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ABSTRACT

Remaining Useful Life prediction for high-value assets, such
as aero-engines, presents a formidable challenge,
compounded by sample scarcity, complex data structures and
knowledge dilution. This paper proposes a two-stage
framework designed to decouple representation construction
from temporal pattern learning. Stage I mitigates data
complexity by transforming multi-phase snapshot streams
into standardized cycle-level sequences through hierarchical
aggregation. Stage II addresses data scarcity and multi-target
prediction using a Multi-task Shared Transformer.
Furthermore, the model is optimized via a risk-aligned loss
function that penalizes tardy predictions. The effectiveness of
the proposed framework was validated by its strong
generalization on PHM 2025 Data Challenge dataset, which
ultimately secured a first-place result.
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1. INTRODUCTION

Reliable Remaining Useful Life (RUL) estimation is a central
tenet of predictive maintenance, fundamental to ensuring
operational safety and optimizing economic efficiency.
However, the development of generalizable RUL prediction
models is impeded by three challenges: (i) Sample Scarcity,
where small fleets of high-value assets render expressive
models prone to overfitting; (i) Deep Structural Complexity,
where sensor data are organized in a deep hierarchy from
engine level down through period, cycle, phase and snapshot
in Figure 1; and (iii) Knowledge Dilution, arising from
conventional per-device modeling approaches that fail to
leverage shared physical degradation patterns across a fleet.

2. METHODOLOGY

To address the dual challenges of data complexity and
scarcity, this study employs a two-stage framework designed
for an effective bias-variance trade-off as shown in Figure 2.
This approach firstly regularizes the problem by reducing
data complexity in a structured manner (Stage I), thereby
creating a simplified representation space where expressive

temporal models can learn cross-unit patterns without
overfitting (Stage II).
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Figure 1. Hierarchical structure of aero-engine time-series data. This
diagram illustrates deeply nested data where long-term degradation
signals are obscured by short-term operational variations.
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Figure 2. Overall architecture of two-stage framework. The
framework first decouples data complexity via hierarchical
aggregation (Stage I) and then learns temporal patterns using a
Multi-task Shared Transformer (Stage II).

Prior to analysis, raw sensor signals were preprocessed to
ensure data quality and integrity; this involved Interquartile
Range (IQR) for outlier mitigation and local interpolation for
handling missing values.

2.1. Stage I: Data Complexity Decoupling via
Hierarchical Aggregation

Stage I transforms nested sensor data into a fixed-dimension
time series. This transformation is achieved through a
bottom-up aggregation process executed within each flight
cycle as illustrated in Figure 3:
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1. Phase Compression: For each operational phase,
multi-sensor snapshots are averaged to yield a single
phase-level vector.

2. Cycle Compression: The set of phase vectors is
compressed into one cycle vector by computing statistics
per channel, such as mean, variance, peak-to-peak,
maximum and minimum.
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Figure 3. Schematic of Hierarchical Aggregation in Stage I, which
transforms snapshot data into standardized, cycle-level sequences.

2.2. Stage II: Multi-task Shared Transformer with Risk-
Aligned Optimization

This stage performs temporal pattern learning using a Multi-
task Shared Transformer as illustrated in Figure 4. A
Transformer encoder is shared across all devices to learn
universal degradation features from cycle-level sequences.
Task specialization is achieved by prepending three learnable
[CLS] tokens to each input sequence, corresponding to three
maintenance targets. The final hidden state of each [CLS]
token serves as the input to an independent MLP head.

The training is guided by a risk-aligned, asymmetric time-
weighted loss function designed to penalize tardy predictions
more heavily:

L) =w®.9) @ -y b (1)

where the weight w(y,J) = (1 0or 2)/ (1 + ay) applies a
higher penalty for late predictions (¥ > y) and incorporates
a time-decay factor @, and By is a task-specific factor to
balance loss magnitudes across different RUL scales.
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Figure 4. Architecture of Multi-task Shared Transformer in Stage II.

A shared encoder learns universal features, while task-specific [CLS]
tokens and MLP heads enable specialized predictions for distinct

maintenance targets.

3. EXPERIMENTS AND RESULTS

The proposed framework was evaluated on the PHM 2025
Data Challenge dataset, which comprises complete

operational histories from four commercial aero-engines. A
leave-one-out cross-validation strategy was employed, where
in each fold, the model was trained on data from three engines
and tested on the remaining unseen engine. The model
architecture consists of a 7-layer, 8-head Transformer
encoder with an input sequence length of 151 cycles.

3.1. Ablation Study on Loss Function

To validate the effectiveness of the proposed loss function,
its performance was compared against standard Mean
Squared Error (MSE). As summarized in Table 1, the risk-
aligned loss consistently yields substantial performance gains
across all held-out engines, confirming its superiority for this
prediction task.

Table 1. Comparison of custom loss vs. MSE on local cross-
validation scores (lower is better).

Engine (ESN) 101 102 103 104
Scores with custom loss  45.20 52.02 47.47 51.49
Scores with MSE loss 107.08 157.85 121.29 194.61

3.2. Performance

As illustrated in Figure 5, highly consistent performance was
observed between the validation and test datasets, with the
horizontal axis ordered according to the final validation
leaderboard rankings. This consistency indicates that the
overfitting effect was minimized in the proposed framework.
The small performance gap between the two datasets can be
attributed to the regularization introduced by Stage I and the
cross-unit learning strategy in Stage II.
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Figure 5. Final leaderboard scores of the PHM 2025 Challenge. Our
framework (highlighted) demonstrates superior performance and
generalization compared to other top-ranking solutions.

4. CONCLUSION

A two-stage framework is proposed in this paper to address
the dual challenges of data complexity and sample scarcity in
RUL prediction. In Stage I, structural complexity is reduced
through hierarchical aggregation, creating a regularized
representation space. In Stage II, a multi-task shared
Transformer is employed to learn cross-unit degradation
patterns, enabling effective knowledge transfer across limited
samples. Strong generalization capability was demonstrated
on the PHM 2025 Data Challenge, validating the
effectiveness of the proposed framework for predictive
maintenance in high-value industrial assets.
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