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ABSTRACT 

This paper presents a robust real-time aircraft health 

monitoring framework using a machine learning based 

approach, specifically the multivariate Gaussian mixture 

model (mGMM), for the detection of in-air operational 

anomalies of an aircraft system. Sensor fusion and noise 

filtering algorithms have also been adopted to reduce 

dimensionality of the feature space while avoiding the 

elimination of useful information from the original flight 

data. Random noise in each feature, induced by the aircraft 

sensors and data acquisition system, is filtered out using a 

weighted averaging window while maintaining inherent 

variances. The filtered dataset is then fused according to the 

underlying physics of each sensed feature to reduce 

redundant features and subsequently trained using the 

mGMM. The methodology allows monitoring the behavior 

of each feature as well as correlations between features, 

significantly improving detection sensitivity. The high 

computational efficiency of this approach permits real-time 

monitoring of an aircraft system. 

1. INTRODUCTION 

There is an urgent need to develop real-time automated 

system health management (SHM) frameworks to provide 

accurate assessment of aviation safety for both current and 

future aircraft systems. Current aircraft health management 

systems rely on pre-defined subsystem thresholds and binary 

exceedance criterions to identify operational anomalies 

which may not be sufficient and accurate in reflecting the 

current health status of the aircraft. Inflight malfunction of 

aircraft subsystems may lead to lowered flight performances 

and unexpected control issues. In order to maintain high 

standards of operational safety, a high-performance real-time 

monitoring system must be capable of not only detecting the 

state malfunctions but also providing suggestions for 

maintenance to reduce unnecessary downtime of the aircraft 

(Dalton, Cawley, & Lowe, 2001). However, the development 

of an SHM framework for such complex system is 

challenging due to the dynamic interactions of the 

subsystems and systems, which require simultaneous 

individual and networked monitoring and analysis to 

determine global system performance.  

Many studies have been conducted to develop fault detection 

methodologies to ensure system reliability in the presence of 

subsystem anomalies (Oonk, Maldonado, Figueroa, & Lin, 

2012); it should be noted that an anomaly is defined as 

behavior that shows a significant deviation from standard 

system behavior. Model-based fault detection techniques are 
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the most widely used approaches; these are generally 

classified into quantitative and qualitative approaches 

(Venkatasubramanian, Rengaswamy, & Kavuri, 2003; 

Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). 

The quantitative approach explicitly defines the input-output 

relation through state-space models such as Kalman filters 

and observer/parameter estimation-based algorithms (Foo, 

Zhang, & Vilathgamuwa, 2013; P. M. Frank, 1997; Paul M. 

Frank, 1994; Zhao, Liu, & Li, 2017). For example, Gilbert et 

al. (2013) developed extended Kalman filters (EKF) methods 

for sensor fault detection in synchronous motor driver 

applications by estimating the phase currents and rotor speed 

of the motor simultaneously. Zhao et al. (2017) introduced 

observer based dynamic algorithms for fault tolerant control 

(FTC) of a nonlinear system with actuator failures based on 

adaptive dynamic programming (ADP). The qualitative 

approach utilizes a set of if-then-else rules and their 

corresponding inferences that find the consequence based on 

given knowledge, such as digraphs, fault trees and qualitative 

physics (Bartlett, Hurdle, & Kelly, 2009; Sihombing & 

Torbol, 2018). Sihombing and Torbol (2018) proposed a 

parallel fault tree algorithm with a graphical processor unit 

(GPU) computing scheme, providing increased reliability 

and effective identification of failures.  

In addition to model-based algorithms, data driven 

approaches have recently been attracting increased attention 

due to the rapid development of computational power and big 

data analysis techniques; such approaches typically leverage 

sufficient amount of historical information containing system 

features to diagnose and predict the health status. Feature 

extraction and information fusion techniques have been 

extensively developed to address the computation efficiency 

issue associated with the high dimensionality dataset for the 

data-driven methods (Venkatasubramanian et al., 2003); 

some examples are principal component analysis (PCA), 

support vector machine (SVM), and artificial neural networks 

(ANN) (Banerjee & Das, 2012; Sadough Vanini, Khorasani, 

& Meskin, 2014; Samanta & Al-Balushi, 2003; Zhang, Sato, 

& Iai, 2006; Zhou, Zhao, & Cao, 2014). Samanta and Al-

Balshi (2003) developed a neural network approach to 

address the problem of fault diagnostics of rotating bearing 

systems using time-domain vibrational signals in real-time. 

Zhang et al (2006) developed a SHM framework for rapid 

state estimation of large-scale structures by employing 

incremental SVM based regression data-driven models. 

The success of data driven approaches for fault detection has 

also motivated the development of an SHM framework for 

aircraft safety, such as the Flight Operations Quality 

Assurance (FOQA) program designed by the FAA (2004). In 

this program, exceedance analysis was used to identify the 

fault conditions based on the state of each flight parameter, 

such as engine fan speed, control surface position, engine 

power plant performance, etc. For detailed investigation of 

discrete flight parameters, longest common subsequence 

(LCS) and sequence clustering techniques were developed 

(S. Budalakoti, Srivastava, & Akella, 2006; Suratna 

Budalakoti, Srivastava, & Otey, 2009); such discrete flight 

parameters, e.g. flip position, shows fast estimation due to its 

beneficial characteristics of sequential data. The outlier 

detection algorithm represents another class of fault detection 

method that shows promising effectiveness and efficiency. 

For example, the distance based (DB) outlier algorithm was 

employed to detect anomaly conditions based on the 

investigation of the extreme values that deviate from 

observations in the training examples using clustering 

methods such as k-nearest neighbor (Bay & Schwabacher, 

2003; Knorr, Ng, & Tucakov, 2000). The major advantages 

of the DB outlier algorithm are that no explicit distribution is 

required to establish abnormal conditions which significantly 

reduces computational cost, and no strict limit on feature 

dimensionality is applied. For further improving the detection 

accuracy, kernel functions are typically used for feature space 

transformation to obtain a better representation of the 

monitored system. Multiple kernel anomaly detection 

(MKAD) algorithms (Das, Oza, Matthews, & Srivastava, 

2007), where a combination of multiple kernel functions are 

used to construct the feature space, are shown to be suitable 

for monitoring complex systems. Lishuai Li et al. (2015) 

suggested clustering-based anomaly detection method, 

known as clusterAD-flight, to automatically detect faulty 

conditions based on routine airline flights, outperforming the 

MKAD approach. Schwabacher, Oza, and Matthews (2009) 

summarized widely used unsupervised anomaly detection 

algorithms and demonstrated their performance under 

different anomaly conditions.  

Although many SHM techniques for fault detection have 

been developed, there is still a need for a fully integrated 

framework for safety monitoring of an in-air aircraft system; 

such a framework is expected to explicitly monitor the 

performance of each sub-system and accurately estimate 

performance of the complete aircraft system using 

appropriate metrics. Furthermore, sufficient computational 

efficiency is required for fulfilling the demand of on-board 

real-time monitoring and provide safety guidelines under 

faulty conditions at early stages. Motivated by these issues, 

this paper presents a robust real-time in-air SHM framework 

for the detection of operational anomalies using a 

multivariate Gaussian mixture model (mGMM). Before 

training the model, random noises contained in sensing signal 

are filtered using a weighted averaging window, and the 

redundant features are combined to eliminate dependency 

which is a requirement for the use of the mGMM model. The 

methodology is validated using flight data captured through 

a commercial flight simulator with pre-defined faults. 

Implementing the developed framework on available airline 

flight datasets, outliers in the real airline flight data are also 

flagged and investigated. 
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2. METHODOLOGY 

2.1. Historical Data 

In this research, the analysis is performed using Flight data 

recorder (FDR) information containing on-board aircraft 

sensor data from commercial flights of the four-engined 

Boeing 747-400 which is publicly available at the National 

Aeronautics and Space Administration (NASA) DASHlink 

network. The chosen data corresponds to 186 flight 

parameters that are categorized into two classes, based on 

their features, discrete and continuous. The discrete flight 

parameters are integers denoting either an on-off state such 

as landing gear up/down, or a flight status including taking-

off, cruising, etc.; the continuous flight parameters include 

body longitudinal acceleration, position of rudder in degrees, 

aileron degree and elevator degree, and engine exhaust gas 

temperature, etc. that are obtained by the on-board sensors 

and can represent the performance of the aircraft. Therefore, 

these flight parameters are used to monitor the current 

condition of aircraft system in this research. Random noise 

induced by aircraft sensors and the data acquisition system in 

each feature is filtered through a weighted averaging window 

while maintaining inherent variances. A robust version of 

local regression weight linear least square (LOESS) method, 

available in MATLAB, is used and the window size is set to 

be 0.2% of the total number of data points. The redundant 

features are fused to further improve the accuracy and 

efficiency. For example, the exhausted gas temperature 

values are averaged into a signal value, since they come from 

four engines separately, which are identical under most of 

conditions.  

2.2. Live Data Generation 

Although a massive dataset from the FDR of passenger 

aircrafts is available, the majority of this information pertains 

to a healthy flight condition. To perform fault diagnosis 

however, datasets relating to fault conditions must be present 

to train and validate the diagnosis algorithms. Such datasets 

might be obtained from real-world aircraft fault case reports 

such as the National Transportation Safety Board (NTSB) 

reports which cover civil transportation accidents including 

aviation incidents. However, these reports are primarily text 

based and the avionics data is rarely released or detailed.  

Alternatively, these datasets may be simulated using flight 

simulators that have the ability to simulate realistic flight 

scenarios with specified faults. In this work, the commercial 

desktop flight simulator X-Plane-11 is used to simulate the 

four-engine Boeing 747-400, which is a wide-body 

commercial passenger jet airliner, at a constant altitude 

cruising flight phase with realistic weather conditions and 

faults. The simulation conditions are representative of a real 

flight phase. Once the aircraft is cruising at the desired flight 

level various autopilot controls maintain the aircraft speed, 

heading, and altitude that are programmed using the in-plane 

flight management computer (FMC). To obtain the training 

datasets, flight parameters from the simulator is written to a 

comma separated value (CSV) file during the cruising flight 

phase. For real-time validation of the fault diagnosis 

algorithm, the flight parameters from the simulator are 

streamed in real time into MATLAB using a user datagram 

protocol (UDP) connection that allows communication 

between the two applications. The backend machine learning 

algorithm then processes the data in MATLAB and diagnoses 

faults in real-time. With this approach, faults can be detected 

as soon as they occur and the delay between fault occurrence 

and detection is used as an efficiency metric for the 

algorithm. Additionally, only a subset of the available flight 

parameters in X-Plane are considered since the simulated 

data of the rest of the flight parameters vary substantially 

from observed real datasets. Only 20 flight parameters, which 

are the same as those obtained from NASA DASHlink 

network with a deviation of 5% from the equivalent real 

datasets, are considered for training and validation purposes. 

2.3. Learning and Anomaly Detection Algorithm 

Accuracy and efficiency are both critical in a real-time in-air 

fault detection system. The proposed fault detector should be 

able to provide an early alarm to the pilot and control tower 

in the event of an anomaly, even if the standard operational 

threshold(s) of certain aircraft part(s) provided by their 

vendors are maintained. Second, the dimensionality of the 

recorded aircraft data is massive; comprising over 150 

different features from sensors at multiple locations. Hence, 

it is a challenge to maintain computational efficiency in both 

training and detection phases for real-time analysis. 

Considering these issues, an mGMM has been developed as 

a real-time fault detector for the aircraft system considered in 

this work. Gaussian mixture based methodologies have been 

proven to be accurate and efficient for detecting anomalies in 

many applications, such as batch process (Chen & Zhang, 

2010), semiconductor manufacturing (Yu, 2011), and 

induction machines (Lemos, Caminhas, & Gomide, 2010). 

The primary advantage of the mGMM over the general 

Gaussian mixture model is that not only the distribution of 

every attribute, i.e., sensing feature, but also the correlation 

between attributes can be interpreted through the training 

process. The formulations of the Gaussian mixture model and 

the mGMM are introduced next. 

The vector containing all sensing features at the 𝑖𝑡ℎ 

synchronized time step is defined as 𝑥𝑗
(𝑖)

, where 𝑗 =

1, 2, … , 𝑛, and 𝑛 is the number of features. It is assumed that 

each feature follows an identical Gaussian distribution so that 

the probability density function of each feature is expressed 

as 𝑝(𝑥𝑗 ; 𝜇𝑗 , 𝜎𝑗
2) , where 𝜇𝑗  and 𝜎𝑗

2  are mean and standard 

deviation of feature 𝑗 . Hence, the global safety density 

estimation function for a general Gaussian mixture model can 

be expressed as 
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𝑝(𝑥) = ∏ 𝑝(𝑥𝑗; 𝜇𝑗, 𝜎𝑗
2)

𝑛

𝑗=1

 (1) 

Importing the Gaussian distribution function, it can be 

expressed as  

𝑝(𝑥) = ∏
1

√2𝜋𝜎𝑗

exp (−
(𝑥𝑗 − 𝜇𝑗)

2

2𝜎𝑗
2 )

𝑛

𝑗=1

 (2) 

In order to consider the correlation between attributes, 

mGMM implements the covariance matrix 𝚺  into Eq. (2) 

instead of multiplication of standard deviations among 

attributes. Hence, the global safety density estimation 

function for an mGMM can be expressed as 

𝑝(𝒙; 𝝁, 𝚺)

=
1

√2𝜋|𝚺|
exp (−

1

2
(𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)) (3) 

where 

𝝁 =
1

𝑚
∑ 𝒙𝑖

𝑚

𝑖=1

 (4) 

and 

𝚺 =
1

𝑚
∑(𝒙𝑖 − 𝝁)(𝒙𝑖 − 𝝁)𝑇

𝑚

𝑖=1

 (5) 

where 𝑖 = 1, 2, … , 𝑚, and 𝑚 is the number of samples. To 

maintain computational efficiency, the mGMM is formulated 

in a vectorized computation scheme. As a result, the notations 

in bold in Eq. (3) to (5) are the vectors that contain all the 

features with dimension 𝑛 from the aircraft. For clarification, 

𝒙, 𝝁 and 𝚺 have the dimension of 1× 𝑛 , 1× 𝑛  and 𝑛 × 𝑛 , 

respectively. Comparing mGMM model with GMM model, 

mGMM is a generalized formulation of GMM, and Gaussian 

mixture model is a specific case of mGMM, whose 

covariance matrix just contains non-zero values at diagonal, 

i.e., 𝜎𝑗
2 . The vector containing the labels of all samples is 

denoted 𝒚. For each sample, 𝑦𝑖  is defined as a binary variable 

as follows. 

𝑦𝑖 = {
   1                𝑖𝑓 𝑝(𝒙𝑖; 𝝁, 𝚺) < 𝜀

−1               𝑖𝑓 𝑝(𝒙𝑖; 𝝁, 𝚺) ≥ 𝜀
 (6) 

where 1 and -1 represent normal flight conditions and 

anomalies, respectively. The threshold 𝜀 is defined using a 

cross-validation process by optimizing the F-1 score that is 

expressed as 

𝐹1 = 2
𝑃𝑅

𝑃 + 𝑅
 (7) 

where 𝑃  and 𝑅  are the precision and recall of developed 

model, respectively, and can be expressed as 

𝑃 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8) 

and 

𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (9) 

The true positive represents successful prediction of an actual 

fault case; the number of predicted positive is the total 

number of cases that are predicted as faults; the actual 

positive is the number of cases representing real faults. 

3. RESULTS AND DISCUSSION 

3.1. Real-time Monitoring using Simulated Dataset 

The parameters in the cruising phase are extracted as 

mentioned earlier. For a direct comparison with the real 

dataset, 20 features including engine core speed, fan speed, 

exhaust gas temperature, engine oil temperature, etc., are 

selected as representatives of aircraft performance, and the 

altitude is maintained within the range of 29,000 to 30,000 

feet in the simulations presented here. For training and F1 

score based validation, 7000 samples are simulated as normal 

operations, while 140 samples are simulated as anomalies 

that include: a) electrical failure of a full authority digital 

engine (or electronics) control (FADEC); b) oil pump fault; 

c) engine stall fault; d) engine driven hydraulic pump fault; 

e) slow depressurization; f) generator fault; g) engine fire. 

After training the mGMM model and obtaining the threshold 

from the cross-validation process, the test set with two 

separate anomaly cases are investigated: oil pump and 

compressor stall faults. With the developed live data 

streaming platform, the trained model monitors the aircraft 

performance while the flight simulation is running. 

 
(a) 
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(b) 

Figure 1. (a) Oil temperature and (b) health state monitoring 

of aircraft under oil temperature fault.  

 
(a) 

 
(b) 

Figure 2. (a) True airspeed and (b) health state monitoring 

of aircraft under compressor stall fault. 

 

The results from the developed model with the simulated 

aircraft anomalies are investigated next. The aircraft states 

are defined using binary values, “1” indicates the healthy 

state (normal operation state), which is defined as the current 

performance of the monitored aircraft, and “-1” represents an 

anomaly (consistent with Eq. (6)). The alarm delays, which 

is defined as the time difference between the occurrence and 

the detection of the fault, are also assessed. The oil 

temperature of the aircraft during the simulated oil 

temperature faults, which leads to a sudden increase in oil 

temperature, is presented in Figure 1(a).  As shown in Figure 

1(b), such a fault is detected by the developed model with a 

three-second alarm delay. Additionally, the compressor stall 

fault is shown in Figure 2(a), which introduces a drop in true 

airspeed. This fault is also successfully detected, as shown in 

Figure 2(b), with a one-second alarm delay. 

3.2. Operational Anomaly Detection using Airline 

Dataset 

A total of 458 flights from the FDR datasets are investigated 

in this study. The parameters in the cruising phase are 

extracted; same parameters and altitude as mentioned in 

Section 3.1 are selected for a direct comparison with the 

simulated dataset; this results in a sample size of 732,000. 

Due to the high dimensionality of the dataset, the scale of the 

global performance probability value is very small. 

Therefore, the distribution of global performance probability 

is investigated in a logarithmic scale for enhanced 

visualization, as shown in Figure 3. It should be noted that 

the F-1 score based cross-validation method is not possible to 

be used to find the threshold of this dataset, since the status 

of health of the dataset is not labeled. Therefore, to 

investigate the cases that possess the largest deviation 

compared with the normal operations, a threshold of -200 is 

selected, and the distribution of samples that fall out of this 

margin are illustrated in Figure 3 in a zoom-in plot. The 

sampling points whose probabilities are less than -200 in 

logarithmic scale are regarded as the moments when the 

aircraft are under abnormal operations; such sample points 

are found to be in three out of 458 flights.  

 

 

Alarm delay: 3s

1 :  Healthy     -1:  Faulty

1 :  Healthy     -1:  Faulty

Alarm delay: 1s



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

 
Figure 3. Logarithmic scale distribution of global 

performance probability with a zoom-in view of the region 

less than -200. 

 

To understand the cause of the detected anomalies, the 

aircraft dynamic behavior associate with these three flights 

are investigated. Interestingly, the cruising phases of these 

three cases show the same tendencies. To illustrate the 

behavior of these flights, the angle of attack, pitch angle, 

body longitudinal acceleration, flight path acceleration, and 

power lever angle of one of the flights with anomalies are 

investigated. The parameters and their relationships are 

shown in Figure 4 and the results are presented in Figure 5 to 

Figure 9. It is found that the angle of attack has a sudden leap, 

marked in red, and the angle between the longitudinal and 

horizontal planes of the aircraft body increases, as shown in 

Figure 5 and Figure 6. Consequently, the body longitudinal 

acceleration and flight path acceleration experience sudden 

drops as shown in Figure 7 and 8. It is also observed that the 

pilot, probably due to the encounter of turbulence, reduces 

the power lever angle, as shown in Figure 9, which might be 

the reason for reduction in acceleration and increase in angle 

of attack. 

 
Figure 4. Demonstration of flight parameters that are 

described in Figure 5 to Figure 9. 

 

 

 

 
Figure 5.  Angle of attack under anomalies. 

 

 
Figure 6. Pitch Angle under anomalies. 

 

 
Figure 7. Body longitudinal acceleration under anomalies. 
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Figure 8. Flight path acceleration under anomalies. 

 

 
Figure 9. Power lever angle under anomalies. 

4. CONCLUSION 

A robust real-time in-air health monitoring framework, using 

a multivariate Gaussian mixture model (mGMM), has been 

developed for the detection of operational anomalies. Sensor 

fusion and noise filtering methodologies have also been 

utilized to reduce dimensionality and avoid eliminating 

useful information of flight dataset. A cross-validation model 

has been used to effectively identify the threshold of global 

performance of aircrafts. In order to assess the capability of 

real-time monitoring, a virtual platform has been developed 

by combining X-Plane flight simulator and UDP connection 

with MATLAB. The results showed high accuracy in 

detecting the pre-defined faults with very short alarm delays. 

The accuracy of this framework has also been demonstrated 

using available airline FDR datasets from NASA’s 

DASHlink network; the results showed robustness in 

detection of the operational anomalies in cruising phase. The 

methodology developed is computationally efficient, which 

will enable real-time monitoring of aerospace vehicles.  

Additionally, both behavior of each feature and correlations 

between features can be monitored, which significantly 

improves detection sensitivity. Future work will focus on the 

operational anomaly detection in other flight phases such as 

take-off and landing. 

ACKNOWLEDGEMENT 

The research reported in this paper was supported by funds 

from NASA University Leadership Initiative program 

(Contract No. NNX17AJ86A, Project Officer: Dr. Kai 

Goebel, Principal Investigator: Dr. Yongming Liu). The 

support is gratefully acknowledged. 

REFERENCES 

Banerjee, T. P., & Das, S. (2012). Multi-sensor data fusion 

using support vector machine for motor fault detection. 

Information Sciences, 217, 96–107. 

https://doi.org/10.1016/j.ins.2012.06.016 

Bartlett, L. M., Hurdle, E. E., & Kelly, E. M. (2009). 

Integrated system fault diagnostics utilising digraph and 

fault tree-based approaches. Reliability Engineering and 

System Safety, 94(6), 1107–1115. 

https://doi.org/10.1016/j.ress.2008.12.005 

Bay, S. D., & Schwabacher, M. (2003). Mining distance-

based outliers in near linear time with randomization and 

a simple pruning rule. Proceedings of the Ninth ACM 

SIGKDD International Conference on Knowledge 

Discovery and Data Mining - KDD ’03, 29. 

https://doi.org/10.1145/956750.956758 

Budalakoti, S., Srivastava, A. N., & Akella, R. (2006). 

Discovering atypical flights in sequences of discrete 

flight parameters. Aerospace Conference, 2006 IEEE, 1–

8. https://doi.org/10.1109/AERO.2006.1656109 

Budalakoti, S., Srivastava, A. N., & Otey, M. E. (2009). 

Anomaly detection and diagnosis algorithms for discrete 

symbol sequences with applications to airline safety. 

IEEE Transactions on Systems, Man and Cybernetics 

Part C: Applications and Reviews, 39(1), 101–113. 

https://doi.org/10.1109/TSMCC.2008.2007248 

Chen, T., & Zhang, J. (2010). On-line multivariate statistical 

monitoring of batch processes using Gaussian mixture 

model. Computers & Chemical Engineering, 34(4), 500–

507. 

https://doi.org/http://dx.doi.org/10.1016/j.compchemen

g.2009.08.007 

Dalton, R. P., Cawley, P., & Lowe, M. J. S. (2001). The 

potential of guided waves for monitoring large areas of 

metallic aircraft fuselage structure. Journal of 

Nondestructive Evaluation, 20(1), 29–46. 

https://doi.org/10.1023/A:1010601829968 

Das, S., Oza, N. C., Matthews, B. L., & Srivastava, A. N. 

(2007). Multiple Kernel Learning for Heterogeneous 

Anomaly Detection: Algorithm and Aviation Safety 

Case Study Categories and Subject Descriptors, 47–55. 

https://doi.org/0.1145/1835804.1835813 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

8 

Federal Aviation Administration. (2004). Advisory Circular 

120-82 Flight Operational Quality Assurance. Area. 

https://doi.org/AFS-800 AC 91-97 

Foo, G. H. B., Zhang, X., & Vilathgamuwa, D. M. (2013). A 

sensor fault detection and isolation method in interior 

permanent-magnet synchronous motor drives based on 

an extended kalman filter. IEEE Transactions on 

Industrial Electronics, 60(8), 3485–3495. 

https://doi.org/10.1109/TIE.2013.2244537 

Frank, P. M. (1994). Enhancement of robustness in observer-

based fault detection. International Journal of Control, 

59(4),955–981. 

https://doi.org/10.1080/00207179408923112 

Frank, P. M. (1997). Survey of robust residual generation and 

evaluation methods in observed-based fault detection 

systems. Journal of Process Control, 7(6), 403–424. 

Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-

based outliers: algorithms and applications. The Journal 

on Very Large Data Bases, 8(3–4), 237–253. 

https://doi.org/10.1007/s007780050006 

Lemos, A., Caminhas, W., & Gomide, F. (2010). Fuzzy 

multivariable gaussian evolving approach for fault 

detection and diagnosis. Lecture Notes in Computer 

Science (Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 6178 

LNAI, 360–369. https://doi.org/10.1007/978-3-642-

14049-5_37 

Li, L., Das, S., John Hansman, R., Palacios, R., & Srivastava, 

A. N. (2015). Analysis of Flight Data Using Clustering 

Techniques for Detecting Abnormal Operations. Journal 

of Aerospace Information Systems, 12(9), 587–598. 

https://doi.org/10.2514/1.I010329 

Oonk, S., Maldonado, F. J., Figueroa, F., & Lin, C.-F. (2012). 

Predictive Fault Diagnosis System for Intelligent and 

Robust Health Monitoring. Journal of Aerospace 

Computing, Information, and Communication, 9(4), 

125–143. https://doi.org/10.2514/1.54961 

Sadough Vanini, Z. N., Khorasani, K., & Meskin, N. (2014). 

Fault detection and isolation of a dual spool gas turbine 

engine using dynamic neural networks and multiple 

model approach. Information Sciences, 259, 234–251. 

https://doi.org/10.1016/j.ins.2013.05.032 

Samanta, B., & Al-Balushi, K. R. (2003). Artificial neural 

network based fault diagnostics of rolling element 

bearings using time-domain features. Mechanical 

Systems and Signal Processing, 17(2), 317–328. 

https://doi.org/10.1006/mssp.2001.1462 

Schwabacher, M., Oza, N., & Matthews, B. (2009). 

Unsupervised Anomaly Detection for Liquid-Fueled 

Rocket Propulsion Health Monitoring. Journal of 

Aerospace Computing, Information, and 

Communication, 6(7), 464–482. 

https://doi.org/10.2514/1.42783 

Sihombing, F., & Torbol, M. (2018). Parallel fault tree 

analysis for accurate reliability of complex systems. 

Structural Safety, 72, 41–53. 

https://doi.org/10.1016/j.strusafe.2017.12.003 

Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. 

(2003). A review of process fault detection and diagnosis 

part II: Qualitative models and search strategies. 

Computers and Chemical Engineering, 27(3), 313–326. 

https://doi.org/10.1016/S0098-1354(02)00161-8 

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & 

Yin, K. (2003). A review of process fault detection and 

diagnosis Part III: Process history based methods. 

Computers & Chemical Engineering, 27(3), 293–311. 

https://doi.org/10.1016/S0098-1354(02)00160-6 

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & 

Kavuri, S. N. (2003). A review of process fault detection 

and diagnosis part I: Quantitative model-based methods. 

Computers and Chemical Engineering, 27(3), 293–311. 

https://doi.org/10.1016/S0098-1354(02)00160-6 

Yu, J. (2011). Fault Detection Using Principal Components-

Based Gaussian Mixture Model for Semiconductor. 

IEEE Transactions on Semiconductor Manufacturing, 

24(3), 432–444. 

https://doi.org/10.1109/TSM.2011.2154850 

Zhang, J., Sato, T., & Iai, S. (2006). Support vector regression 

for on-line health monitoring of large-scale structures. 

Structural Safety, 28(4), 392–406. 

https://doi.org/10.1016/j.strusafe.2005.12.001 

Zhao, B., Liu, D., & Li, Y. (2017). Observer based adaptive 

dynamic programming for fault tolerant control of a class 

of nonlinear systems. Information Sciences, 384, 21–33. 

https://doi.org/10.1016/j.ins.2016.12.016 

Zhou, Z., Zhao, J., & Cao, F. (2014). A novel approach for 

fault diagnosis of induction motor with invariant 

character vectors. Information Sciences, 281, 496–506. 

https://doi.org/10.1016/j.ins.2014.05.046 

 


