
Automated Hyper-parameter Tuning for Machine Learning Models
in Machine Health Prognostics

Wang-Chi Cheung 1, Weiwen Zhang2 Yong Liu3, Feng Yang4, Rick-Siow-Mong, Goh 5

1, 2, 3, 4, 5 Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
cheungwc@ihpc.a-star.edu.sg, zhangww@ihpc.a-star.edu.sg, liuyong@ihpc.a-star.edu.sg,

yangf@ihpc.a-star.edu.sg, gohsm@ihpc.a-star.edu.sg

ABSTRACT

Recent studies have revealed the success of data-driven ma-
chine health monitoring, which motivates the use of machine
learning models in machine health prognostic tasks. While
the machine learning approach to health monitoring is gain-
ing importance, the construction of machine learning models
is often impeded by the difficulty in choosing the underly-
ing hyper-parameter configuration (HP-config), which gov-
erns the construction of the machine learning model. While
an effective choice of HP-config can be achieved with hu-
man effort, such an effort is often time consuming and re-
quires domain knowledge. In this paper, we consider the use
of Bayesian optimization algorithms, which automate an ef-
fective choice of HP-config by solving the associated hyper-
parameter optimization problem. Numerical experiments on
the data from PHM 2016 Data Challenge demonstrate the
salience of the proposed automatic framework, and exhibit
improvement over default HP-configs in standard machine
learning packages or chosen by a human agent.

1. INTRODUCTION

With the prevalence of Machine Learning and the availabil-
ity of low-cost sensors, data-driven machine health monitor-
ing is gaining importance in modern manufacturing systems.
While popular machine learning models, such as deep neu-
ral networks and random forests, give rise to highly accurate
predictive models, the success of these models hinges on ju-
dicious choices of their underlying hyper-parameter configu-
rations (HP-configs), which governs the construction of these
models.

For example, in the case of deep neural networks, an HP-
config corresponds to the choice of network architecture, such
as the number of layers as well as the number of neurons in
each layer, and the choice of stochastic gradient descent al-

Cheung et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

gorithms for training a network, such as Adagrad or ADAM.
After the network architecture and the training algorithm are
chosen, the decision maker optimizes the network weights in
order to minimize the prediction error on a training dataset.
While the decision maker desires to minimize the prediction
error, the error crucially depends on the choice of the HP-
config. Unfortunately, the size of the hyper-parameter space
for a machine learning model is often too big for a brute-
force search for a competent HP-config. The identification of
a competent HP-config is often based on the experience of the
decision maker, and the identification could be daunting and
time-consuming for a new machine prognostic task.

We develop an automatic framework that identifies com-
petent hyper-parameter configurations without conducting a
brute-force search on the underlying hyper-parameter spaces.
Our framework is based on Bayesian Optimization algo-
rithms, which allows quick convergence to a competent
hyper-parameter configuration. A Bayesian Optimization al-
gorithm involves the construction of a certain stochastic sur-
rogate function on the performance of every hyper-parameter
configuration. We implement our automatic framework on
the PHM 2016 Data Challenge Task (PHM, 2016) for fine-
tuning popular machine learning models such as random for-
est regression model and multi-layer perceptrons. We witness
reduction in prediction errors under our automatic frame-
work, in comparison to the machine learning models con-
structed using default HP-configs postulated by practition-
ers in standard machine learning packages (Pedregosa et al.,
2011).

1.1. Literature Review

There has been a line of research work studying the prog-
nostics health modeling with machine learning technology.
Baptista et al. in (Baptista et al., 2016) leveraged Support
Vector Machines (SVM) to estimate the lifetime for mainte-
nance in aeronautics. Experiment results show that the pro-
posed method can have better estimation than traditional au-
toregressive moving average (ARMA) method. Liu et al. in

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

(Liu, Zuo, & Qin, 2016) also leveraged SVM to perform the
health state assessment and remaining useful lifetime (RUL)
prediction modeling for rolling element bearings. The health
states are classified into multiple classes, and individual re-
gression model is separately built for each class to predict the
RUL. Deutsch et al. in (Deutsch & He, 2016) leveraged Re-
stricted Boltzman Machine (RBM) to model vibration data to
predict the RUL of bearings. The feature vectors are manually
designed, with the root mean square function to capture the
bearings degradation over time. However, their deep learn-
ing approach achieved lower accuracy than the particle filter
based approach. One way to improve the accuracy is to use
stacked RBM structure with hyperparameter tuning. Chen et
al. in (Chen, Lucas, Lee, & Buehner, 2015) leveraged neural
network to predict gear failure. Similarly, Yang et al. in (Yang
et al., 2016) leveraged neural network and ensemble multiple
models to predict the remaining useful lifetime of electrical
machines.

Another line of research leveraged deep learning for fault
diagnosis and prognostics. He et al. in (He, He, & Bech-
hoefer, 2016) proposed a deep learning approach for feature
extraction, called large memory storage retrieval neural net-
work (LAMSTAR), to perform bearing fault diagnosis. Babu
et al. in (Babu, Zhao, & Li, 2016) adopted Convolutional
Neural Network (CNN) for RUL estimation in prognostics.
The proposed deep architecture is claimed to learn the high-
level feature efficiently from the low-level raw sensor signals,
which can result in the higher accuracy for RUL estimation.
Gugulothu et al. in (Gugulothu et al., 2017) proposed to use
Recurrent Neural Networks (RNNs) for predicting remaining
useful life of the engine and pump.

However, neither of those previous work considered the hy-
perparamter tuning of the machine learning algorithms for
training the models.

In recent years, automated hyperparameter tuning has been
gaining importance in the machine learning and artificial in-
telligence literature. A basic way to automatically tune hyper-
parmaeters is by the Random Search algorithm (Bergstra &
Bengio, 2012), while more sophisticated Bayesian optimiza-
tion algorithms such as SMAC (Hutter, Hoos, & Leyton-
Brown, 2011) and GP (Srinivas, Krause, Kakade, & Seeger,
2010) are also proposed in the literature. For a survey on
hyper-parameter tuning and its applications, the readers are
welcome to consult the survey (Shahriari, Swersky, Wang,
Adams, & de Freitas, 2016).

1.2. Organization and Notations.

In Section 2, we introduce the concept of hyper-parameters in
constructing machine learning models. In Section 3, we de-
fine the hyper-paramater optimization problem, and outline
Bayesian optimization algorithms and the Random Search
algorithms, which solve the optimization problem to near-

optimality efficiently. In Section 4, we consider the PHM
2016 Data Challenge (PHM, 2016), and we evaluate the ef-
fectiveness of the algorithms in searching for a good hyper-
parameter configuration automatically. Finally, we conclude
in Secoin 5. Throughout the manuscript, we denote R as
the set of real numbers, and denote R≥0 as the set of non-
negative real numbers.

2. HYPER-PARAMETERS FOR MACHINE LEARNING

In this Section, we define the notion of a hyper-parameter
configuration for a machine learning (ML) model, and pro-
vide illustrating examples with well-known ML models.
Then, we define the notion of out-of-sample validation error,
which paths our way to define the hyper-parameter optimiza-
tion problem.

2.1. Machine Learning Models and Hyper-parameters

Let’s consider a supervised machine learning (ML) task in-
volving a collection of training dataset {(X tr

i , y
tr
i )}N

tr

i=1, where
X tr
i ∈ X ⊆ RD is the feature vector of the ith training sam-

ple, ytr
i ∈ Y ⊆ R as the label of the ith training sample, and

N tr is the number of training samples. In the context of ma-
chine health monitoring, feature vector X could be the time
series sensor data measured on a machine part in a time inter-
val, and label y could be the corresponding remaining useful
life. The goal of an ML task is to construct an ML model
M : X → Y , so that the output M(X) accurately predicts
the corresponding label y. The ML model M belongs to a
parameterized class of ML models, and the construction is to
identify an effective choice of the parameters that makes the
ML model M accurate.

The construction procedure A of an ML model M crucially
depends on the training dataset {(X tr

i , y
tr
i )}N

tr

i=1, as well as
the underlying HP-config c. An HP-config c governs the
way M is constructed. For example, an HP-config c deter-
mines the pre-processing procedure on the training dataset
{(X tr

i , y
tr
i )}N

tr

i=1, and the algorithmic details in determining
M , which often involve solving an optimization problem. Al-
together, we express the procedure as a function on both the
training dataset and the HP-config:

A
(
{X tr

i , y
tr
i }N

tr

i=1, c
)
=M.

To provide a more concrete discussion, we illustrate the HP-
configs involved in linear regression models and multi-layer
perceptron models.

Linear regression: A linear regression model MLR is pa-
rameterized by a vector θ ∈ RD. For a given feature vector
X ∈ X ⊆ RD, the model postulates a linear prediction, i.e.
MLR(X) = θ>X , which is the dot product between X,θ.1

1Sometimes, a linear regression model requires appending a “y-intercept”,

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

With a given training dataset {(X tr
i , y

tr
i )}N

tr

i=1, the vector of pa-
rameters θ is the optimal solution of the following empirical
risk minimization problem:

min
θ∈RD

1

N tr

N tr∑
i=1

‖θ>X tr
i − ytr

i ‖2 + κ‖θ‖p. (1)

The regularization term κ‖θ‖p, where (κ, p) ∈ R × [1,∞],
serves to stabilize the optimal solution θ. For example, the
choice of p = 1 corresponds to the LASSO regularization,
and the choice of p = 2 corresponds to the Euclidean regu-
larization.

The HP-config for constructing MLR is cLR = (κ, p), and
the construction procedure ALR({X tr

i , y
tr
i }N

tr

i=1, cLR) involves
solving optimization problem (1) for the parameter vector θ.

Multi-layer perceptrons: A multi-layer perceptron (MLP)
model MMLP is a feed-forward neural network, which inputs
a feature vector X and outputs a prediction MMLP(X) for
the label y. The model MMLP is parameterized by the edge
weights in the network. Each internal node in the network
carries an activation function, which is a uni-variate non-
linear function that takes as input a linearly weighted sum
of the preceding layer’s outputs, and returns a scalar value for
the next layer.

Compared to the case of MLR, the construction of ML model
MMLP involves a more complicated HP-config cMLP. The HP-
config cMLP consists of HPs in the following two categories.
The first category concerns the architecture of the network,
such as the number of layers, the number of nodes in each
layer, as well as the type of activation function in each layer.
The second category concerns the training procedure of the
MLP model. It is well known that an MLP is trained by the
Backward Propagation algorithmAMLP, which is a stochastic
gradient descent algorithm that incrementally adjusts the net-
work weights in a series of iterations. Relevant HPs include
the mini-batch size, the learning rate, etc.

Finally, while the discussions above focus on the HPs regard-
ing the algorithmic details in determining an ML model, an
HP-config could also contain hyper-parameters regarding the
pre-processing of the training dataset, as shown in our study
on the PHM 2016 prognostic challenge in Section 4.

2.2. Out-of-Sample Validation Error

As exemplified in the preceding examples, the choice of
an HP-config has a profound impact on the resulting ma-
chine learning model. More precisely, an HP-config c (to-
gether with the training data) determines the resulting ma-
chine learning model M , which we wish to evaluate its pre-
diction accuracy on a validation dataset. We evaluate the

where θ is appended by a y-intercept θ0, and each feature vector X is
appended by 1.

effectiveness of an HP-config c by considering its out-of-
sample validation error, which is denoted as OOSV(c).

To define OOSV(c), we first denote ` : Y × Y → R≥0 as
the prediction error function, where `(M(X), y) is the pre-
diction error of M(X) on the true label y. For example, for
`(y, y′) = |y−y′|, the error `(M(X), y) is the absolute error
of the prediction M(X) on the label y.

Suppose that we are given a training dataset {(X tr
i , y

tr
i )}N

tr

i=1,
as well as a validation dataset {(Xva

i , y
va
i )}N

va

i=1 that is separate
from the training dataset. For a given HP-config c, the cor-
responding out-of-sample validation error OOSV(c) is equal
to

OOSV(c) :=
1

N va

N va∑
i=1

`(M(Xva
i ), yva

i ),

where M = A({(X tr
i , y

tr
i )}N

tr

i=1, c). Essentially, OOSV(c)
evaluates the performance of the resulting ML model M ,
which is constructed with the training dataset {(X tr

i , y
tr
i )}N

tr

i=1,
on another set of unseen validation data {(Xva

i , y
va
i )}N

va

i=1. To
identify an effective HP-config c, we would like to identify
a c such that OOSV(c) is small by using Bayesian optimiza-
tion algorithms, which are introduced and motivated in the
next section.

3. BAYESIAN OPTIMIZATION FOR HYPER-PARAMETER
OPTIMIZATION

In this Section, we define the hyper-parameter optimiza-
tion problem, and illustrate its intractability. Then, we
outline Bayesian optimization algorithms for solving the
hyper-parameter optimization problem to near-optimality ef-
ficiently, and highlight two prominent Bayesian optimization
algorithms, SMAC and GP. Finally, we also provide the de-
scription of Random Search Algorithm, which is a simple but
effective algorithm for identifying a good HP-config.

Suppose that we are given a fixed training dataset
{(X tr

i , y
tr
i )}N

tr

i=1 and validation dataset {(Xva
i , y

va
i )}N

va

i=1, and
we restrict our search of HP-config c in the search space
C. The hyper-parameter optimization problem is defined as
follows:

min
c∈C

OOSV(c). (2)

Given an optimal solution c∗ to the optimization problem (2),
we can then performA(c∗, {(X tr

i , y
tr
i )}N

tr

i=1), which returns an
ML model M∗, our desired ML model that has a low out-of-
sample error (In particular, a minimum prediction error on the
validation dataset {(Xva

i , y
va
i )}N

va

i=1).

Unfortunately, the optimization problem (2) is usually in-
tractable. Indeed, the search space is typically large. In ad-
dition, the function OOSV is typically not convex nor mono-
tonic in c. Moreover, the evaluation of OOSV could be com-
putationally expensive. For example, in the case of MLP,
the evaluation requires training deep neural networks on the

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

training data, which could be time consuming when the num-
ber of layers is large or when the training dataset is large.
Consequently, it is infeasible to conduct a brute force search,
and to evaluate OOSV on every HP-config c for minimiz-
ing OOSV. This motivates the design of Bayesian optimiza-
tion algorithms, which converge to a near-optimal HP-config
c with a small number of evaluations of OOSV.

To illustrate the idea of Bayesian optimization, we first think
about how a human agent tunes the HP-config for construct-
ing an ML model. Typically, the human agent starts with a
few randomly chosen HP configs to get a sense of how differ-
ent HP-configs perform. After that, the human agent is able
to gain some intuition about the effects of varying different
hyper-parameters. He/she is then able to narrow down the
search space C in his/her subsequent search. For example, in
training MLPs, the human agent could discover certain char-
acteristics about learning rates. For example, it could be taht
the training process always diverges when the learning rate
is higher than 0.3, but always converges when the learning
rate is lower than 0.1. Based on this insight, he/she can fo-
cus on trying various HP-configs with learning rates at most
0.1. While such an effort often leads to a competent choice
of HP-config, the process of extracting such insights is often
laborious, and requires domain knowledge. Is it possible to
automate such a HP-config optimization process, and save the
laborious effort by humans?

Bayesian optimization algorithms provide an answer to the
question above. A Bayesian optimization algorithm is an
online algorithm, which involves evaluating different HP-
configs in iterations. At iteration t, a Bayesian optimization
determines the HP-config ct ∈ C for evaluation, based on the
previously tested HP-configs c1, . . . , ct−1 and their respec-
tive evaluations OOSV(c1), . . . ,OOSV(ct−1). Such a online
decision procedure mirrors the sequential nature of the human
agent, who tries to optimize the choice of HP-config by a se-
ries of trial-and-errors on different HP-configs, as previously
discussed.

We provide the pseudo-codes for a typical Bayesian optimiza-
tion algorithm in Algorithm 1. Essentially, the online selec-
tion of HP-configs c1, . . . , cT ∈ C is guided by the func-
tions ˜OOSV1, . . . , ˜OOSVT , which serve to approximate the
intractable function OOSV. In the end, a Bayesian algorithm
returns a HP-config c∗T , which has the best evaluated function
value of OOSV among the evaluated HP-configs c1, . . . , cT .
To fully specify a Bayesian optimization algorithm, we need
to specify the construction of ˜OOSVt : C → R, which is
an approximation function to the function OOSV : C → R.
The construction is based on {(cs,OOSV(cs)}t−1s=1. The ap-
proximation function ˜OOSVt serves to crystallize the insights
gained in experimenting c1, . . . , ct, similar to how a human
agent extracts insights based on his/her experience on differ-
ent HP-configs in his/her experimentation, as previously dis-

Algorithm 1 Algorithmic framework of Bayesian optimiza-
tion, with T evaluations of OOSV

1: Let ˜OOSV1 : C → R≥0 be a random function.
2: for t = 2, . . . , T do
3: Construct ˜OOSVt based on {(cs,OOSV(cs)}t−1s=1.
4: Compute HP-config ct, which solves

min
c∈C

˜OOSVt(c).

5: Evaluate OOSV at ct, which returns OOSV(ct).
6: end for
7: Return c∗T , where c∗T ∈ {c1, . . . , cT } ⊂ C,

and OOSV(c∗T ) is the smallest among the evaluations
{OOSV(c1), . . . ,OOSV(cT )}.

Algorithm 2 Random Search algorithm with T evaluations
of OOSV

1: for t = 1, 2, . . . , T do
2: Sample HP-config ct uniformly at random from C.
3: Evaluate OOSV at ct, which returns OOSV(ct).
4: end for
5: Return c∗T , where c∗T ∈ {c1, . . . , cT } ⊂ C, and

OOSV(c∗T ) is the smallest among the evaluations
{OOSV(c1), . . . ,OOSV(cT )}.

cussed. By putting forth a Bayesian optimization algorithm,
we automate the HP-config optimization procedure. The con-
struction of ˜OOSVt is based on certain statistical techniques,
hence the name Bayesian optimization algorithms.

There are two prominent ways to construct an approximation
function ˜OOSVt, giving rise to the following two prominent
Bayesian optimization algorithms:

1. SMAC, proposed by (Hutter et al., 2011), which con-
structs the approximation function ˜OOSVt by random
forest regression on {(cs,OOSV(cs))}ts=1 ,

2. GP, proposed by (Srinivas et al., 2010), which constructs
the approximation function ˜OOSVt by combining Gaus-
sian Processes regression on {(cs,OOSV(cs))}ts=1 with
optimistic exploration.

More details about SMAC and GP could be found in the sur-
vey (Shahriari et al., 2016). Finally, apart from Bayesian op-
timization algorithms, the Random Search algorithm is also a
way to compute an efficient HP-config under the intractabil-
ity of the hyper-parameter optimization problem (2), cf. ref-
erence (Bergstra & Bengio, 2012). Essentially the Random
Search algorithm with T evaluations on OOSV simply in-
volves evaluating OOSV on T randomly chosen HP-configs.
Then, the algorithm returns the HP-config with the smallest
value evaluated under OOSV. The Random Search algorithm
is stated in Algorithm 2. While the Random Search algo-
rithm is conceptually simple, it is often inferior compared to
Bayesian optimization algorithms in identifying a competent

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

HP-config, as illustrated in the numerical experiments in the
next Section.

4. HYPER-PARAMETER TUNING FOR MACHINE
HEALTH PROGNOSTIC TASKS WITH PHM 2016
DATASETS

In this Section, we demonstrate the effectiveness of Bayesian
optimization for automating the HP-config optimization of
the machine health prognostic task for the PHM 2016 dataset
(PHM, 2016). We first describe the ML task and the dataset
involved in Section 4.1. Then we describe in Section 4.2 our
construction procedure APHM for constructing an ML model
MPHM for the PHM 2016 Data Challenge task. We also high-
light the HP-config cPHM involved in the construction. Then,
in Section 4.3, we define the hyper-parameter optimization
problem for the task, and also provide the search space CPHM
for the optimization. Finally, we present the numerical results
in Section 4.4.

4.1. Prognostic Task in the PHM 2016 Data Challenge

A brief description of the task. The PHM 2016 data chal-
lenge task involves the investigation of a wafer Chemical-
Mechanical Planarization (CMP) tool that removes material
from the surface of the wafer through a polishing process.
The goal of the task is to predict the average polishing re-
moval rate, based on the sensor data collected during the pol-
ishing process. The challenge task (PHM, 2016) provides a
collection of time-series-label pairs, where each pair records
the sensor data recorded during a polish process.

Data description. The time-series-label pair for the ith pol-
ishing process is denoted as (Xi, yi). The time series data is
expressed by the matrix Xi ∈ R26×Ti , where Ti is the num-
ber of time steps, and there are 26 sensor reading at a time
step.2 Different processes could have different time lengths,
i.e. Ti could vary with different i. The 26 entries include sen-
sor readings such as chamber pressure, usage measure of the
dresser in the wafer CMP tool, etc. For more details, please
consult (PHM, 2016). Finally, the label yi ∈ R≥0 is the av-
erage polishing removal rate in the ith polishing process.

The collection of time-series-label pairs is organized in three
datasets: the training dataset {(X tr

i , y
tr
i )}N

tr

i=1, the test dataset
{(X te

i , y
te
i )}N

te

i=1, and the validation dataset {(Xva
i , y

va
i )}N

va

i=1,
which contain N tr = 1977, N te = 424, N va = 424 time-
series-label pairs respectively. Typically, we have Ti roughly
equal to 300 in each dataset, but the quantity Ti could vary
from pair to pair. The label yi in a time-series-label pair is
typically lies in the range [40, 200].

Objective. The objective of the PHM data challenge task is to
construct a machine learning model MPHM , so that the mean

2The time unit for a time step is not given in the task.

squared error

1

N te

N te∑
i=1

(MPHM(X te
i )− yi)2 (3)

on the test dataset {(X te
i , y

te
i )}N

te

i=1 is minimized.

4.2. Description of Our ML Model Construction Proce-
dure APHM

In this subsection, we define our construction APHM of the
desired machine learning model MPHM, and also explain the
HP-config cPHM involved in the construction. By the defini-
tion of an ML model construction, we have

APHM({(X tr
i , y

tr
i )}N

tr

i=1, cPHM) =MPHM. (4)

Before describingAPHM we first provide a high level view on
the HP-config cPHM. The HP-config cPHM consists of hyper-
parameters in pre-processing the time-series-label-pairs, as
well as the hyper-parameters in tuning the random forest re-
gression model3 used in the construction. In the Appendix,
we replace the random forest regression in APHM by a multi-
layer perceptron model.

Now, the construction procedure APHM is described in the
pseudo-codes in Algorithm 3. The procedure APHM mainly
consists of two steps. First, it involves a pre-processing
step called block decomposition, which transform each time-
series-label pair (X tr

i , y
tr
i ) into a number of block-augmented-

label pairs {(X̃ tr
i,j , ỹ

tr
i,j)}

cnum-block
j=1 . The block decomposition

step serves to extract succinct feature vectors from the time-
series-label pairs. Second, it involves building a random for-
est regression model MRF, where this ML model inputs a
block, and output a prediction on the augmented label. The
procedure APHM finally outputs MRF.

The pre-processing step BLOCKDEC is detailed in Algo-
rithm 4. Essentially, BLOCKDEC extracts a number of blocks
{X̃ tr

i,j}
cnum-block
j=1 from the time series data X tr

i , and attaches an
augmented label ỹtr

i,j to block X̃ tr
i,j . In the algorithm, the no-

tation X[:, a : b] denotes the sub-matrix of X formed by
the columns a, a + 1, . . . , b of X . Essentially, the blocks
{X̃ tr

i,j}
cnum-block
j=1 are 26×cnum-block sub-matrices, where each two

consecutive blocks are tsep time steps apart. The quantity tsep
is chosen such that the blocks are as spread out as possible.
Each block serves as a “snapshot” on the time series of sen-
sor data, and each augmented label serves as a proxy for the
removal rate during the snapshot. We define the augmented
label as ỹtr

i,j = ytr
i , that is, the removal rates across different

blocks are constant. We believe that, with more information
about the wafer CMP tool, we can enrich the augmented la-
bels.

3For a brief introduction to the random forest regression model, please con-
sult (Pedregosa et al., 2011).

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Algorithm 3 ProcedureAPHM for PHM 2016 Data Challenge

1: Input data: training data {(X tr
i , y

tr
i )}N

tr

i=1, where X tr
i ∈

R26×Ti , ytr
i ∈ R.

2: Input HP-config: HP-config c = (cpre, cRF).
3: for i ∈ {1, . . . , N tr} do
4: Compute the Block Decomposition on (X̃ tr

i,j , ỹ
tr
i,j):

{(X̃ tr
i,j , ỹ

tr
i,j)}

cnum-block
j=1 = BLOCKDEC((X tr

i , y
tr
i ), cpre).

5: end for
6: Collate the blocks into one grand dataset

D = {(X̃ tr
i,j , ỹ

tr
i,j)}

cnum-block,N
tr

j=1,i=1 .

7: Construct a random forest regression model MRF on D:

MRF = ARF(D, cRF)

8: Return the random forest regression model MRF.

Finally, we note that the ML model MRF output by procedure
APHM only provide prediction for a block, but not for a time-
series sensor dataX in general. Nevertheless, we can readily
use BLOCKDEC in conjunction with MRF for predicting the
removal rate for a time-series sensor data, as illustrated in
Algorithm 5.

Altogether, we have defined the construction procedureAPHM
in Algorithm 3. It inputs the training dataset {(X tr

i , y
tr
i )}N

tr

i=1

and an HP-config cPHM, and returns a random forest regres-
sion model MRF, which can be used to predict the average
removal rate by Algorithm 5. The out-of-sample validation
error OOSVPHM(cPHM), which is on the validation dataset
{(Xva

i , y
va
i )}N

va

i=1, is defined as follows. First, we compute the
random forest regression model MRF according to equation
(4). Then, for each time series data Xva

i , we compute the
prediction ŷva

i according to Algorithm 5. Finally, we have

OOSVPHM(cPHM) =
1

N va

N va∑
i=1

(ŷva
i − yva

i )
2, (5)

which is the out-of-sample mean squared error on the valida-
tion dataset. This serves to indicate the mean squared error
on the test dataset, which is

TestPHM(cPHM) =
1

N te

N te∑
i=1

(ŷte
i − yte

i )
2.

4.3. Hyper-parameter optimization for the PHM 2016
Data Challenge

After describing APHM and explaining the HP-config cPHM,
we now define the hyper-parameter optimization involved in
the Data Challenge task. We aim to solve the optimization

Algorithm 4 Pre-processing Routine BLOCKDEC

1: Input: a time-series-label pair (X, y), where X ∈
R26×T , y ∈ R.

2: Input HP: cpre = (cnum-block, clen-block).
3: Compute the number of time steps tsep between consecu-

tive blocks:

tsep = bT − cnum-block ∗ clen-block

cnum-block − 1
c.

4: Extract cnum-block blocks, denoted X̃1, . . . , X̃cnum-block ,
which are R26×clen-block sub-matrices of X . Denote
stride = clen-block + tsep. For each j = 1, . . . , cnum-block,
the block X̃j is defined as follows:

X̃j =X[:, (j−1)∗stride+1 : (j−1)∗stride+clen-block].

Note that X̃j ∈ R26×clen-block .
5: For each j ∈ {1, . . . , cnum-block}, define ỹj = y.
6: Output: {(X̃j , ỹj)}cnum-block

j=1 .

Algorithm 5 Using MRF to predict removal rates

1: Input: a time seriesX ∈ R26×T .
2: Decompose X into blocks X̃1, . . . , X̃cnum-block , according

to Algorithm 4.
3: for j ∈ {1, . . . , cnum-block} do
4: Compute ŷj =MRF(X̃j).
5: end for
6: Return the average ŷ = 1

cnum-block

∑cnum-block
j=1 ŷj as the pre-

diction for the true removal rate y.

problem
min

cPHM∈CPHM
OOSVPHM(cPHM), (6)

where the function OOSVPHM is defined in equation (5). The
HP-config search space CPHM is displayed in Table 1. The
search space CPHM is the Cartesian product of the search
ranges shown in Table 1. An HP-config can be retrieved by
taking one element in the search range in each row. Note
that the first two HPs are for the pre-processing procedure
BLOCKDEC. The last four HPs are for the random for-
est regression model MRF. For more details about these
HPs, please consult the documentation from Scikit-Learn
(Pedregosa et al., 2011), a Python package for ML which is
used for our experimentation. It is interesting to note that
there are altogether

7× 5× 51× 9× 10× 9 ≈ 1.446× 106

many HP-configs in the search space CPHM. Such a large
space precludes any possibility of a brute-force search for the
HP-config that minimizes OOSVPHM. In the next Section, we
solve the HP-config optimization problem (6) to near opti-
mality by the Bayesian optimization algorithms SMAC and
GP, as well as the Random Search Algorithm. For each of
these algorithms, we perform 200 function evaluations. We

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Table 1. Table of HP-config search space CPHM for APHM.

HP Search range
cnum-block {2, 3, 4, 5, 6, 8, 10}
clen-block {12, 24, 36, 48, 60}
No. trees {10, 11, . . . , 60}
Max features {”auto”, ”sqrt”, ”log2”, 0.3, 0.4, . . . , 0.8}
Max depth {None, 2, 3, . . . , 10}
Min split {2, 3, . . . , 10}

0 25 50 75 100 125 150 175 200
Iterations

8

9

10

11

12

13

14

15

16

OO
SV

_P
HM

GP
SMAC
Random
Human

Figure 1. OOSVPHM with the best HP-config identified so far.

compare the performance of these algorithms with the default
HP-config defined by a human agent.

4.4. Numerical Results

In this Section, we provide the experiment results on hyper-
parameter optimization on the PHM 2016 Data Challenge
task. From the results, we see that Bayesian optimization
algorithms are able to identify better HP-configs than the de-
fault HP-config set by a human agent, which can be found un-
der the “Human” column in Table 2. Here, the default hyper-
parameters for pre-processing the data are chosen based on a
few trial and errors. The default hyper-parameters for the ran-
dom forest regression model follows (Pedregosa et al., 2011).

First, we consider Figure 1, which provides a macroscopic
view on these algorithms by comparing their out-of-sample
validation errors, and also compares these errors with the val-
idation error under the default HP-config. For each of these
algorithms, we plot the best-so-far out-of-sample validation
errors, which are defined as follows. First, recall that the se-
quence of HP-configs experimented by an algorithm is de-
noted as c1, . . . , cT . Now, for each t ∈ {1, . . . , 200}, we first
identify c∗t ∈ {c1, c2, . . . , ct}, for which OOSVPHM(c∗t ) =
mins∈{1,...,t} OOSVPHM(cs). Thus, OOSVPHM(c∗t ) is the
best out-of-sample validation error achieved by the HP-
configs in {c1, c2, . . . , ct}. Altogether, the sequence of best-

so-far out-of-sample validation errors under an algorithm is
OOSVPHM(c∗1),OOSVPHM(c∗2), . . . ,OOSVPHM(c∗200).

Clearly, for each algorithm, the sequence is a non-increasing
sequence, and the corresponding plotted curve of the best-so-
far out-of-sample errors in Figure 1 drops once the algorithm
identifies a better HP-config than those experimented in pre-
vious iterations.

Figure 1 shows that algorithms GP, SMAC and Random
Search are able to identify better HP-configs (in terms of out-
of-sample errors) as each of these algorithms experiment with
more HP-configs. We see that all three algorithms identify
better HP-configs than the default (in terms of out-of-sample
errors) at the end of 200 function evaluations. Moreover,
Bayesian algorithms GP and SMAC, which conduct exper-
imentation on HP-config in a more principled manner than
the Random Search Algorithm, are able to identify better HP-
config than the Random Search Algorithm.

To shed light on the process of hyper-parameter optimization,
we then proceed to Figure 2. For each of the algorithms, both
the sequence of best-so-far out-of-sample validation errors
{OOSVPHM(c∗t )}200t=1 and the sequence of out-of-sample val-
idation errors {OOSVPHM(ct)}200t=1 are plotted in solid lines
and dots respectively.

We observe that Algorithm GP is the most stable, in the sense
that the sequence of out-of-sample validation errors (plotted
in dots) is close to the sequence best-so-far out-of-sample
validation errors (plotted in a line). Algorithm SMAC also
manifests such a stability. Nevertheless, the Random Search
algorithm is far less stable. The sequence of out-of-sample
validation errors is very far away (from above) compared to
the sequence best-so-far out-of-sample validation errors. This
signifies that Random Search could converge to a competent
HP-config slowly, different from Bayesian optimization algo-
rithms.

Next, in Figure 3, we compare the out-of-sample errors
on the validation set (computed by evaluating OOSVPHM)
with the errors on the testing set. For each of algo-
rithms GP, SMAC, Random Search, we plot the sequence
{OOSVPHM(c∗t )}200t=1 for showing the validation errors and
the sequence {TestPHM(c∗t )}200t=1 for showing the testing er-
rors. The plots in Figure 3 shows that the constructed ML
models generalize well, in the sense that the trend of the test-
ing errors follows the trend of the validation errors.

In Figure 4, we provide a comparison of testing errors be-
tween different HP-config optimization algorithms, and com-
pare these errors with the baseline by the default HP-config.
It is demonstrated that all 3 algorithms achieve performance
superior to the human baseline, signifying the value in HP-
config optimization, which automates the process for finding
a competent set of HP-config.

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

0 50 100 150 200
Iterations

8

10

12

14

16

OO
SV

_P
HM

GP - Best so far
GP - Individual

0 50 100 150 200
Iterations

8

10

12

14

16

SMAC - Best so far
SMAC - Individual

0 50 100 150 200
Iterations

8

10

12

14

16

Random - Best so far
Random - Individual

Figure 2. HP-config optimization process on OOSVPHM.

0 50 100 150 200
Iterations

8

10

12

14

16

M
SE

GP-Validation
GP-Testing

0 50 100 150 200
Iterations

8

10

12

14

16
SMAC-Validation
SMAC-Testing

0 50 100 150 200
Iterations

8

10

12

14

16
Random-Validation
Random-Testing

Figure 3. Performance of HP-configs on the validation (evaluated by OOSVPHM) and testing datasets.

0 25 50 75 100 125 150 175 200
Iterations

7

8

9

10

11

12

13

14

Te
st

 M
SE

GP
SMAC
Random
Human

0 25 50 75 100 125 150 175 200
Iterations

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Te
st

 M
AE

GP
SMAC
Random
Human

Figure 4. Mean squared error and mean absolute error on the testing dataset.

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Table 2. Table of HP-configs c∗T identified through automated
HP-config tuning, and a comparison with a HP-config chosen
by a human agent.

GP SMAC Random Human
cnum-block 3 5 5 2
clen-block 48 60 60 12
No. trees 60 24 40 10
Max features ”log 2” ”log 2” ”log 2” ”auto”
Max depth None None None None
Min split 2 6 6 2
Train CV-MSE 8.810 8.755 9.180 9.789
Test MSE 7.639 7.786 7.786 8.842
Test MAE 2.041 2.062 2.062 2.223

Finally, Table 2 provides the competent HP-configs identified
by GP, SMAC, Random Search, as well as the default HP-
config used by a human agent. The default HPs for the ran-
dom forest regression model follow (Pedregosa et al., 2011).

5. CONCLUDING REMARKS

In conclusion, we have introduced hyper-parameter optimiza-
tion and its applications to automatically find a good hyper-
parameter configuration in machine learning tasks for ma-
chine health prognostics. We evaluate hyper-parameter opti-
mization algorithms on the PHM 2016 Data Challenge, which
demonstrate promising results. A future direction is to seek a
way to automate the process of feature selection and feature
engineering by a similar idea.

REFERENCES

Babu, G. S., Zhao, P., & Li, X.-L. (2016). Deep convo-
lutional neural network based regression approach for
estimation of remaining useful life. In International
conference on database systems for advanced applica-
tions (pp. 214–228).

Baptista, M., de Medeiros, I. P., Malere, J. P., Prendinger, H.,
Nascimento Jr, C. L., & Henriques, E. (2016). Im-
proved time-based maintenance in aeronautics with re-
gressive support vector machines. In Annual confer-
ence of the prognostics and healthmanagement society.

Bergstra, J., & Bengio, Y. (2012, February). Random search
for hyper-parameter optimization. J. Mach. Learn.
Res., 13, 281–305.

Chen, Y., Lucas, C., Lee, J., & Buehner, M. (2015). Neural
network-based gear failure prediction in a brushless dc
actuation system. In Proceedings of the annual confer-
ence of the prognostics and health management soci-
ety.

Chollet, F., et al. (2015). Keras. https://keras.io.
Deutsch, J., & He, D. (2016). Using deep learning based ap-

proaches for bearing remaining useful life prediction.
In Annual conference of the prognostics and health
management society.

Gugulothu, N., TV, V., Malhotra, P., Vig, L., Agarwal, P.,
& Shroff, G. (2017). Predicting remaining useful life
using time series embeddings based on recurrent neural
networks. arXiv preprint arXiv:1709.01073.

He, M., He, D., & Bechhoefer, E. (2016). Using deep learn-
ing based approaches for bearing fault diagnosis with
ae sensors. In Annual conference of the prognostics
and health management society.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Se-
quential model-based optimization for general algo-
rithm configuration. In Proc. of lion-5 (p. 507523).

Liu, Z., Zuo, M. J., & Qin, Y. (2016). Remaining useful life
prediction of rolling element bearings based on health
state assessment. Proceedings of the Institution of Me-
chanical Engineers, Part C: Journal of Mechanical En-
gineering Science, 230(2), 314–330.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., . . . Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

PHM, S. (2016). PHM 2016 Data Challenge.
https://www.phmsociety.org/events/
conference/phm/16/data-challenge.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de
Freitas, N. (2016, Jan). Taking the human out of the
loop: A review of bayesian optimization. Proceedings
of the IEEE, 104(1), 148-175.

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010).
Gaussian process optimization in the bandit setting: No
regret and experimental design. In Proceedings of the
27th international conference on international confer-
ence on machine learning (pp. 1015–1022).

Yang, F., Habibullah, M. S., Zhang, T., Xu, Z., Lim, P., &
Nadarajan, S. (2016). Health index-based prognostics
for remaining useful life predictions in electrical ma-
chines. IEEE Transactions on Industrial Electronics,
63(4), 2633–2644.

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

APPENDIX

6. HYPER-PARAMETER OPTIMIZATION FOR THE
PHM 2016 CHALLENGE TASK WITH MULTI-LAYER
PERCEPTRONS

In this Section, we conduct hyper-parameter optimization by
Algorithms GP, SMAC and Random Search in a similar way
to Section 4. The only difference is that we use multi-layer
perceptrons (MLPs) instead of random forest. Since the ex-
perimental set-up and the results are similar to those in Sec-
tion 4, we only elaborate on the main difference, which is on
the HP-config space.

Here, we consider a two-layer perceptron model. First, we
provide the descriptions for hyper-parameters concerning the
network architecture. The internal layers are layers 1, 2,
while layer 3 is the output layer. For each i = 1, 2, we use
Hidden i to denote the number of nodes in layer i, Activation
i to denote the type of activation function used in the layer,
and Dropout i to denote the dropout rate in the layer. Second,
we provide the description for the hyper-parameters for train-
ing the MLP by the Backward Propagation (BP) algorithm.
Batch size is the number of samples to feed into the BP algo-
rithm every iteration. Learning rate, Decay and Momentum
concern the rate at which the BP algorithm absorbs the in-
formation carried by each mini-batch. For more information
about training neural networks, please consult (Chollet et al.,
2015). The search space for the HP-config optimization task
is provided in Table 3.

0 25 50 75 100 125 150 175 200
Iterations

15

20

25

30

35

40

Va
lid
at
io
n 
M
SE

GP
SMAC
Random
Human

Figure 5. Validation errors with the best HP-config so far.

Finally, the numerical results for hyper-parameter optimiza-
tion for improving MLP models can be found in Figures 5,
6, 7, 8. In general, the discussions for Figures 5, 6, 7, 8 are
similar to the discussions for Figures 1, 2, 3, 4. In addition,
the HP-configs identified by algorithms GP, SMAC, Random
Search as well as the default HP-config by a human agent
are provided in Table 4. The defualt HP-config is identified
through trial and error by a human agent. Interestingly, the
dropout rates should always be kept at 1.

Table 3. Table of Hyper-parameter search space for predict-
ing the average removal rate with MLP models.

HP Search range
cnum-block {2, 3, . . . , 10}
clen-block {2, 4, 8, 16, 24, 32, 64}
Hidden 1 {16, 32, 64, 128, 256, 512}
Activation 1 {”selu”, ”relu”, ”tanh”, ”sigmoid”}
Dropout 1 {1., 0.9, 0.8}
Hidden 2 {16, 32, 64, 128, 256, 512}
Activation 2 {”selu”, ”relu”, ”tanh”, ”sigmoid”}
Dropout 2 {1., 0.9, 0.8}
Activation 3 {”selu”, ”relu”, ”tanh”, ”sigmoid”}
Batch size {4, 8, 16, 24, 32}
Learning rate {0.05, 0.01, 0.008, 0.005, 0.001}
Decay {0., 1e− 6, 1e− 5, 1e− 4}
Momentum {0.9, 0.8, 0.7, 0.6, 0.}

Table 4. Table of HP-configs identified through automated
HP-config tuning, and a comparison with a HP-config chosen
by a human agent. (sigm = sigmoid)

GP SMAC Random Human
cnum-block 10 7 6 9
clen-block 16 24 24 16
Hidden 1 128 128 512 512
Activation 1 ”tanh” ”relu” ”relu” ”sigm”
Dropout 1 1. 1. 1. 1.
Hidden 2 512 256 64 512
Activation 2 ”relu” ”sigm” ”tanh” ”sigm”
Dropout 2 1. 1. 1. 1.
Activation 3 ”selu” ”selu” ”selu” ”selu”
Batch size 4 8 8 24
Learning rate 0.05 0.05 0.01 0.008
Decay 1e-5 1e-4 1e-6 1e-6
Momentum 0.7 0.9 0.8 0.
Train CV-MSE 14.582 13.599 16.725 26.851
Test MSE 13.412 14.708 17.993 28.512
Test MAE 2.837 2.942 3.318 4.138

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

0 50 100 150 200
Iterations

15

20

25

30

35

40

Va
lid

at
io
n 
M
SE

GP - Best so far
GP - Individual

0 50 100 150 200
Iterations

15

20

25

30

35

40 SMAC - Best so far
SMAC - Individual

0 50 100 150 200
Iterations

15

20

25

30

35

40 Random - Best so far
Random - Individual

Figure 6. HP-config optimization process for MLPs.

0 50 100 150 200
Iterations

15

20

25

30

35

40

M
SE

GP-Training
GP-Testing

0 50 100 150 200
Iterations

15

20

25

30

35

40 SMAC-Training
SMAC-Testing

0 50 100 150 200
Iterations

15

20

25

30

35

40 Random-Training
Random-Testing

Figure 7. Performance of HP-configs on the validation and testing datasets under MLP.

0 25 50 75 100 125 150 175 200
Iterations

15

20

25

30

35

40

Te
st
 M
SE

GP
SMAC
Random
Human

0 25 50 75 100 125 150 175 200
Iterations

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Te
st
 M
AE

GP
SMAC
Random
Human

Figure 8. Mean squared error and mean absolute error on the testing dataset under MLP.

11


