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ABSTRACT

For more than twenty years, we have witnessed a continuous
and significant growth in the scope and quality of research in
Prognostics and Health Management (PHM). Prognostic al-
gorithms and risk assessment metrics naturally play a critical
role in this regard, since they provide the necessary informa-
tion to take preventive measures and avoid catastrophic sys-
tem failures. Unfortunately, the problem of failure prognos-
tics has been treated many times from a heuristic, and mostly
intuitive, standpoint. Indeed, the PHM community has of-
ten validated contributions to the state-of-the-art solely based
on the performance experienced under specific run-to-failure
experiments, and accepted lack of mathematical rigor in the
formulation of the prediction problem itself. In this paper, we
revisit the fundamentals of the prognostic problem, providing
constructive criticism to inconsistencies found in approaches
that have been adopted by many researchers within the PHM
community. In addition, we propose a rigorous mathematical
framework for failure prognostics, introducing failure prob-
ability measures for both discrete- and continuous-time dy-
namical systems that truly formalize the prognostic problem.
We further discuss the philosophical implications of these
novel notions in the context of a paradigm change, using as an
illustrative example the problem of Lithium-Ion battery con-
dition monitoring.

NOMENCLATURE

Ω Sample space
B σ-algebra
P(·) Probability mass function
p(·) Probability density function
τF Time-of-Failure

David Acuña et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Hτ Operative system condition at time τ
Fτ Catastrophic system failure at time τ
hF (·) Hazard zone function
F (·) System failure function
PA(·) Acuña’s probability mass function
pA(·) Acuña’s probability density function
RA(·) Acuña’s risk function

1. INTRODUCTION

Systems failure has been a topic of great relevance that has
been capturing the attention of researchers, and specially
from military and industrial sectors, from the early 60’s.
Given the complexity of equipment and industrial processes,
and the operational cost associated with failures and malfunc-
tion, it was required to systematically address these issues to
include aspects such as reliability, maintainability, and safety.
Traditional reliability engineering emerged to fulfill these re-
quirements throughout the development of different methods
and tools (Birolini, 2007).

Traditional reliability engineering considered a probabilistic
framework from a “frequentist” standpoint (Yang & Xue,
1996; Lall, Pecht, & Harkim, 1997; Pecht, Das, & Ra-
makrishnan, 2002; Girish, Lam, & Jayaram, 2003; Vichare,
Rodgers, Eveloy, & Pecht, 2004; Chen & Zheng, 2005;
Kharoufeh & Cox, 2005; Xu & Zhao, 2005): Provided that
several statistically identical items (equipment, components,
or systems) initiate operation at the same moment, then the
probability of successfully accomplishing their purpose along
a stated time interval (i.e., the reliability function) can be esti-
mated as the ratio among the number of items that succeeded
the purpose over the total amount items (because of the Law
of Large Numbers).

Even though the hypothesis of statistically identical items (or
independent identically distributed, i.i.d.) adopted by tradi-
tional reliability may be accepted as a good approximation in
some particular cases, it does not apply in general because
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constructing exact copies of an item is not possible at all:
there are always unit-to-unit differences even in series pro-
duction. Moreover, the marginal cost associated to each unit
in series (or mass) production is typically small compared to,
for example, cases in which the product involves certain cus-
tomization (e.g., satellites or aircraft). In cases where the pro-
duction is limited to a few dozens, and mainly due to the com-
plexity of these systems, it seems impossible to hold on to the
Law of Large Numbers (or to find two statistically identical
systems). In these cases, traditional reliability approaches are
not suitable and, thus, a different approach that accounted for
the reliability or system health is required.

Prognostics and Health Management (PHM) is a modern en-
gineering discipline that aims at supervising and maintaining
the operative continuity of industrial processes, considering
its subtleties and particularities, and assuring system safety
and quality of end products. It is important to distinguish be-
tween two general branches embraced by PHM, which are
fault diagnosis and failure prognosis. Fault diagnosis, on the
one hand, is related to system monitoring through the detec-
tion and isolation of faults in a given system. Fault prognosis,
on the other hand, is concerned with the estimation of the
Remaining Useful Life (RUL) or Time-of-Failure (ToF) of a
faulty system. The latter is achieved by analyzing the evolu-
tion in time of system states alongside a characterization of all
associated uncertainty sources. One of the main differences
among traditional reliability centered analysis and PHM re-
sults from the manner in which systems are conceived. In
the former case (traditional reliability), prognostics provide
information about the operation of several, brand new or re-
cently fixed, statistically identical pieces of equipment that
are treated as samples from a given probability distribution
(simplifications allow to use historical data for this purpose).
In the latter case (PHM), however, we have an unique piece
of equipment that is being specifically supervised. Monitor-
ing, in PHM, requires the implementation of online (or, at
least, real-time) procedures, so that an optimal maintenance
policy could be implemented; i.e., Condition-Based Mainte-
nance (CBM).

2. FAILURE PROGNOSTICS FROM THE STANDPOINT OF
THE PHM COMMUNITY

PHM researchers had to face the problem of failure prognos-
tics subject to strong constraints on the amount and quality of
data. Most complex systems where it is worth to implement
PHM methods have high cost associated with the occurrence
of a catastrophic failure. Therefore, failure data is scarce and
there are financial and safety constraints on the design run-to-
failure experiments. This fact has led to a biased standpoint
and a incorrect adoption of the prognosis notion that has been
-unintentionally- accepted for more than two decades. This
section intends to expose the most critical weaknesses asso-
ciated with some notions about failure prognosis. Notions

that may have seemed right at a first glance (and thus, widely
accepted), although theoretically incorrect.

2.1. The assessment of failure prognostic algorithms

The assessment of failure prognostic algorithms typically fol-
lows standard procedures where we measure the capability
of “guessing” the actual failure time in run-to-failure experi-
ments. In this regard, it would be interesting to wonder if it is
possible to use the failure time recorded on those experiments
as the “ground truth”. Depending on whether we use deter-
ministic or a probabilistic approaches to failure prognostics,
the answer may differ significantly. The output of determinis-
tic approaches is a number, a failure time, so in those cases we
may assume that the failure time in experiments is the ground
truth. Notwithstanding, the output of probabilistic prognostic
algorithms is a sequence of probability distributions for the
system state; each element of the sequence characterizing the
uncertainty associated with the health indicator at specific fu-
ture time instants (inducing a failure probability distribution
on the time axis). Therefore, how could we even assess the
performance of probabilistic prognostic algorithms if an ex-
periment only provides a single realization of the associated
stochastic process? Would it be right to compare probability
distributions to a single realization (i.e., a Probability Den-
sity Function (PDF) vs. a number)? Many performance met-
rics for prognostic algorithms have, in vain, tried to provide
a valid answer to the latter inquiry. We will provide a formal
and rigorous answer to this question.

2.2. Inconsistencies in the classic formulation of failure
prognosis problem

The failure prognosis problem can be defined in a number of
ways. Nonetheless, the mainstay in all of them is the concept
of Time-of-Failure (ToF).

Definition 1. [Time-of-Failure (widely accepted definition)]
The time of the first system failure τF is currently defined as

τF := inf{k ∈ N : System Failure at k}.

Note that there are some other notions available in the litera-
ture such as Time-to-Failure (TtF), End-of-Life (EoL), or Re-
maining Useful Life (RUL), which may be equivalent to the
ToF in terms of logical/mathematical implications. There-
fore, below we only discuss and analyze the consistency of
the ToF definition already introduced.

Bayesian approaches (Doucet, de Freitas, & Gordon, 2001)
constitute a suitable option for online characterization of un-
certainty sources and degradation processes that affect the
condition of nonlinear dynamic processes, via a state-space
representation. In this regard, let us consider {Xk, k ∈ N}
a first order Markov process denoting a nx-dimensional sys-
tem state vector with initial distribution p(x0) and transition
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probability p(xk|xk−1). Also, let {Yk, k ∈ N \ {0}} de-
note ny-dimensional conditionally independent noisy obser-
vations. Then,

xk = f(xk−1, ωk−1) (1)
yk = g(xk, νk), (2)

where ωk and νk denote independent, not necessarily Gaus-
sian, random vectors.

Considering kp as the time at which prognostics are executed,
this stochastic state-space representation of the system is used
later to compute the cumulative probability of the ToF (as
understood in Definition 1):

P(τF ≤ k) ∝
∫
Rnx
P(failure|xk)p(xk|y1:kp)dxk, (3)

where P(failure|X) corresponds to the probability of sys-
tem failure, conditional to a value of the state vector x ∈ Rnx
(“fault dimension” if the concept of hazard zone (Saxena,
Celaya, Saha, Saha, & Goebel, 2010; Tang, Orchard, Goebel,
& Vachtsevanos, 2011) is used instead). In discrete-time sys-
tem, differentiation is replaced by time differences. Roughly,
this is the manner in which the probability distribution for the
ToF has been computed (or approximated) for more than two
decades.

Among the possible contradictions that may arise from the
aforementioned definition of ToF probability measures, and
the underlying philosophy adopted by the PHM community,
we would like to focus on the following:

a) Determinism: The first big inconsistency is determin-
ism. This idea was already introduced in Section 2.1:
all these years, we have been comparing elements that
are absolutely different in nature, philosophically speak-
ing. In practice, the state-of-the-art has been built us-
ing degradation and, consequently, ToF data from sin-
gle (or just a few) run-to-failure experiments. These data
sets are used to validate the performance of mathemat-
ical tools and algorithms whose output are probability
distributions. Data is deterministic in nature, whereas
the mathematical tools and algorithms provide a proba-
bilistic outcome. Would it be right to compare a proba-
bility distribution to a single sample? Of course not. Re-
searchers have tried to use result statistics to avoid this
fundamental problem.

b) Non-causality: The expression in Eq. (3) states that the
cumulative probability of the ToF can be computed, ex-
cept by a normalization constant. This assumption im-
plies that, to compute P(τF ≤ k), you need to char-
acterize the manner in which the systems evolves until
the “the end of time”, just to find the right normalization
constant. If you analyze this statement carefully, it is im-
plied that this normalization constant is a function of the

time instants beyond k, which is contradictory. Indeed,
suppose it is of interest to compute the risk of failure up
to a particular fixed time k, k > kp. Would it be correct
to think that events happening after k have any type of
influence on what would have happened from kp to k?
The answer is “no”, because of system causality.

c) Need of normalization constants: The need for a nor-
malizing constant when obtaining the ToF probability
distribution throughout the “usual” procedure implies
that the outcome is not a probability distribution per se,
but something else being forced to fulfill probability ax-
ioms. In fact, in Probability Theory, probability distribu-
tions are not normalized. Normalization is usually em-
ployed to compute probability distributions from likeli-
hood functions.

d) Non-increasing Cumulative Probability Functions: It
is interesting to note that Eq. (3) has been used to com-
pute the ToF probability distribution on systems that un-
dergo monotonic degradation processes. The latter, be-
cause the expression in Eq. (3) has been interpreted as
cumulative probability function and thus, it should be
an increasing function of time. This property does not
hold if the degradation process is not monotonic. More-
over, in the general case (for any type of dynamic sys-
tem and hazard zone definition), it is possible to empiri-
cally demonstrate that this concept of cumulative prob-
ability is ill-defined. As a side note, it is fairly easy
to find degradation processes with regeneration phenom-
ena: consider, for example, capacity regeneration phe-
nomena in Lithium-Ion (Li-Ion) batteries.

These arguments are indicators of a ill-conditioned definition
of ToF probability distribution and should be considered and
analyzed by the PHM community. This article aims at solv-
ing all these inconsistencies by building new foundations to
properly define the failure prognosis problem through the ap-
plication a rigorous mathematical properties and probability
theory.

3. THE FAILURE PROGNOSTIC PROBLEM: A RIGOR-
OUS MATHEMATICAL FORMULATION

The main task assigned to failure prognostic algorithms, in
the context of online condition monitoring systems, is to char-
acterize damage progression once the fault condition is de-
tected, isolated and identified. On the one hand, data-driven
prognostic methods typically perform this task by training
empirical models able to characterize damage progression
at early stages of the fault, extrapolating the future behav-
ior through the implementation of deterministic n-step pre-
diction routines with the promise of generating an educated
guess for the failure time of the system. On the other hand,
model-based approaches may utilize a probabilistic perspec-
tive where empirical information is solely used to provide
estimates and uncertainty bounds for parameters in a given
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degradation model structure (inspired on prior knowledge
about the system dynamics); allowing to propagate uncer-
tainty sources via the implementation of discrete-time diffu-
sion equations.

A serious formalization of the failure prognostic problem
must embrace not only the discrete-time case, which is the
most common context due to the usage of computers, but
also the continuous-time case. For pedagogic purposes, we
start formulating it in Section 3.1 assuming discrete-time sys-
tems, because in that way it is easier to develop intuition in
our readers. Then, results for the continuous-time case are
presented in Section 3.3.

3.1. A probabilistic perspective to the failure prognostic
problem

For pedagogic purposes, we formulate the failure prognos-
tic problem using a mathematical notation that eases under-
standing and intuition in our readers. This notation was first
introduced in (Acuña & Orchard, 2017) for the discrete-time
systems (Allison, 1982).

Let us imagine a system that can incur into a catastrophic
failure condition only once. Similarly to the experiment of
tossing coin, at each time instant k the system may continue
operating or not. We denote Hk as the event of being in a
faulty, although operative, condition at time k, whereas Fk
denotes the event of undergoing a catastrophic failure at time
k.

Thus, we can define a probability space (Ω,B,P), where

- Ω = {
(⋂k−1

j=kp
Hj
)⋂
Fk| k ∈ N, 0 < kp < k} is

the sample space that determines all possible sequences
where the system remains operative until the time instant
“k”, when it actually undergoes a catastrophic failure,

- B = σ(Ω) is the σ-algebra generated by Ω,

- P is a function that assigns a probability measure to ev-
ery event in the σ-algebra B.

Given the above, it is possible to characterize the true proba-
bility of failure at the k-th time instant, P(Fk). Indeed, de-
notingHkp:k =

⋂k
j=kp

Hj , and according to the definition of
conditional probability, it follows that:

P(Fk) =
P(Fk,Hkp:k−1)

P(Hkp:k−1|Fk)
, ∀k > kp, (4)

since P(Hkp:k−1|Fk) corresponds to the probability of stay-
ing operative until time k−1, given that the failure occurred at
time k, it is important to note that P(Hkp:k−1|Fk) = 1 (it is
assumed that the system can only experience one catastrophic
failure). Hence, Equation (4) is reduced to

P(Fk) = P(Fk|Hkp:k−1)P(Hkp:k−1). (5)

SinceP(Hkp:k−1) is the probability of having the system still
operative at the (k − 1)-th time instant -which means a finite
union of events-, and using the basic properties of conditional
probabilities, we can write:

P(Hkp:k−1) = P(Hk−1|Hkp:k−2)P(Hkp:k−2)

= P(Hk−1|Hkp:k−2)P(Hk−2|Hkp:k−3)P(Hkp:k−3)

...

=

k−1∏
j=kp+1

P(Hj |Hkp:j−1).

Additionally, provided

P(Hj |Hkp:j−1) = 1− P(Fj |Hkp:j−1), ∀j > kp,

because of the mutual exclusion among operative and failed
conditions, it follows that:

P(Fk) = P(Fk|Hkp:k−1)

k−1∏
j=kp+1

(
1− P(Fj |Hkp:j−1)

)
.

(6)

As it can be observed in Eq. (6), any failure probability
measure is fully determined by understanding the meaning
of P(Fk|Hkp:k−1), for all k. It is important to note that in
this mathematical notation we assume and omit, on purpose,
the conditional on the set of measurements y1:kp in all expres-
sions.

♦ State-Space Uncertainty Characterization and Failure
Time Probability

Let us consider, for a moment, that the true state vector trajec-
tory is known. From a Bayesian standpoint, we should recog-
nize that the likelihood of a catastrophic failure increases as
the system trajectory approaches specific regions of the state-
space. These regions, also referred to as hazard zones, can be
described by a mapping hF (x) : Rnx → [0, 1]:

hF (x) := P(failure|x). (7)

The simplest hazard zone corresponds to the case where we
claim that the system undergoes a catastrophic failure if the
state trajectory reaches a particular manifold on the state-
space, denoted by R ⊂ Rnx . In this case, the hazard zone
can be characterized via the indicator function:

hF (x) = 1R(x), x ∈ Rnx , (8)

which denotes a discriminant between two classes. Notwith-
standing, in most cases the manifold that represents the haz-
ard zone itself is uncertain, and thus it must be represented by
an appropriate likelihood function hF (x) : Rnx → [0, 1].
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Unfortunately, actual implementations of failure prognos-
tic algorithms also require to estimate the state trajectory
over time (state trajectory is uncertain). Bayesian Processors
(BPs) play a critical role in this task, merging prior informa-
tion on the system model with noisy measurements (acquired
in real-time). BPs provide a probabilistic characterization of
the system states that consists of an approximation of the state
posterior density; i.e., p(xk|y1:k) ≈ p̂(xk|y1:k), ∀k ∈ N, con-
sidering for this purpose the state-space representation in Eqs.
(1)-(2). The system state vector is no longer deterministic and
must be characterized by a probability density on the state-
space. Additionally, hF (x) becomes a function of a random
variable. As a consequence, we now need to incorporate the
concept of expectation to understand the risk associated with
catastrophic failures that may occur in a moment infinitesi-
mally larger than the current time instant k:

Ep(xk|y1:k){hF (xk)} =

∫
Rnx

hF (xk)p(xk|y1:k)dxk, k ≥ 0.

(9)

Eq. (9) is, by definition, the expectation of the failure like-
lihood at time k. In Section 3.2, we will provide an ad-hoc
mathematical notation that will clarify why the notion of ex-
pectation, when properly used, becomes important to quan-
tify the risk of failure.

Let us now incorporate the concept of “long-term prediction”
in this analysis. Assume that a fault condition is detected
and diagnosed at time kp, moment at which we will desire to
execute prognostic algorithms to provide a sequence of prior
state probability densities p̂(xk|y1:kp) with k ≥ kp. Then,
for each future time instant k ≥ kp, we may compute the
expected failure likelihood:

Ep(xk|y1:kp ){hF (xk)} =

∫
Rnx

hF (xk)p(xk|y1:kp)dxk.

(10)

Note that in failure prognosis, all elements in the sequence
of expected failure likelihoods are conditioned on the same
evidence set (measurements acquired until time kp). A natu-
ral question that arises from this observation is: How do two
consecutive elements of the sequence relate to each other?

The answer for this question is, obviously, “two consecutive
elements in the sequence are linked through the state transi-
tion equation”. But this answer has an underlying assump-
tion: the system has not failed yet, and thus the state transi-
tion is still possible. A catastrophic failure is ruled out since,
in that condition, the state transition model become useless.
With these ideas in our minds, we can finally provide a proper
expression for the term P(Fk|Hkp:k−1) in Eq. (6):

P(Fk|Hkp:k−1) := Ep(xk|y1:kp ){hF (xk)}. (11)

Eqs. (11) and (6) are the foundation stone for the failure prob-

ability measure proposed by (Acuña & Orchard, 2017). For
completeness purposes, we now present a theorem that for-
malizes this result and establishes some necessary conditions
for this probability measure.

♦ Towards a Rigorous Formulation of a Failure Probabil-
ity Measure

We now proceed to introduce a notation that eases the defini-
tion of a mathematically rigorous failure probability measure.
Let us assume, for these purposes, a first order Markovian
system model (see Section 2.2, Eqs. (1)-(2)).

Definition 2. [System Failure Function] A system failure is
characterized by the function

F :Rnx × Ω→ {0, 1}
(x, ω) 7→ F (x, ω) = 1System Failure in x(ω),

where F (Xk)(·) := F (Xk, ·) corresponds to a binary ran-
dom variable indicating whether the system is in a failure
condition or not, at the k-th time instant.

The function F is introduced as a random variable, although
typically it solely corresponds to an indicator function (see
the concept of hazard zone in Eq. (7)).

We have already discussed the random nature of system
failures. We still need, however, to incorporate the concept
of failure observability. A failure is said to be observable
if it is possible to recognize that a failure event takes place
based on the analysis of the information provided by sensor
measurements.

Definition 3. [Failure Observability] A failure is observable
if and only if ∃G : Rny × Ω→ {0, 1} such that

F (Xk) = G(Yk) P − a.s., ∀k ≥ 1.

Catastrophic failures are almost surely observable from sys-
tem measurements, since they are related to an interruption of
the operation. The concept of failure observability is helpful
to justify the implementation of BPs for condition monitor-
ing.

In prognostics, though, measurements are not available for
k ≥ kp (it is assumed that the prognostic algorithm is exe-
cuted at time kp). Given the random nature of failure events,
the characterization of the risk associated with a failure event
requires the definition of a probability measure for the time
of occurrence of the first system failure, as follows.

Definition 4. [Time-of-Failure, ToF] The time of the first
system failure τF is defined as

τF := inf{k ∈ N : F (Xk) = 1}.
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Note that the system could undergo regenerative phenomena,
so neither F (Xk) is necessarily increasing (as a function of
the time index k) nor τF is almost surely finite. Therefore, a
definite failure probability measure needs to be defined under
very strict assumptions. Before we proceed with this formal
statement, let us summarize the notation associated with the
main constitutive elements of the failure prognosis problem:

• The hazard zone:

hF (xk) = P(F (xk) = 1). (12)

• The probability of failure given an operative previous
condition:

P(Fk|H0:k−1) =

∫
Rnx

hF (xk)p(xk|y1:kp)dxk

=

∫
Rnx
P(F (xk) = 1)p(xk|y1:kp)dxk

= P(F (Xk) = 1|y1:kp)

= Ep(xk|y1:kp ){P(F (Xk))}.

Indeed, provided F (Xk) is a random binary variable, we
have:

Ep(xk|y1:kp ){P(F (Xk))} = 1 · P(F (Xk) = 1|y1:kp)

. . .+ 0 · P(F (Xk) = 0|y1:kp)

= P(F (Xk) = 1|y1:kp).

• The event of failure at time k:

Fk = {τF = k}. (13)

3.2. The failure prognostic problem in discrete-time dy-
namic systems

Before we proceed to derive ad-hoc probability measures, we
need to take some considerations. Firstly, given that Fk =
{τF = k} ∈ Ω, then ∪k−1i=0 Fi = ∪k−1i=0 {τF = i} ∈ σ(Ω) and
its complement, ∩k−1i=0 {τF 6= i} = ∩k−1i=0Hi = H0:k−1, are
measurable sets. Applying the Theorem of Radon-Nikodym,
P(∪k−1i=0 Fi) as a function of time k ∈ N is absolutely con-
tinuous with respect to the counting measure in N (which is
always true since every measure is absolutely continuous with
respect to the counting measure on a discrete space), then
there exists a unique probability mass function P(Fk) such
that

P(H0:k−1) = 1− P(∪k−1i=0 Fi)

= 1−
k−1∑
i=0

P(Fi).

Note thatFk = {τF = k} = {τF = k}∩
(
∩k−1i=0 {τF 6= i}

)
=

Fk ∩ H0:k−1, because failing for a first time at k implies the
system was necessarily healthy up to just one time instant

before, then

P(Fk) = P(Fk,H0:k−1)

= P(Fk|H0:k−1)P(H0:k−1).

Thus,

P(H0:k−1) = 1−
k−1∑
i=0

P(Fi|H0:i−1)P(H0:i−1).

Applying the difference operator ∆ to P(H0:k−1), then it fol-
lows that

∆P(H0:k−1) = −P(Fk|H0:k−1)P(H0:k−1)

P(H0:k)− P(H0:k−1) = −P(Fk|H0:k−1)P(H0:k−1)

P(H0:k) = (1− P(Fk|H0:k−1))P(H0:k−1).

Applying natural logarithm we get

logP(H0:k)− logP(H0:k−1) = log(1− P(Fk|H0:k−1))

∆ logP(H0:k−1) = log(1− P(Fk|H0:k−1)).

Now summing from kp + 1 up to k,

k∑
i=kp+1

∆ logP(H0:i−1) =

k∑
i=kp+1

log(1− P(Fi|H0:i−1))

logP(H0:k)−logP(H0:kp) = log

k∏
i=kp+1

(1−P(Fi|H0:i−1)).

Note also that P(H0:kp) = 1, because the system is assumed
to be operative at the beginning of prognostics.

⇒ P(H0:k) =

k∏
i=kp+1

(1− P(Fi|H0:i−1)).

Finally, and considering all these elements, the failure proba-
bility mass function for discrete-time systems can be defined
as follows.

♦ A well-defined risk-of-failure function (dicrete-time sys-
tems)

Provided the previous results defined the probability mass
P({τF = k}) = P(Fk), let us show that it is well-defined.

Theorem 1. [Acuña’s Failure Probability Mass Function]
Considering the probability space (N, σ(N),P) and given
that P(∪k−1i=0 {τF = i}|y1:kp) as a function of time k ∈ N
is always absolutely continuous with respect to the counting
measure in N, if the following conditions hold:

• τF < +∞, P(τF = ·|y1:kp)-a.s.
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• τF > kp.

Then the mapping P(τF = ·|y1:kp) : N → [0, 1] defines the
Acuña’s Time-of-Failure Probability Mass Function as

PA(k|y1:kp) := P(τF = k|y1:kp) (14)

= P(F (Xk) = 1|y1:kp)

k−1∏
j=kp+1

(
1− P(F (Xj) = 1|y1:kp)

)
,

(15)

with

P(F (Xk) = 1|y1:kp) =

∫
Rnx
P(F (xk) = 1)p(xk|y1:kp)dxk.

(16)

This probability measure is well-defined (satisfies the condi-
tions of probability mass function) and corresponds to the
unique Bayesian probability function that can characterize
the risk of future failures in discrete-time systems. Therefore,
it holds that

1) PA(k|y1:kp) = 0, ∀k ∈ N, k ≤ kp.

2) 0 ≤ PA(k|y1:kp) ≤ 1, ∀k ∈ N.

3)
∑+∞
i=0 PA(k|y1:kp) = 1.

Proof.

1) By definition. The system is guaranteed to be healthy at
least till time kp.

2) 0 ≤ P(F (Xk) = 1|y1:kp) ≤ 1 ⇒ 0 ≤
∏k−1
i=kp+1(1 −

P(F (Xi) = 1|y1:kp)) ≤ 1, ∀k ∈ N, k > kp ≥ 0. Then
it imples that 0 ≤ PA(k|y1:kp) ≤ 1, ∀k ∈ N.

3) Since P(∪k−1i=0 {τF = i}|y1:kp) as a function of time
k ∈ N is always absolutely continuous with respect to
the counting measure in N,

k−1∑
i=0

PA(i|y1:kp) =

k−1∑
i=0

P(τF = i|y1:kp)

= P(∪k−1i=0 {τF = i}|y1:kp)

= P(τF < k|y1:kp).

Taking the limit when k → +∞ we have that

lim
k→+∞

P(τF < k|y1:kp) = P
(

lim
k→+∞

{τF < k}|y1:kp
)
,

because {τF < k}k∈N is an increasing sequence of
measurable sets so the continuity property of probabil-
ity measures hold. Additionally, since τF < +∞,
P(τF = ·|y1:kp)-a.s.

P
(

lim
k→+∞

{τF < k}|y1:kp
)

= 1.

Thus, it yields

⇒
+∞∑
i=0

PA(k|y1:kp) = 1.

Acuña’s Time-of-Failure Probability Mass Function allows
to build a metric that quantifies future risk in the operation of
a dynamic non-linear system that undergoes a fault condition.
This risk measure is to be understood as the final outcome of
any prognostic algorithm, and the main objective behind the
implementation of routines for the quantification of system
uncertainty:

Definition 5. [Acuña’s Discrete-Time Risk-of-Failure] If the
following conditions are fulfilled:

• τF < +∞, P(τF = ·|y1:kp)-a.s.
• τF > kp.

Then the risk of incurring into a future catastrophic failure in
discrete-time systems is defined as:

RA(k|y1:kp) := P(τF ≤ k|y1:kp) (17)

=

k∑
i=kp+1

PA(i|y1:kp). (18)

3.3. The failure prognostic problem in continuous-time
dynamic systems

In this section we show the formalization of the failure prog-
nostic problem in continuous-time dynamic systems, follow-
ing a similar line of though than in the case of discrete-time
systems (see Section 3.2).

Analogously to the discrete-time case, we denote Ht as the
event of being in a faulty, although operative, condition at
time t, whereas Ft denotes the event of undergoing a catas-
trophic failure at time t.

Thus, we can define a probability space (Ω,B,P), where

- Ω = {
(⋂

τ∈[tp,t)Hτ
)⋂
Ft| t ∈ R, 0 < tp < t} is

the sample space that determines all possible sequences
where the system remains operative until the time instant
“t”, when it actually undergoes a catastrophic failure,

- B = σ(Ω) is the σ-algebra generated by Ω,
- P is a function that assigns a probability measure to ev-

ery event in the σ-algebra B.

Given the above, it is possible to characterize the true failure
probability density at time t, p(Ft). Indeed, denotingHtp:t =⋂
τ∈[tp,t)Hτ , it follows that:

p(Ft) = P(Ft|Htp:t)e
−

∫ t
tp
P(Fτ |Htp:τ )dτ , (19)
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with
P(Ft|Htp:t) := Ep(xt|y1:tp ){hF (xt)}. (20)

Considering Definition 2 for the system failure function,
given that Ft = {τF = t} ∈ Ω, then ∪τ∈[0,t)Fτ =
∪τ∈[0,t){τF = τ} ∈ σ(Ω) and its complement,
∩τ∈[0,t){τF 6= τ} = ∩τ∈[0,t)Hτ = H[0,t), are measur-
able sets.

Applying the Theorem of Radon-Nikodym, and assuming
that P(∪τ∈[0,t)Fτ ) as a function of time t ∈ R+ is absolutely
continuous with respect to the Lebesgue measure in R+, then
there exists a unique probability density function p(Ft) such
that

P(H[0,t)) = 1− P(∪τ∈[0,t)Fτ )

= 1−
∫ t

0

p(Fτ )dτ.

Note that Ft = {τF = t} = {τF = t} ∩
(
∩τ∈[0,t) {τF 6=

τ}
)

= Ft ∩H[0,t), because failing for a first time at t implies
the system was necessarily healthy up to just one time instant
before, then

p(Ft) = P(Ft,H[0,t))

= P(Ft|H[0,t))P(H[0,t)).

Thus,

P(H[0,t)) = 1−
∫ t

0

P(Fτ |H[0,τ))P(H[0,τ))dτ.

Assuming P(H[0,t)) to be differentiable with respect to t,
then by the Fundamental Theorem of Calculus it follows that

d

dt
P(H[0,t)) = −P(Ft|H[0,t))P(H[0,t)).

Then,

1

P(H[0,t))
dP(H[0,t)) = −P(Ft|H[0,t))dt.

Integrating between tp and t, we get∫ P(H[0,t))

P(H[0,tp))

1

P(H[0,τ))
dP(H[0,τ)) = −

∫ t

tp

P(Fτ |H[0,τ))dτ

logP(H[0,t))− logP(H[0,tp)) = −
∫ t

tp

P(Fτ |H[0,τ))dτ.

Note also that P(H[0,tp)) = 1, by the same argument of sys-
tem health at the beginning of prognostics.

⇒ P(H[0,t)) = e
−

∫ t
tp
P(Fτ |H[0,τ))dτ .

Finally, the failure probability density function for
continuous-time systems follows next.

♦ A well-defined risk-of-failure function (continuous-time
systems)

Let us demonstrate that P({τF = t}) = P(Ft) is an appro-
priate definition for the probability of failure.

Theorem 2. [Acuña’s Failure Probability Density Func-
tion] Considering the probability space (R+, σ(R+),P) and
assuming that P(∪τ∈[0,t){τF = τ}|y1:tp) as a function of
time t ∈ R+ is absolutely continuous with respect to the
Lebesgue measure in R+, if the following conditions hold:

• τF < +∞, p(τF = ·|y1:tp)-a.s.

• τF > tp.

Then the mapping p(τF = ·|y1:tp) : R+ → [0, 1] defines the
Acuña’s Time-of-Failure Probability Density Function as

pA(t|y1:tp) := p(τF = t|y1:tp) (21)

= P(F (Xt) = 1|y1:tp)e
−

∫ t
tp
P(F (Xτ )=1|y1:tp )dτ , (22)

with

P(F (Xt) = 1|y1:tp) =

∫
Rnx
P(F (xt) = 1)p(xt|y1:tp)dxt.

(23)

This probability density is well-defined (satisfies the condi-
tions of probability density function) and corresponds to the
unique Bayesian probability function that can characterize
the risk of future failures in continuous-time systems. There-
fore, it holds that

1) pA(t|y1:tp) = 0, ∀t ∈ R+, t ≤ tp.

2) 0 ≤ pA(t|y1:tp) ≤ 1, ∀t ∈ R+.

3)
∫ +∞
0

pA(t|y1:tp)dτ = 1.

Proof.

1) By definition. The system is guaranteed to be healthy at
least till time tp.

2) 0 ≤ P(F (Xt) = 1|y1:tp) ≤ 1 ⇒ 0 ≤
e
−

∫ t
tp
P(F (Xτ )=1|y1:tp )dτ ≤ 1, ∀t ∈ R+, t > tp ≥ 0.

Then it implies that 0 ≤ pA(t|y1:tp) ≤ 1, ∀t ∈ R+.

3) Since P(∪τ∈[0,t){τF = τ}|y1:tp) as a function of time
t ∈ R+ is assumed to be absolutely continuous with re-
spect to the Lebesgue measure in R+,∫ t

0

pA(τ |y1:tp)dτ =

∫ t

0

p(τF = τ |y1:tp)dτ

= P(∪τ∈[0,t){τF = τ}|y1:tp)

= P(τF < t|y1:tp).

8
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Taking the limit when t→ +∞ we have that

lim
t→+∞

P(τF < t|y1:tp) = P
(

lim
t→+∞

{τF < t}|y1:tp
)
,

because {τF < t}t∈N is an increasing sequence of mea-
surable sets so the continuity property of probability
measures hold. Additionally, since τF < +∞, p(τF =
·|y1:tp)-a.s.

P
(

lim
t→+∞

{τF < t}|y1:tp
)

= 1.

Thus, it yields

⇒
∫ +∞

0

pA(t|y1:tp)dτ = 1.

The Acuña’s Time-of-Failure Probability Density Function
allows to build a metric that quantifies future risk in the oper-
ation of a dynamic non-linear system that undergoes a fault
condition. This risk measure is to be understood as the final
outcome of any prognostic algorithm, and the main objective
behind the implementation of routines for the quantification
of system uncertainty:

Definition 6. [Acuña’s Continuous-Time Risk-of-Failure] If
the following conditions are fulfilled:

• τF < +∞, p(τF = ·|y1:tp)-a.s.

• τF > tp.

Then, the risk of incurring into a future catastrophic failure
in continuous-time systems is defined as:

RA(t|y1:tp) := P(τF ≤ t|y1:tp) (24)

=

∫ t

tp

pA(t|y1:tp)dτ. (25)

4. DEFINITION OF FAILURE PROBABILITY IN PHM
AND RELIABILITY ENGINEERING

Theorems 1 and 2 provide a link between definitions in the
disciplines of Prognostics and Health Management and tra-
ditional reliability engineering. In fact, let us consider the
following:

• Reliability,R: Probability that the component or system
experiences no failures up to some time instant given that
the component or system was repaired to a like new con-
dition or was functioning at time zero.

• Unreliability, F: Probability that the component or sys-
tem experiences the first failure or has failed one or more
times up to some time instant given that it was operating
or repaired to a like new condition at time zero.

These concepts are related as

R = 1− F.

In most of the reliability engineering literature, risk is quan-
tified by estimating probability densities in continuous-time.
In this regard, two more concepts arise:

• Failure Density, f(t): The failure density of a compo-
nent or system, f(t), is defined as the probability per unit
time that the component or system experiences its first
failure at time t, given that the component or system was
operating at time zero.

• Failure Rate, r(t): The failure rate of a component or
system, r(t), is defined as the probability per unit time
that the component or system experiences a failure at
time t, given that the component or system was operating
at time zero and has survived to time t.

which are related to R(t) and F(t) as:

F(t) =

∫ t

0

f(τ )dτ, R(t) = e−
∫ t
0

r(τ )dτ ,

whereas
f(t) = r(t)e−

∫ t
0

r(τ )dτ .

As it can be seen in the previous equations, the relationship
between PHM and reliability engineering in continuous-time
is given by the analogy:

r(t)↔ P(F (Xt) = 1|y1:tp).

Remark 1. Note that integrals in PHM and reliability engi-
neering definitions start from tp and 0, respectively. This is
because in reliability engineering it is assumed tp = 0; but
that condition doesn’t hold in general, as in the case of PHM,
where prognostics is performed just once an anomaly is de-
tected.

Remark 2. In this case, Acuña’s Failure Probability Den-
sity Function, pA(t|y1:tp), coincides with the well-known
continuous-time Weibull distribution

pWb(t) =
γ

λ

( t
λ

)γ−1
e−(

t
λ )
γ

,

where γ > 0 is a shape parameter and λ > 0 is a scale
parameter, if P(F (Xt) = 1|y1:tp) is such that

P(F (Xt) = 1|y1:tp) =
γ

λ

( t
λ

)γ−1
.

Similarly to the continuous-time case, in discrete-time we
have:

F(k) =

k−1∑
i=0

f(i), R(k) =

k−1∏
i=1

(1− r(i)),

9
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whereas

f(k) = r(k)
k−1∏
i=1

(1− r(i)).

Finally, the relationship between PHM and reliability engi-
neering in discrete-time is given by the analogy:

r(k)↔ P(F (Xk) = 1|y1:kp).

Remark 3. The sums and products in the recent expressions
start from 1 instead of kp + 1 because traditional reliability
assumes kp = 0. It is the same argument explained in Remark
1 but for discrete-time.

Remark 4. The Acuña’s Failure Probability Mass Func-
tion, PA(k|y1:kp), coincides with the well-known discrete-
time Weibull distribution

PWb(k) = qk
β

− q(k+1)β ,

where q is a parameter such that 0 < q < 1 and β > 0 is a
shape parameter, if P(F (Xk) = 1|y1:kp) is such that

P(F (Xk) = 1|y1:kp) = log qk
β−(k+1)β .

5. CASE STUDY: BATTERY END-OF-DISCHARGE TIME
PROGNOSIS

Although it seems natural to think of a failure as a physi-
cal event (and that is why concepts like RUL or EoL are
commonly found in the literature), failures are conceived ab-
stractly from the standpoint if this research work and, thus, it
is up to the user how to define a failure in a particular system.
For illustrative purposes, we hereby present the problem of
End-of-Discharge (EoD) time prognostics in lithium-ion (Li-
Ion) batteries, where the interest is on monitoring the remain-
ing energy available in a battery (rather than predicting its
RUL). Contexts in which this problem arises may be related
to problem of energy autonomy, such as in the operation of
unmanned aerial vehicles (UAVs) or electric vehicles (EVs),
where under certain decisions may compromise the feasibil-
ity of successfully achieving specific tasks.

For most of the battery operating range, the relationship be-
tween State-of-Charge (SoC, defined as the ratio between the
actual available energy and the maximum battery storage ca-
pacity Ecrit) and the Open Circuit Voltage (OCV) curve can
be well characterized by an affine function. Also, we have
adopted a structure proposed in (Burgos, Orchard, Kazerani,
Cárdenas, & Sáez, 2016) to model the dependency between
the polarization resistance and the battery discharge current.
Thus, the resulting state-space model of the system is:

State Transition Model

xk+1 = xk − voc(xk) · uk ·
Ts
Ecrit

+ ωk (26)

Measurement Model

yk = voc(xk)− u(k) ·Rint(xk, uk) + ηk, (27)

with

voc(xk) =vL + (v0 − vL) · eγ·(x2(k)−1)

. . .+ α · vL · (x2(k)− 1)

. . .+ (1− α) · vL · (e−β − e−β·
√
x2(k))

(28)

and

Rint(xk, uk) = r0(uk) + r1(uk) · xk + r2(uk) · xk2. (29)

In this representation, the input to the system uk = ik[A] is
defined as the discharge current, while yk = vk[V ] is the volt-
age at the battery terminals. The state xk is the battery SoC
measured with respect to Ecrit, the expected total energy de-
livered by the battery; whereas the absolute value of the in-
ternal impedance is represented by the functionRint(xk, uk).
The process noise ωk and the measurement noise ηk assume
a zero mean Gaussian distribution. Finally, Ts[s] is the sam-
ple time and v0, vL, α, β and γ are model parameters to be
estimated offline (see (Pola et al., 2015) for more details).

In this case, “failure” is defined as a condition where the SoC
reaches a lower threshold of 10%. Thus, Eq. (12) becomes:

P(F (xk) = 1) = 1{x∈R:x<0.1}(xk). (30)

Fig. 1 illustrates the problem of battery EoD time prognosis,
allowing to compare the manner in which probability mea-
sures for the ToF have been computed until now by most
PHM researchers with respect to the way they should be com-
puted. A probabilistic prognostic algorithm generates a se-
quence of PDFs for the future system states (the SoC in this
particular example) as a function of time. However, since
prognostic algorithms themselves are out of the scope of this
article, in Fig. 1 we show the results when performing Monte
Carlo simulations. Having available the sequence of future
system states PDFs, the next step is to, respectively, compute:

1. P(F (Xk) = 1|y1:kp).

2. PA(k|y1:kp).

3. RA(k|y1:kp).

Regarding the interpretation of the aforementioned functions,
it is important to note that P(F (Xk) = 1|y1:kp) (probability
mass obtained when performing integration of p(xk|y1:kp) for
values of xk below the threshold of 10% SoC in this example)
has been typically misunderstood as RA(k|y1:kp) within the
PHM community. Although both expressions represent prob-
ability of failure in the future, P(F (Xk) = 1|y1:kp) accounts
for the probability of failure conditional to the fact that the
system did not undergo a “catastrophic” failure at time in-
stants prior to k > kp, whereas and RA(k|y1:kp) character-

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Figure 1. (Battery condition monitoring) A particle-filter algorithm is chosen as the Bayesian processor for estimating the SoC
probability distribution during the filtering stage. At time kp = 4000[s] (marked with a vertical dashed line), Monte Carlo
simulations are performed. It is considered that a SoC below 10% corresponds to a catastrophic failure, which is depicted as a
threshold with a red horizontal line in the first row of graphs. Monte Carlo simulations generate a sequence of future prior state
PDFs for the state of the system. This sequence is afterwards used to compute the future failure likelihoodP(F (Xk) = 1|y1:kp),
which has been understood as cumulative probability so far, leading to an ill-defined probability mass function that is typically
computed by taking differences in time. The probability mass function PA(k|y1:kp) for the random variable τF , the EoD time,
and its respective risk functionRA(k|y1:kp) are depicted.
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izes the probability of experiencing a single “catastrophic”
failure event either at or previous to the time instant “k”.
Another important difference is that P(F (Xk) = 1|y1:kp)
is not a cumulative mass function since it is not necessar-
ily an increasing function of time (consider, for example,
regenerative systems), among some other cases. This issue
has not been detected, possibly because simulations typically
show that P(F (Xk) = 1|y1:kp) increases (apparently) mono-
tonically in time. In contrast, the Acuña’s Risk-of-Failure
function RA(k|y1:kp) is guaranteed to be a cumulative mass
function according to the Theorem 1, and it corresponds to
the information that is truly required to perform decision-
making. Moreover, when comparing P(F (Xk) = 1|y1:kp) to
RA(k|y1:kp) in Fig. 1, it can be noticed that misunderstand-
ing P(F (Xk) = 1|y1:kp) as a measure of risk may lead to
actually riskier actions, especially when the characterization
of system dynamics is highly uncertain (which is the most
usual scenario when studying degradation processes).

Perhaps the most important contribution of this work is to
demonstrate that we require to change the manner in which
we understand and conceive the concept of future failure
events; in other words, a change of paradigm of the failure
prognostic problem is needed. As Fig. 1 shows, the widely-
used, and ill-defined, ToF probability distribution (in green)
provides an estimate for the ToF expectation that is relatively
insensitive to the uncertainty associated to the system char-
acterization. Moreover, when using this ill-defined probabil-
ity measure, an increment on the uncertainty in the system
(for example a greater variance in the process noise) turns
into an increment in the uncertainty of the ToF, a fact that
could be considered as “intuitive” (and thus, accepted) by re-
searchers. However, when analyzing the proposed definition,
PA(k|y1:kp) (in blue), it can be noticed that increasing the
uncertainty of the system dynamics will change the variance
of the ToF probability distribution and the expectation of the
ToF: the risk has increased as it should! The failure prog-
nostic problem has been conceived, for many years, as a
problem where you need to “guess” the actual system ToF.
However, a Bayesian approach to the failure prognostic prob-
lem asserts causality and, therefore, from a Bayesian stand-
point, the future is uncertain in nature; future cannot be
characterized in deterministic way. The only thing we
can do is not to guess when an event may occur (“ground
truth” for that question does not even exist), but to char-
acterize and measure future uncertainty as accurately as
possible and make decisions based on risk. This philoso-
phy is actually induced by the rigorous mathematical frame-
work presented in this manuscript that redefines the failure
prognostic problem. The probability distributionPA(k|y1:kp)
changes its variance as well as its expected value as a func-
tion of the uncertainty levels because the support of the ToF
distribution does not have anything to do with the actual fail-
ure time. The most valuable information for decision-making

purposes is included inRA(k|y1:kp), since it accounts for the
risk of failure. The more uncertainty in the system, the more
conservative this measure is.

Another important remark to consider is that as uncertainty
in the system dynamics diminishes, these tend to evolve de-
terministically in time. As a consequence, PA(k|y1:kp) tends
in turn to concentrate the probability mass around the time
where the expected future system state crosses the failure
threshold. This probability mass always approaches from the
left (from previous time instants) since more uncertainty im-
plies less knowledge about the system dynamics and these
could yield to a system failure before it is expected. This
fact confirms that under this new formalization for the failure
prognostic problem there is consistency regarding the tran-
sition from a probabilistic to a deterministic framework and
viceversa.

♦ Why have prognostic algorithms “worked out” all this
time then?

Under the conventional paradigm, and as it has been men-
tioned previously, the main goal in prognostic algorithm de-
sign was to “guess” the actual ToF. Prognostic algorithms
have been validated so far in terms of their capability of ac-
curately guessing the actual ToF for specific realizations of a
stochastic process. This has led to think that it is appropriate
to measure accuracy of an algorithm in terms of how simi-
lar the outcome of an experiment is with respect to the ToF
conditional expectation. As a result, quality of ToF estimates
depends heavily on the accuracy of the state transition model
(which is the one who determines the expected future states
trajectory), regardless of the manner in which the algorithm
characterizes future uncertainty. Moreover, any prognostic
algorithm would be validated as long as it interfered on the
system dynamics in a negligible way.

6. CONCLUSIONS

In this paper we review the failure prognostic problem in the
context of real-time systems monitoring from a probabilistic-
based point of view. We have demonstrated that some expres-
sions widely used to characterize the probability of failure
were inconsistent, and that they are actually useless to per-
form validation of failure prognostic algorithms. In contrast,
we present a rigorous mathematical development that was uti-
lized to derive and demonstrate two theorems that embrace
the definitions and hypotheses in a rightful manner, with the
hope that the PHM community could use them, henceforth,
to address the problem of failure prognostics in both discrete-
and continuous-time dynamic systems. In addition, we com-
pare both paradigms using the battery EoD time prognostics
problem as an illustrative example. Philosophic implications
arising from both approaches are explained and discussed,
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leading to a proposal that aims at establishing a new paradigm
regarding how the failure prognosis problem is understood.

The contributions of this manuscript are expected to become
a theoretical basis and reference for future research in related
topics as well as to promote the development of more rigorous
procedures and standards for research work assessment.

An important remark that is not stated through the manuscript
is that, although the mathematical developments presented
hereby are explained in terms of future failure occurrence,
these results can be also be understood from a more general
perspective that is not limited to failures, but any future event
that forces us to provide a probabilistic characterization of the
system operational risk.
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