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ABSTRACT 
Remaining Useful Life prediction for high-value assets, such 
as aero-engines, presents a formidable challenge, 
compounded by sample scarcity, complex data structures and 
knowledge dilution. This paper proposes a two-stage 
framework designed to decouple representation construction 
from temporal pattern learning. Stage I mitigates data 
complexity by transforming multi-phase snapshot streams 
into standardized cycle-level sequences through hierarchical 
aggregation. Stage II addresses data scarcity and multi-target 
prediction using a Multi-task Shared Transformer. 
Furthermore, the model is optimized via a risk-aligned loss 
function that penalizes tardy predictions. The effectiveness of 
the proposed framework was validated by its strong 
generalization on PHM 2025 Data Challenge dataset, which 
ultimately secured a first-place result. 

Keywords: remaining useful life, predictive maintenance, 
Transformer, prognostics and health management. 

1. INTRODUCTION 

Reliable Remaining Useful Life (RUL) estimation is a central 
tenet of predictive maintenance, fundamental to ensuring 
operational safety and optimizing economic efficiency. 
However, the development of generalizable RUL prediction 
models is impeded by three challenges: (i) Sample Scarcity, 
where small fleets of high-value assets render expressive 
models prone to overfitting; (ii) Deep Structural Complexity, 
where sensor data are organized in a deep hierarchy from 
engine level down through period, cycle,  phase and snapshot 
in Figure 1; and (iii) Knowledge Dilution, arising from 
conventional per-device modeling approaches that fail to 
leverage shared physical degradation patterns across a fleet. 

2. METHODOLOGY  

To address the dual challenges of data complexity and 
scarcity, this study employs a two-stage framework designed 
for an effective bias-variance trade-off as shown in Figure 2. 
This approach firstly regularizes the problem by reducing 
data complexity in a structured manner (Stage I), thereby 
creating a simplified representation space where expressive 

temporal models can learn cross-unit patterns without 
overfitting (Stage II). 

 
Figure 1. Hierarchical structure of aero-engine time-series data. This 
diagram illustrates deeply nested data where long-term degradation 
signals are obscured by short-term operational variations. 

 
Figure 2. Overall architecture of two-stage framework. The 
framework first decouples data complexity via hierarchical 
aggregation (Stage I) and then learns temporal patterns using a 
Multi-task Shared Transformer (Stage II). 

Prior to analysis, raw sensor signals were preprocessed to 
ensure data quality and integrity; this involved Interquartile 
Range (IQR) for outlier mitigation and local interpolation for 
handling missing values. 

2.1. Stage I: Data Complexity Decoupling via 
Hierarchical Aggregation 

Stage I transforms nested sensor data into a fixed-dimension 
time series. This transformation is achieved through a 
bottom-up aggregation process executed within each flight 
cycle as illustrated in Figure 3: 
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1. Phase Compression: For each operational phase, 
multi‑sensor snapshots are averaged to yield a single 
phase‑level vector. 

2. Cycle Compression: The set of phase vectors is 
compressed into one cycle vector by computing statistics 
per channel, such as mean, variance, peak‑to‑peak, 
maximum and minimum.  

 
Figure 3. Schematic of Hierarchical Aggregation in Stage I, which 
transforms snapshot data into standardized, cycle-level sequences. 

2.2. Stage II: Multi-task Shared Transformer with Risk-
Aligned Optimization 

This stage performs temporal pattern learning using a Multi-
task Shared Transformer as illustrated in Figure 4. A 
Transformer encoder is shared across all devices to learn 
universal degradation features from cycle-level sequences. 
Task specialization is achieved by prepending three learnable 
[CLS] tokens to each input sequence, corresponding to three 
maintenance targets. The final hidden state of each [CLS] 
token serves as the input to an independent MLP head. 

The training is guided by a risk-aligned, asymmetric time-
weighted loss function designed to penalize tardy predictions 
more heavily: 

 𝐿𝐿(𝑦𝑦,𝑦𝑦�) = 𝑤𝑤(𝑦𝑦, 𝑦𝑦�) ∙ (𝑦𝑦� − 𝑦𝑦)2 ∙ 𝛽𝛽𝑘𝑘 (1) 

where the weight 𝑤𝑤(𝑦𝑦, 𝑦𝑦�) = (1 𝑜𝑜𝑜𝑜 2)/ (1 + 𝛼𝛼𝛼𝛼)  applies a 
higher penalty for late predictions (𝑦𝑦� > 𝑦𝑦) and incorporates 
a time-decay factor 𝛼𝛼 , and 𝛽𝛽𝑘𝑘  is a task-specific factor to 
balance loss magnitudes across different RUL scales. 

 
Figure 4. Architecture of Multi-task Shared Transformer in Stage II. 
A shared encoder learns universal features, while task-specific [CLS] 
tokens and MLP heads enable specialized predictions for distinct 
maintenance targets. 

3. EXPERIMENTS AND RESULTS 

The proposed framework was evaluated on the PHM 2025 
Data Challenge dataset, which comprises complete 

operational histories from four commercial aero-engines. A 
leave-one-out cross-validation strategy was employed, where 
in each fold, the model was trained on data from three engines 
and tested on the remaining unseen engine. The model 
architecture consists of a 7-layer, 8-head Transformer 
encoder with an input sequence length of 151 cycles. 

3.1. Ablation Study on Loss Function 

To validate the effectiveness of the proposed loss function, 
its performance was compared against standard Mean 
Squared Error (MSE). As summarized in Table 1, the risk-
aligned loss consistently yields substantial performance gains 
across all held-out engines, confirming its superiority for this 
prediction task. 

Table 1. Comparison of custom loss vs. MSE on local cross-
validation scores (lower is better). 

Engine (ESN) 101 102 103 104 

Scores with custom loss 45.20 52.02 47.47 51.49 

Scores with MSE loss 107.08 157.85 121.29 194.61 

3.2. Performance 

As illustrated in Figure 5, highly consistent performance was 
observed between the validation and test datasets, with the 
horizontal axis ordered according to the final validation 
leaderboard rankings. This consistency indicates that the 
overfitting effect was minimized in the proposed framework. 
The small performance gap between the two datasets can be 
attributed to the regularization introduced by Stage I and the 
cross-unit learning strategy in Stage II. 

 
Figure 5. Final leaderboard scores of the PHM 2025 Challenge. Our 
framework (highlighted) demonstrates superior performance and 
generalization compared to other top-ranking solutions. 

4. CONCLUSION 

A two-stage framework is proposed in this paper to address 
the dual challenges of data complexity and sample scarcity in 
RUL prediction. In Stage I, structural complexity is reduced 
through hierarchical aggregation, creating a regularized 
representation space. In Stage II, a multi-task shared 
Transformer is employed to learn cross-unit degradation 
patterns, enabling effective knowledge transfer across limited 
samples. Strong generalization capability was demonstrated 
on the PHM 2025 Data Challenge, validating the 
effectiveness of the proposed framework for predictive 
maintenance in high-value industrial assets. 
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