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ABSTRACT 

This paper presents the first steps toward managing 

uncertainty and assessing risk within the national airspace 

system (NAS) by investigating the impact of uncertainty on 

“flight plan flexibility” (FPF) – a proposed quantitative 

measure of an aircraft’s ability to adapt its flight plan due to 

improbable events. First, an air traffic scenario derived from 

national flight plan data is simulated with an open source 

BlueSky air traffic control analysis centered on a busy 

airport. Next, state-space diagrams derived from the aircraft 

state parameters (i.e., speeds, altitudes, headings), spatial 

proximities, and surveillance signals are used to construct the 

FPF metric. Finally, a probabilistic analysis is used to 

propagate uncertainty in the aircraft positions through 

BlueSky to observe the resulting uncertainty in FPF through 

time. Future work will aggregate individual aircraft safety 

measures and additional metrics into a single system-wide 

indicator, transitioning from BlueSky to a gate-to-gate 

simulation for prognostics, and deriving probabilistic models 

of epistemic and aleatory sources of uncertainty in the NAS 

from available data. 

1. INTRODUCTION 

The control and management of the national airspace system 

(NAS) is projected to transition to advanced surveillance 

systems that will enable continuous system-wide safety 

monitoring and decision-making by 2025. One challenge is 

systematically integrating information from heterogeneous 

data sources (i.e., real-time and historical, quantitative and 

linguistic) into a comprehensive gate-to-gate NAS simulation 

for prognostics. Furthermore, a large amount of uncertainty 

surrounds incoming information from various streams of data 

(e.g., aeronautical instruments, voice communications, 

weather forecasts) in addition to inherent variability in 

manufactured aircraft components and flight environments. 

To address these challenges, a 5-year project sponsored by 

the NASA University Leadership Initiative (ULI) and led by 

Arizona State University has been launched with the goal of 

advancing and integrating information fusion methodologies 

for real-time system-wide safety assurance of the NAS. 

The primary goal of this project is to create a framework with 

which to fuse the multitude of existing and NextGen aviation 

data sources for prognostics within the NAS. These data 

sources currently include federally maintained databases 

such as the System-Wide Information Management (SWIM) 

and the Aviation Safety Reporting System data. In addition, 

data sources include the Base of Aircraft Data (BADA) of 

aircraft performance models developed by 

EUROCONTROL in cooperation with aircraft manufacturers 

and the real-time Automatic Dependent Surveillance-

Broadcast (ADS-B) reports of aircraft positions and 

velocities (lateral and vertical). These information sources, 

among others, are to inform a gate-to-gate simulation 

framework for measuring the safety and risk in the NAS. This 

simulation will consider nominal and off-nominal procedural 

communications between air traffic control (ATC) and pilots, 

their respective performance and decision-making abilities 

under fatigued and non-fatigued conditions, as well as the 

overall risk contained in the air space due to the air traffic 

configuration and health of flight equipment (air frame, 

engines, sensors, etc).  

Southwest Research Institute (SwRI) is the principal 

investigative organization on the “Uncertainty Management 

and Risk Assessment” task, which focuses on identifying and 

modeling all sources of uncertainty and variation within the 

NAS. Because reduced safety margins are expected with both 

increased demand on the NAS and enabling technologies 

such as ADS-B, a probabilistic modeling framework for large 

complex networks such as the NAS that is vulnerable to rare 

but potentially catastrophic events is needed. The work 

presented here represents the first steps toward creating the 

infrastructure for probabilistic analysis of the NAS and 

demonstrates the integration of the available models and data 

together for uncertainty quantification and risk assessment. 
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The gate-to-gate simulation framework is one of the long-

term deliverables of the project, so this initial effort instead 

uses the open source ATC simulator BlueSky developed by 

researchers at Delft University of Technology (Hoekstra and 

Ellerbroek, 2016) for modeling air traffic, air traffic control 

commands, and conflict detection and resolution (CD&R). 

The CD&R strategy employed in this work is a state-space 

diagram (SSD)-based algorithm informed by an aircraft’s 

forbidden velocities (to avoid conflict and a loss of separation 

(LoS)) and reachable velocities (from the aircraft 

performance limits) (Balasooriyan, 2017). The SSDs for each 

aircraft are available within BlueSky and serve as the basis of 

the “flight plan flexibility” (FPF) metric developed to 

quantify the vulnerability of the NAS. 

There are categorical metrics for the position and velocity 

accuracy reported by ADS-B communications where each 

category corresponds to a level of uncertainty about the 

measurement. Uncertainty in the position and velocity of the 

aircraft leads to uncertainty about the computed FPF 

indicator. To study the effect of ADS-B uncertainty on the 

FPF metric, uncertainty in the aircraft position is propagated 

through BlueSky using NESSUS®, a SwRI-developed 

probabilistic analysis software that connects to executable 

simulations for uncertainty quantification, sensitivity 

analyses, and probabilistic reliability analysis of engineering 

systems. 

The paper proceeds with Section 2 deriving the air traffic 

scenario from the SWIM database to simulate in BlueSky. 

Next, Section 3 constructs the FPF metric for NAS flexibility 

and vulnerability. Uncertainty in position due to ADS-B 

precision is introduced in Section 4 and propagated through 

a BlueSky air traffic scenario undergoing CD&R using 

NESSUS. Section 5 shows the results of the uncertainty 

analysis and Section 6 outlines research directions of interest 

going forward.  

2. AIR TRAFFIC SCENARIO FROM SWIM DATA 

The System-Wide Information Management (SWIM) system 

is administered by the Federal Aviation Administration 

(FAA) and provides a continuous feed of instantaneous flight 

plan messages over a specific time duration. SWIM flight 

plan messages were collected for increasing durations of 

time. Ultimately, a 24-hour dataset was necessary because the 

International Civil Aviation Organization (ICAO) aircraft 

model types are only reported once per flight plan. The 

aircraft type is needed as an input to the BlueSky air traffic 

simulation in order utilize BADA aircraft performance files. 

It is important to note that the SWIM messages are not 

produced in real-time; they correspond to the flights almost 

exactly a week prior (within seconds).  

With the goal of simulating the traffic around a major airport 

in BlueSky, the data were filtered by those flight plans that 

entered the airspace within 100km (54 nautical miles (NM)) 

of Hartsfield-Jackson Atlanta International Airport (ATL), 

which is classified as the world’s busiest airport and operates 

as the primary Delta Airlines (DAL) hub and a major hub for 

many others. Figure 1 shows a snapshot of the BlueSky 

simulation of the air traffic around ATL with the initial 

location of each aircraft and their speed, heading, and altitude 

defined by the SWIM dataset. Note that since an SSD-based 

CD&R strategy is used in this simulation, the air traffic 

positions are no longer a reflection of what actually occurred 

after the initial condition, however, the aircraft destinations 

from the SWIM data are guiding their simulated routes. 

An additional consideration when looking at flight plans 

around ATL are the landing and takeoff directions of each 

aircraft. These directions are defined by the runway 

designations, which are also needed to study runway 

incursion in future work. Figure 2 depicts BlueSky's layout 

of ATL airport with the parallel runways (from top to bottom) 

being 08L↔26R, 08R↔26L, 09L↔27R, 09R↔27L, and 

Figure 1. BlueSky simulation of SWIM air traffic scenario around ATL. A two-aircraft conflict is identified (orange) and 

resolved by an SSD-based CD&R strategy. 
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10↔28. According to the Airplane Flying Handbook (FAA, 

2016), the landing direction is predominantly from the east 

(using 26R and 27L) so that arriving aircraft can use 

headwinds for deceleration. Conversely, the takeoff direction 

is predominantly to the west (using 26L and 27R) such that 

the incoming and outgoing air traffic flows are aligned in the 

same direction. Figure 3 shows an an example of how the 

runway information for ATL (ICAO Airport Code: KATL) is 

encoded in the BlueSky scenario file after creation of the 

flights DAL2396 and DAL369 using the CRE command. In 

addition, the flight parameters heading (HDG), altitude 

(ALT), and speed (SPD) of the aircraft are updated by aircraft 

ID when a new SWIM message about that aircraft arrives as 

shown for flight ENY3758 in Figure 3. Note that the updated 

positions of each aircraft are simulated using BlueSky rather 

than being informed from SWIM.  

s  

Figure 2. Layout of five runways at ATL airport 

The data from 2200 to 2310 UTC, a time considered to be of 

average air traffic density for ATL, were simulated in 

BlueSky. For simplicity in this investigation, only the 14 

aircraft added to the airspace between 2300 and 2310 UTC 

were probabilistically interrogated using NESSUS. Further 

details about interfacing BlueSky and NESSUS are presented 

in Section 4. 

 

Figure 3. Sample of BlueSky scenario file commands  

3. FLIGHT PLAN FLEXIBILITY (FPF) METRIC 

This section derives the “flight plan flexibility” metric from 

SSD information produced by BlueSky. This metric is not a 

direct measure of system safety, but it may be embedded in a 

system safety metric that considers probabilities of events 

that would require immediate flight plan deviations. 

3.1. State-Space Diagrams (SSDs) 

Throughout the simulated air traffic scenario around ATL, 

aircraft must undergo CD&R in order to avoid loss of 

separation (LoS) with other aircraft. The CD&R strategy 

aims to represent NextGen capabilities where conflicts can be 

resolved automatically using on-board ADS-B technologies 

without the direct intervention of an air traffic controller. A 

conflict is detected if a LoS is predicted to occur when 

extrapolating the current aircraft states over a specified look-

ahead time. With a look-ahead time set to 5 minutes for 

tactical maneuvering, Figure 1 shows that conflicts between 

aircraft (highlighted in orange) are detected. Following 

conflict detection, a resolution algorithm adapts each 

aircraft’s flight plan to prevent a LoS. There are different 

rules for prioritizing the flight path adjustments an aircraft 

may implement. Here, the priority is to first adjust the speed 

(no more than +/- 10 knots), followed by the heading, and 

then the altitude. In addition, the CD&R strategies in BlueSky 

are optimized simultaneously for all aircraft in conflict, 

making sure to not create additional conflicts with 

neighboring aircraft (Balasooriyan, 2017). In this air traffic 

scenario, conflicts were detected and successfully resolved; a 

LoS did not occur during the simulation. 

FPF is computed from the SSD information used for CD&R 

and measures of air traffic complexity (Balasooriyan, 2017). 

State-space diagrams are derived from Velocity Obstacles 

(VOs) which are defined as a velocity (i.e., speed and 

direction) that will result in a conflict over the look-ahead 

time. The summation of all the VOs relative to a particular 

aircraft are shown in Figure 4a and comprise its set of 

Forbidden Velocities (FVs). In order to maneuver out of 

conflict, the velocity vector (red arrow) must terminate 

outside of the set of FVs. In contrast, the performance limits 

of the aircraft (e.g., minimum and maximum velocities) 

bound the set of Reachable Velocities (RVs) shown in Figure 

4. The intersection of the FVs and RVs is termed as the set of 

Forbidden Reachable Velocities (FRVs), which are shown 

alongside their complement - the Allowable Reachable 

Velocities (ARVs) - in Figure 5. 
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Figure 4. Sets of Forbidden Velocities (FVs) (left) and 

Reachable Velocities (RVs) (right) relative to a single 

aircraft (Balasooriyan, 2017) 

 

Figure 5. Intersection of FVs and RVs compose Forbidden 

and Allowable Reachable Velocities (FRVs and ARVs) 

(Balasooriyan, 2017) 

3.2. Computing FPF 

The formulated measure of FPF is the ratio of the area of 

FRVs to the total area of the RVs in Figure 5, which are 

tracked for each aircraft in a given air traffic scenario. Shown 

in Eq. (1), this metric results in a flexibility measure ranging 

from 0 to 1. Thus, FPF represents the flexibility of an 

individual aircraft to adapt and maneuver through changing 

flight conditions (due to weather, wind, nearby aircraft, etc.) 

to avoid LoS.  

( ) ( )
1 1

( ) ( ) ( )

Area FRV Area FRV
FPF

Area RV Area FRV Area ARV
   



        (1) 

An FPF close to 0 therefore indicates there are only a small 

fraction of velocities among the RV the aircraft may assume 

that will not result in a conflict. Conversely, an FPF of 1 

means that the aircraft may opt for any velocity within its set 

of RV and not create any conflicts. An FPF of exactly 0 

means that conflict (and eventual LoS) is inevitable if no 

remedial action is taken by other aircraft in the system (from 

ATC intervention or a CD&R strategy).  

The FPF metric developed in this paper is a new metric, but 

it does relate to separation distance between aircraft, which is 

a metric of interest to the FAA. The FPF metric relates to 

separation distance in that the Forbidden Reachable 

Velocities are zones in the velocity space that will result in a 

loss of separation over a standard lookahead time of five 

minutes. The conflict-resolved flight plan from CD&R and 

thus the resulting FPF of each aircraft are dependent on the 

aircraft state variables (position, speed, heading, and 

altitude). The next task discusses the effect of uncertainty in 

the initial position of the aircraft on the computed FPF. 

4. PROPAGATING UNCERTAINTY THROUGH THE NAS 

USING NESSUS 

The effect of uncertainty in the reported aircraft position on 

FPF is investigated using the SwRI-developed NESSUS 

software.  

4.1. Uncertainty in Reported Aircraft Position 

In this analysis, realistic distributions for aircraft position 

reported from ADS-B signals were determined from (Jones, 

2009), which align with the FAA Advisory Circular No. 20-

165 (2010). The standards for positional accuracy are 

summarized according to Navigational Accuracy Categories 

for position (NACp) and likewise for velocity as NACv. 

These categories range from 0 to 10 according to the integrity 

of the navigational information with each category 

corresponding to standard deviations of a Gaussian 

distribution with means at the reported latitude and longitude. 

For example, an NACp value of 7 corresponds to a maximum 

position standard deviation of 0.1 NM. In this study, we used 

standard deviations of latitude and longitude according to 

NACp values of 4, 5, and 7 as shown in Table 1, however, 

note that an NACp value of 8 is the typical standard for the 

Class B airspace around ATL. 

Table 1. NACp values and corresponding position standard 

deviation in NM and degrees 

NACp Value 
Standard 

Deviation (NM) 

Standard 

Deviation 

(degrees) 

4 1.0 0.0016 

5 0.5 0.008 

7 0.1 0.016 

 

4.2. Uncertainty Propagation with NESSUS 

NESSUS is used to investigate the impact of uncertainty from 

ADS-B signals on flight plan flexibility. The general 

NESSUS analysis configuration wraps around the BlueSky 

code which is defined as a function of 28 random variables 

which are the initial latitude and longitude positions of each 

of the 14 aircraft. Each random variable is modeled 

probabilistically as a Gaussian (i.e., normal) distribution with 

the mean defined from the latitude or longitude value 

reported by SWIM data and a standard deviation (in degrees) 

according to the chosen NACp value from Table 1. To 

conduct the analysis at different NACp values the standard 
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deviations of the random variables were simply modified in 

the NESSUS GUI. 

Two key decisions in an uncertainty propagation analysis are 

the number of samples to propagate through the simulation 

and the method to generate the samples. For this uncertainty 

propagation analysis, 1000 samples of the 28 random 

variables were generated from a Latin-Hypercube Sampling 

strategy (McKay, Beckman and Conover, 1979). The choice 

in the number of samples to generate from a sample design 

strategy depends primarily on two factors – the 

computational cost of the simulation and the output statistics 

desired. In this case, the goal is to capture the mean of the 

FPF for each aircraft and also have some information on 

uncertainty bounds for comparison between aircraft and 

NACp categories. Because each analysis takes approximately 

15 seconds, the uncertainty propagation analysis with 1000 

samples took approximately 4 hours. This number of samples 

was deemed sufficient to accurately capture both the mean of 

the FPFs and their 80% confidence bounds, however the 95% 

confidence intervals are reported to provide clearer 

visualization of the uncertainty in the FPFs for each aircraft. 

 

5. RESULTS 

Figure 6 shows the scatter in the flight plan flexibility due to 

the uncertainty in the initial position of the 14 aircraft added 

to the airspace between 2300 and 2310 UTC. Note that since 

the airspace around ATL is dense, there is no flight plan 

among these with complete flexibility (i.e., FPF=1) at any 

time. Furthermore, there are some instances where flight plan 

flexibility is zero, which indicates that other aircraft were 

required to adjust their flight plans to prevent a LoS. There 

were no LoS occurrences throughout this 10-minute 

simulation. Further, Figure 6 demonstrates that the flight plan 

flexibility displays some alternative behaviors in the higher 

uncertainty cases (i.e., DAL2396 and DAL562) when the 

CD&R algorithm computed different optimal flight paths for 

some realizations of the input parameters.  

From the results presented in Figure 6, the mean and standard 

deviation of flexibility is computed at each time instant for 

each of the three standard deviation cases. The 95% 

confidence bounds (+/- 2σ) are shown in Figure 7 for six of 

the fourteen flights in Figure 6. Note that the Gaussian 

assumption does not hold when multiple flight paths are 

chosen by the CD&R algorithm. For instance, the FPF results 

for flight DAL562 in Figure 6 indicate that when σ=0.5 NM 

(shown in red) and σ=1.0 NM (shown in green), some portion 

of the FPF responses deviate from the typical FPF. This is 

Figure 6. Uncertainty in predicted flight plan flexibilities due to three position uncertainty levels: 0.1 NM (blue), 

0.5 NM (red), and 1.0 NM (green) - for 14 aircraft throughout a 10-minute BlueSky air traffic simulation 
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because those samples follow a different flight trajectory than 

that chosen by CD&R. Figure 7b demonstrates that the 95% 

confidence bounds generated from the computed mean and 

standard deviation of the FPF responses of DAL562 in these 

cases are well outside the FPF bounds of 0 and 1. This is 

because the standard deviations for these cases are very high 

and the Gaussian distribution is not constrained by the actual 

FPF bounds. A more advanced  representation of the FPF 

distribution might be bi-modal, mixed Gaussian, or beta 

distribution to enforce the FPF bounds. This will be 

addressed in future work. 

In parallel to tracking the flexibility of these fourteen aircraft, 

the flexibilities of the other 105 aircraft in the airspace were 

also logged over the 10-minute simulation. These could be 

used to determine inflexible areas of the airspace that are 

more susceptible to LoS, which may then inform risk maps 

of the NAS. In addition, the FPF metric and its uncertainty 

may be used in a CD&R strategy itself. For example, the goal 

of the strategy could be for all aircraft to maintain a threshold 

flexibility (say, 0.1) with a probability of 95%.  

6. FUTURE WORK 

Of immediate interest is transitioning from BlueSky to the 

comprehensive gate-to-gate simulation software being 

developed by Optimal Synthesis, Inc. for prognostics. This 

simulation software is being expanded as part of this same 

NASA ULI-funded project, and one of the project goals is to 

create modules for safety and quantified uncertainties to 

identify risk and potential mitigation strategies. To create 

such modules, continued investigation into quantifying 

sources of uncertainty and NAS safety metrics is planned. 

Further research includes aggregating FPF of individual 

aircraft to form an overall indicator of NAS safety. This is a 

significant challenge because there are probabilistic 

correlations and dependencies among the calculated 

flexibilities that prohibit simple aggregation methods. The 

goal is to form an overall measure of complexity that has tie-

ins to ATC workload and pilot performance – quantities of 

interest to other research within this project - and may 

become a component in a composite air traffic safety metric. 

A composite safety metric might include the likelihood of a 

flight plan deviating event, number of in-conflict aircraft, and 

the occurrence of LoS. In addition, there are other safety 

metrics of interest to the FAA that may be incorporated, one 

being the Close Approach Probability used by Jones (2009) 

which considers when ADS-B is in fault-free and fault 

conditions.  

Continued investigations will be conducted to construct 

realistic probabilistic models of epistemic and aleatory 

sources of uncertainty in the NAS from available data. The 

Figure 7. 95% confidence bounds for the predicted aircraft flexibilities of six aircraft (a-f) due to three signal 

uncertainty levels - 0.1 NM (blue), 0.5 NM (red), and 1.0 NM (green) - throughout a 10-minute BlueSky air traffic 

simulation  
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sources of uncertainty to be explored include weather effects, 

aircraft performance uncertainty from BADA, and signal and 

position measurement errors from communication systems in 

addition to ADS-B. The distinction between aleatory and 

epistemic sources of uncertainty is that aleatory sources are 

those that stem from natural variability and are irreducible 

whereas epistemic sources stem from “lack of knowledge” 

and their uncertainty can be reduced. This work will feed into 

other aspects of the ULI by establishing a prior uncertainty 

on system safety with and related work demonstrating the use 

of Bayesian Entropy Networks to fuse data from multiple 

information streams. The purpose of the information fusion 

is to reduce the epistemic uncertainty in a safety relevant 

system output with the overarching challenge being 

providing a continuous update to system safety as data is 

being collected. Crucial to these Bayesian updating 

procedures will be the employment of a global sensitivity 

analysis that will identify the most significant contributors to 

uncertainty in system safety. Those sources of uncertainty 

that are most influential will then be candidates for 

uncertainty reduction during the information fusion and 

Bayesian updating process. 
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