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1. INTRODUCTION

This paper presents a remaining cycle estimation method for
aircraft engines, developed during our participation in the
PHM 2025 Data Challenge Competition.

The features of our method are as follows:

(1) Physics-informed Feature Exploration: Through
exploratory data analysis utilizing physical insights in
the field of aircraft, we found good features that reflect
performance degradation.

(2) Maintenance Cycle Model: We developed a model that
describes cycles of performance degradation and
recovery by a weighted composite of health value for
each maintenance type. The model fits well with our
designated features that reflect the engine performance
degradation.

(3) Estimation Optimization: Taking the scoring rules into
account, we optimized the estimated results by assuming
probability distribution of the true values. The
optimization enabled precise and stable estimation.

2. FEATURE EXPLORATION

In this section, we describe the feature design aimed at
capturing the target maintenance cycles, namely cycles to
HPT, HPC, and WW. The available dataset contains eight
snapshots recorded at different times in each aircraft
operation cycle. Among these, we focus on Snapshot 4,
which corresponds to take-off conditions where the engine
experiences the maximum load. Based on this dataset, the
following two features were defined.
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(1) Isentropic Efficiency
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The feature y, represents the isentropic efficiency, where T,5
denotes the inlet temperature of the HPC, T; the outlet
temperature of the HPC, P, the inlet pressure of the HPC,Pg;
the outlet pressure of the HPC, and y the specific heat ratio,
assumed to be 1.4 in this study.

(2) Increment Rate from T5 to Tyg

The feature y; denotes the increment rate from Ty to Tys.
Here, T; corresponds to the outlet temperature of the HPC
(and inlet temperature of the HPT), and T, indicates the
outlet temperature of the HPT.

Correlation analysis of these features revealed that the
isentropic efficiency and the increment rate from T3 to Tys
exhibited strong correlations with the HPC and HPT,
respectively (Table 1 and Figure 1).

This result confirms that the designed features effectively
capture the main target indicators. In contrast, the correlation
with WW was relatively low, indicating that linear
relationships alone are insufficient for explanation. However,
as discussed in Chapter 5, time-series analysis of the
increment rate from T5 to T,5 incorporating simulation data
revealed repeated spikes with the same periodicity as WW,
suggesting the presence of underlying periodic dependencies.
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Table 1. Correlation coefficients between designed features
and engine performance indicators (HPT, HPC, WW) under
ESN101-Snapshot 4 condition.

HPC | HPT | WW
Isentropic Efficiency 0.78 0.18 0.18
Increment Rate from T5t0T,s -0.55 | -0.94 | -0.08
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Figure 1. Time-series variations of designed features and
maintenance events under ESN101-Snapshot 4 condition.

In summary, isentropic efficiency and the increment rate
from T; to T,5 are expected to directly contribute to the
prediction of HPC and HPT. For the prediction of WW,
incorporating simulation data for the increment rate from
increment rate from T3 to T,s; suggests that, although
correlation coefficients alone may not be sufficient for
evaluation, this feature could demonstrate usefulness in
models that account for periodic characteristics. Since the test
dataset does not contain T5 and P,5, we estimated them using
LightGBM. In the subsequent chapters, these designed
features will be utilized to explore inference approaches.

3. MAINTENANCE CYCLE MODEL

The maintenance cycle model is introduced to describe cycles
of performance degradation and recovery. It is meant to be
applied to situations where there are several types of
maintenance conducted following their own maintenance
cycles.

We assumed that each engine has a health value for each type
of maintenance. As shown in Figure 2, the health values
gradually decrease over cycles, and each value recovers to the
original after its corresponding type of maintenance.

We assumed that observations can be estimated by a
weighted composite of health values. The bottom plot in
Figure 2 shows an example of the estimated observations,

which is composed of 0.8 and 0.2 of health values from
Maintenance A and Maintenance B, respectively.

The idea is expressed in the following equation:
filx) = Xjaiix + ¢ (D

where f; (i = 1...n) are functions to estimate observation i,
x; (j = 1...m) are remaining cycles for maintenance j, and

a;;and ¢; (i = 1..n,j = 1..m) are coefficients.

The equation (1) can be rewritten as:

F(X)=AX+¢C 2)
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Once we find observations Y = (yy, ...,),) that fit the
estimated observations F = (fj, ..., f), we can estimate the
remaining cycles X = (x, ..., x,,) by the following equation:

X=A(-0 (3)
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Figure 2. Maintenance Cycle Model.

4. ESTIMATION FOR HIGH PRESSURE TURBINE (HPT) AND
HIGH PRESSURE COMPRESSOR (HPC) SHOP VISIT

We applied the maintenance cycle model to estimate
remaining cycles for HPT and HPC shop visits.

The flow of the remaining cycle estimation for HPT and HPC
is shown in Figure 3. Overview of the flow is described
below:

(1) Feature Extraction: We selected the following features
as described in Section 2:

Y, isentropic efficiency
Y, increment rate from T3 to T45, (T45-T3)/T3.

(2) Training: From the training data, we extracted features
Y = (y.,y;:) as target variables, where Y, is isentropic
efficiency and Y, is increment rate from T3 to T45. We
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used remaining cycles data X = (Xypr, Xypc ) as
explanatory variables and trained a linear regression
model for each ESN (Engine Serial Number).

(3) Model Fitting: As shown in Figure 4, the observation
Y = (y,,y,) contains significant fluctuation probably
because they are influenced by various flight conditions.
The fluctuation makes it difficult to precisely estimate
the remaining cycles. To address this issue, we
developed a model fitting method to extract clean
observations to which the maintenance cycle models fit
well. The method utilizes a zero-crossing method to find
gaps by sudden changes in the trend of the observations.
Then each trend is described by a line by fitting the
model to the observation.

(4) Remaining Cycle Estimation: Once we obtain clean
observation Y.,.,,, We can estimate X according to
equation (3).
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Feature Extraction
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Figure 3. Flow of Remaining Cycle Estimation for HPT and
HPC.
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Figure 4. Model Fitting.

5. ESTIMATION FOR WATER-WASH (WW)

The remaining cycles of WW exhibit a low simple correlation
with the features. Therefore, a different approach is needed
compared to the maintenance cycle model. As a new
approach, we utilized simulation data (NASA AGTF30
Simulation). Figure 5 shows the increment rate from T3 to
T45 calculated from sensor values and simulations. From
Figure 5, a significant similarity in the fluctuation patterns
between the sensor values and simulations is observed.
Therefore, we defined the difference between the sensor
values and the simulation values as y,;, and the result after
applying a moving average to y, is shown in Figure 6. From
Figure 6, it can be seen that spikes in y; occur in cycles
delineated by the red dashed line (Cycles WW = 0).
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Figure 5. Increment Rate from T3 to T45 Calculated from
Sensor Values and Simulations.
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Figure 6. Difference in the Increment Rate from T3 to T45
Between Sensor Values and Simulations.

The outline of the remaining cycle estimation for WW is as
follows:

(1) Feature extraction: We selected the following features:
yaq: Difference between y, and y; sim, Y-Vt sim-

By applying a moving average to y,;, we reduced noise
and clarified the trend.

Vma: Moving average of y; (window size = 10).

(2) Model: As shown in Figure 6, the spikes in y;,, occur
over time, making time-series pattern recognition
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essential. Furthermore, the changes in the spikes also
include local features such as abrupt changes and noise,
which need to be captured simultaneously. To address
this problem, we utilized a CRNN model that excels in
local feature extraction and learning long-term
dependencies. The CRNN is a model that combines the
local feature extraction capabilities of Convolutional
Neural Networks (CNN) with the time-series
dependency learning capabilities of Recurrent Neural
Networks (RNN).

(3) Training: The CRNN was trained by dividing y,,,, into
sliding windows of width 128. ESN101 to ESN103 were
used as the training data (5619 samples), while ESN104
was used as the unseen data (1873 samples).

(4) Remaining Cycle Estimation: By applying a moving
average (window size = 3) to the Remaining Cycle
regressed by the CRNN, we reduced noise.

6. ESTIMATION OPTIMIZATION

Taking the scoring rules into account, we aimed to optimize
the estimation process. The optimizing process is as follows:

(1) Assumption of Probability Distribution: Suppose that
initial estimation is 2500 cycles, we assume the
probability distribution of the true value distributes
around the initial estimation as shown in the first plot of
Figure 7, where probability distribution function is
Weibull distribution with a shape parameter of 4.0, and
the characteristic life is set to align with the initial
estimation.

(2) Minimization of the Expected Value of the Score:
Assuming the probability distribution, we evaluate the
expected value of the score for each estimated value of
remaining cycles. By minimizing the expected value, we
obtain the optimized estimation.
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Figure 7. Estimation Optimization.

7. RESULTS AND DISCUSSION

Our method achieved a score of 48.56 on the validation data,
placing it second among the competitors. This result suggests
the effectiveness of our approach.

Table 2 shows the evaluation results using the training data.
We randomly extracted 10 test datasets from each Engine
Serial Number (ESN), and scores were calculated using
cross-validation.

Table 2. Experimental Results.

Initial estimation Optimized estimation

Ww HPC HPT mean |WW HPC HPT mean
score (mean) | 29.35| 92.35| 20.38| 47.36| 20.93| 35.27| 16.45| 24.22
162.05 | 826.37 | 147.88 | 282.31 | 130.96 | 151.97 | 48.44| 75.38

score (max)

As shown in the table, the scores improved through
estimation optimization. Notably, the maximum (worst)
score value was 75.38, whereas the initial estimation was
282.31, indicating the stability of our method.

8. CONCLUSION

We presented a remaining cycle estimation method based on
a maintenance cycle model. The model is simple yet fits the
aircraft engine data in the PHM 2025 Data Challenge very
well. The model-based method, along with the physics-
informed feature exploration and the estimation optimization,
yielded accurate and stable results.
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