage, Rotor flux, Stator end winding vibration,
Stator bar water temperature.

The observation period corresponds to 275 days of operation.
In particular, after day 247 (approximately eight months of
operation), an upper-level fault occurred. Experts having ana-
lyzed the data concluded a posteriori that some signals star-
ted to show abnormal behavior at day 169, consequence of
a lower level fault. The generator is operated in base load,
meaning that the plant is operated at full power. The dataset
consists of K = 55 774 observations and D = 320 dimen-
sions.

As the fault beginning was confirmed at day 169, we de-
cided to use the data up to day 120 for both training and
validation, with a random sampling 94%/6%. The rest of
the measurements, until the fault and after, are used for false
and true positive quantification respectively. The dataset is
hence split as follows: KTrain = 22 017, KVal = 1406 and
KTest = 4524 + 27 827.

By running 100 experiments for each set of hyper-parameters,
we could find with both models, independently of the number
of neurons in the auto-encoder 100% detection accuracy. The
reconstruction error and the output of both models are com-
pared in Figure 5. As for the simulated case studies, FSHNN
demonstrates similar a performance for fault detection but a
much better performance on signals reconstruction.

For the isolation, the ground truth is not known and it is there-
fore difficult to evaluate the performance of both models. In

order to give an idea of isolation performance, the isolated
signals found by both models are collected over 100 experi-
ments. For each model and for increasing number of neurons
in the auto-encoder layer, the best set of hyper-parameters
with respect to the accuracy is selected. The 10 first isolated
signals are collected. Overall, 63 out of 310 signals are iden-
tified by at least one model, and 8 of those are isolated in
more than 80% of the cases. We assume therefore that those
8 signals are indeed where the fault is originating. Then for
each model, and each experiment, we measure the ratio of
these 8 signals that have indeed been isolated by each model.
The results are represented in Figure 5b. In accordance with
the simulated case studies, FSHNN demonstrates a higher
performance, in particular with a low number of neurons in
the auto-encoder. Interestingly, its performance is almost not
depending on the number of neurons in the auto-encoder, in
particular when this number is very small. This supports the
expectation that the features are informative and that their se-
lection brings valuable information to the model that enables
to distinguish between signals that were affected by the fault
and those that did not experience any deviation from the ”nor-
mal“ system behaviour.

4.4. Results Discussion

On the basis of the present analysis, the benefits and disad-
vantages of FSHNN can be summarised as follows:

Detection: FSHNN and HELM achieve often similar results
(e.g., Fig. 4a, 5). Over the many experiments performed,
FSHNN is often performing slightly better than HELM when
the number of neurons is very low (e.g., Fig 3b or Fig 4a with
3 neurons), but this depends on the case study (e.g., Fig 3a is
a counter-example). This comparison of detection perform-
ances has been led by optimising, in each case and for each
model the best set of hyper-paramaters with respect to the
performances. And if by doing so, HELM and FSHNN reach
similar detection performances, FSHNN often does so with a
lower number of neurons needed in the one-class classifier.
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(a) (b) (c) (d)

Figure 5. Generator Case Study : (a) Reconstruction performances, (b) Isolation, (c) HELM output, (d) FHSNN output.

Reconstruction and Isolation: Due to the higher reconstruc-
tion performances (e.g., Fig. 3e, 4c, 5a), FSHNN is often out-
performing HELM for signal isolation (e.g., Fig.3d). This is
also the case where HELM had better detection performances
(e.g., Fig.3c), and in particular when the number of neuron is
low (e.g., Fig. 4b).

Computation cost: There is not any noticable computational
difference when training a HELM or a FSHNN. Both were
trained using FISTA for the auto-encoder (but with a differ-
ent regularization) and a ridge regression for the one-class
classifier. One difference lies in the iterations needed to find
the right regularisation parameter for an a-priori fixed num-
ber of neurons. Yet, this was done for comparison purposes
only and might not be relevant in real applications. In ad-
dition, to account for randomness in HELM results, in par-
ticular with a low number of neurons in the auto-encoder, it
has been proposed in (Michau, Yang et al., 2017) to average
several runs of HELM (e.g., 5). This is computationally-wise
in line with the 5 iterations of FSHNN needed on average
to find the right regularisation parameter. For a comparison
of HELM (and therefore FSHNN) against other common ap-
proaches, the reader is refereed to (Michau, Palmé & Fink,
2017; Michau, Yang et al., 2017).

Impact of the number of neurons in the auto-encoder
layer: In many cases, it looks like HELM is catching up
with FSHNN performances when the number of neurons in
the auto-encoder layer increases. This is actually to be ex-
pected for two reasons. First, HELM uses random features.
When the number of features becomes big compared to the
inherent dimensionality of the problem, the likelihood to have
informative features increases greatly, making the careful se-
lection of features unnecessary. A one-class classifier with
many neurons will be able to extract the relevant information.

Second, the group-lasso regularisation needs to be very strong
in order to select a small fraction of the features. This limits
the potential of FHSNN as the `21 norm both fosters sparsity
but also small weights. In short, the stronger we select, the
less accurate the encoding will be. If this equilibrium is to

the advantage of FHSNN when a low number of features is
imposed, as it is crucial to have informative features, this ad-
vantage disappears with more features, when the likelihood
of having good features anyhow increases greatly.

Yet, if it is tempting to always use HELM with a high num-
ber of features, one needs to consider that, if FSHNN can
achieve similar performances with fewer features, that means
that many features in the HELM are probably irrelevant and
contain only little information. If the aim, in practice, is to
have the features analysed by an expert, this gives HELM a
disadvantage.

5. CONCLUSION

In this paper, we proposed a new Feature Selecting Hierarch-
ical Neural Network (FSHNN). The proposed approach com-
bines the benefits of a fast and efficient training process and a
targeted feature selection resulting in better representation of
the condition monitoring signals in a lower dimensional fea-
ture space. The lower dimensional representation of the in-
put signals is not achieved by contracting the input signals to
a lower dimensional feature representation directly, instead,
a strong Group-LASSO regularization is applied on a large
number of randomly generated features to select as few fea-
tures as possible. Thereby it achieves a low dimensional rep-
resentation of the input signals with a small number of most
informative features. The proposed approach is similar to the
feature generation and feature selection approach commonly
applied in prognostics and health management applications,
with the main difference that features are generated and se-
lected automatically: the information contained in the signals
is learned without the need of manual feature engineering.
However, contrary to the previously proposed feature learn-
ing approaches based on HELM, FSHNN reaches a more in-
formative latent space due to performing the feature selection
process typically performed by the experts. Even though the
extracted features have not been evaluated further in this pa-
per, the higher degree of information contained in the learned
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features is supported by the improved performance on fault
isolation.

The case studies presented in this paper, confirm the very
good fault detection abilities of the proposed algorithm,
which is at par with the previously proposed HELM al-
gorithm that was already achieving an excellent fault detec-
tion and isolation performance on previously performed case
studies. It outperforms, in addition, HELM for signal recon-
struction and isolation. The evaluation of FSHNN demon-
strates the excellent ability of the algorithm to select the most
meaningful features in the input space: the features bring bet-
ter reconstruction, isolation and necessitate less neurons in
the one-class classifier for achieving detection performances
in line with HELM.

The feature selection ability of the proposed FSHNN al-
gorithm could be particularly useful within ensemble ap-
proaches where several sets of specialised features for the dif-
ferent operating conditions could be used to achieve a robust
fault detection and isolation performance also under varying
operating conditions without the need to develop dedicated
algorithms for each of the operating conditions separately.

An additional further research direction could be the monit-
oring of the change of the features that are selected over time
(after retraining) and monitoring the change in the importance
of the features. This could provide insights into the process
evolution over time.

Last, the question of feature interpretability or quality with
criteria on the features themselves, and not a posteriori based
on the detection, reconstruction, or isolation performances,
remains also a relevant question for future research.
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