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1. INTRODUCTION 

This paper presents a remaining cycle estimation method for 
aircraft engines, developed during our participation in the 
PHM 2025 Data Challenge Competition. 

The features of our method are as follows: 

(1) Physics-informed Feature Exploration: Through 
exploratory data analysis utilizing physical insights in 
the field of aircraft, we found good features that reflect 
performance degradation. 

(2) Maintenance Cycle Model: We developed a model that 
describes cycles of performance degradation and 
recovery by a weighted composite of health value for 
each maintenance type. The model fits well with our 
designated features that reflect the engine performance 
degradation. 

(3) Estimation Optimization: Taking the scoring rules into 
account, we optimized the estimated results by assuming 
probability distribution of the true values. The 
optimization enabled precise and stable estimation. 

2. FEATURE EXPLORATION 

In this section, we describe the feature design aimed at 
capturing the target maintenance cycles, namely cycles to 
HPT, HPC, and WW. The available dataset contains eight 
snapshots recorded at different times in each aircraft 
operation cycle. Among these, we focus on Snapshot 4, 
which corresponds to take-off conditions where the engine 
experiences the maximum load. Based on this dataset, the 
following two features were defined. 

(1) Isentropic Efficiency 
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The feature 𝑦𝑦𝑒𝑒 represents the isentropic efficiency, where 𝑇𝑇25 
denotes the inlet temperature of the HPC, 𝑇𝑇3  the outlet 
temperature of the HPC, 𝑃𝑃25 the inlet pressure of the HPC,𝑃𝑃𝑠𝑠3 
the outlet pressure of the HPC, and γ the specific heat ratio, 
assumed to be 1.4 in this study. 

(2) Increment Rate from 𝑇𝑇3 to 𝑇𝑇45 

𝑦𝑦𝑡𝑡 =
𝑇𝑇45 − 𝑇𝑇3

𝑇𝑇3
 

The feature 𝑦𝑦𝑡𝑡  denotes the increment rate from 𝑇𝑇3  to 𝑇𝑇45 . 
Here, 𝑇𝑇3  corresponds to the outlet temperature of the HPC 
(and inlet temperature of the HPT), and 𝑇𝑇45  indicates the 
outlet temperature of the HPT. 

Correlation analysis of these features revealed that the 
isentropic efficiency and the increment rate from 𝑇𝑇3  to 𝑇𝑇45  
exhibited strong correlations with the HPC and HPT, 
respectively (Table 1 and Figure 1).  

This result confirms that the designed features effectively 
capture the main target indicators. In contrast, the correlation 
with WW was relatively low, indicating that linear 
relationships alone are insufficient for explanation. However, 
as discussed in Chapter 5, time-series analysis of the 
increment rate from 𝑇𝑇3 to 𝑇𝑇45 incorporating simulation data 
revealed repeated spikes with the same periodicity as WW, 
suggesting the presence of underlying periodic dependencies. 
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Table 1. Correlation coefficients between designed features 
and engine performance indicators (HPT, HPC, WW) under 

ESN101–Snapshot 4 condition. 

 HPC HPT WW 

Isentropic Efficiency 0.78 0.18 0.18 

Increment Rate from 𝑇𝑇3to𝑇𝑇45 -0.55 -0.94 -0.08 

 

 

 
Figure 1. Time-series variations of designed features and 
maintenance events under ESN101–Snapshot 4 condition. 

In summary, isentropic efficiency and the increment rate 
from 𝑇𝑇3  to 𝑇𝑇45  are expected to directly contribute to the 
prediction of HPC and HPT. For the prediction of WW, 
incorporating simulation data for the increment rate from 
increment rate from 𝑇𝑇3 to 𝑇𝑇45  suggests that, although 
correlation coefficients alone may not be sufficient for 
evaluation, this feature could demonstrate usefulness in 
models that account for periodic characteristics. Since the test 
dataset does not contain 𝑇𝑇5 and  𝑃𝑃25, we estimated them using 
LightGBM. In the subsequent chapters, these designed 
features will be utilized to explore inference approaches. 

3. MAINTENANCE CYCLE MODEL 

The maintenance cycle model is introduced to describe cycles 
of performance degradation and recovery. It is meant to be 
applied to situations where there are several types of 
maintenance conducted following their own maintenance 
cycles. 

We assumed that each engine has a health value for each type 
of maintenance. As shown in Figure 2, the health values 
gradually decrease over cycles, and each value recovers to the 
original after its corresponding type of maintenance.  

We assumed that observations can be estimated by a 
weighted composite of health values. The bottom plot in 
Figure 2 shows an example of the estimated observations, 

which is composed of 0.8 and 0.2 of health values from 
Maintenance A and Maintenance B, respectively. 

The idea is expressed in the following equation: 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 + 𝑐𝑐𝑖𝑖𝑗𝑗   (1) 

where 𝑓𝑓𝑖𝑖 (𝑖𝑖 = 1 … 𝑛𝑛) are functions to estimate observation 𝑖𝑖, 
𝑥𝑥𝑗𝑗  (𝑗𝑗 = 1 …𝑚𝑚) are remaining cycles for maintenance j, and 
𝑎𝑎𝑖𝑖𝑖𝑖  and 𝑐𝑐𝑖𝑖 (𝑖𝑖 = 1 … 𝑛𝑛, 𝑗𝑗 = 1 …𝑚𝑚) are coefficients. 

The equation (1) can be rewritten as: 

  𝐹𝐹(𝑋𝑋) = 𝐴𝐴𝐴𝐴 + 𝐶𝐶   (2) 

where 𝐹𝐹 = (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛) , 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) , 𝐶𝐶 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) , 
𝐴𝐴 = ((𝑎𝑎11, … , 𝑎𝑎1𝑚𝑚), … , (𝑎𝑎𝑛𝑛1, … , 𝑎𝑎𝑛𝑛𝑛𝑛)). 

Once we find observations 𝑌𝑌 = (𝑦𝑦1 , … ,𝑦𝑦𝑛𝑛) that fit the 
estimated observations 𝐹𝐹 = (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛), we can estimate the 
remaining cycles 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) by the following equation: 

  𝑋𝑋 = 𝐴𝐴−1(𝑌𝑌 − 𝐶𝐶)   (3) 

 
Figure 2. Maintenance Cycle Model. 

4. ESTIMATION FOR HIGH PRESSURE TURBINE (HPT) AND 
HIGH PRESSURE COMPRESSOR (HPC) SHOP VISIT 

We applied the maintenance cycle model to estimate 
remaining cycles for HPT and HPC shop visits. 

The flow of the remaining cycle estimation for HPT and HPC 
is shown in Figure 3. Overview of the flow is described 
below: 

(1) Feature Extraction: We selected the following features 
as described in Section 2: 

𝑦𝑦𝑒𝑒: isentropic efficiency 

𝑦𝑦𝑡𝑡: increment rate from T3 to T45, (T45-T3)/T3.  

(2) Training: From the training data, we extracted features 
𝑌𝑌 = (𝑦𝑦𝑒𝑒 ,𝑦𝑦𝑡𝑡) as target variables, where 𝑌𝑌𝑒𝑒  is isentropic 
efficiency and 𝑌𝑌𝑐𝑐 is increment rate from T3 to T45. We 
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used remaining cycles data 𝑋𝑋 = (𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻 , 𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻 ) as 
explanatory variables and trained a linear regression 
model for each ESN (Engine Serial Number). 

(3) Model Fitting: As shown in Figure 4, the observation 
𝑌𝑌 = (𝑦𝑦𝑒𝑒 ,𝑦𝑦𝑡𝑡)  contains significant fluctuation probably 
because they are influenced by various flight conditions. 
The fluctuation makes it difficult to precisely estimate 
the remaining cycles. To address this issue, we 
developed a model fitting method to extract clean 
observations to which the maintenance cycle models fit 
well. The method utilizes a zero-crossing method to find 
gaps by sudden changes in the trend of the observations. 
Then each trend is described by a line by fitting the 
model to the observation. 

(4) Remaining Cycle Estimation: Once we obtain clean 
observation  𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , we can estimate 𝑋𝑋  according to 
equation (3). 

 

 
Figure 3. Flow of Remaining Cycle Estimation for HPT and 

HPC. 
 

 
Figure 4. Model Fitting. 

5. ESTIMATION FOR WATER-WASH (WW) 

The remaining cycles of WW exhibit a low simple correlation 
with the features. Therefore, a different approach is needed 
compared to the maintenance cycle model. As a new 
approach, we utilized simulation data (NASA AGTF30 
Simulation). Figure 5 shows the increment rate from T3 to 
T45 calculated from sensor values and simulations. From 
Figure 5, a significant similarity in the fluctuation patterns 
between the sensor values and simulations is observed. 
Therefore, we defined the difference between the sensor 
values and the simulation values as 𝑦𝑦𝑑𝑑 , and the result after 
applying a moving average to 𝑦𝑦𝑑𝑑  is shown in Figure 6. From 
Figure 6, it can be seen that spikes in 𝑦𝑦𝑑𝑑  occur in cycles 
delineated by the red dashed line (Cycles_WW = 0). 
 

 
Figure 5. Increment Rate from T3 to T45 Calculated from 

Sensor Values and Simulations. 
 

 
Figure 6. Difference in the Increment Rate from T3 to T45 

Between Sensor Values and Simulations. 
 
The outline of the remaining cycle estimation for WW is as 
follows: 
 
(1) Feature extraction: We selected the following features: 

𝑦𝑦𝑑𝑑 : Difference between 𝑦𝑦𝑡𝑡  and 𝑦𝑦𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠, 𝑦𝑦𝑡𝑡-𝑦𝑦𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠. 

By applying a moving average to 𝑦𝑦𝑑𝑑 , we reduced noise 
and clarified the trend. 

𝑦𝑦𝑚𝑚𝑚𝑚: Moving average of 𝑦𝑦𝑑𝑑  (window size = 10). 

(2) Model: As shown in Figure 6, the spikes in 𝑦𝑦𝑚𝑚𝑚𝑚 occur 
over time, making time-series pattern recognition 

Training Data

Training

Maintenance Cycle Model

Test Data

Feature Extraction

Model 
Fitting
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essential. Furthermore, the changes in the spikes also 
include local features such as abrupt changes and noise, 
which need to be captured simultaneously. To address 
this problem, we utilized a CRNN model that excels in 
local feature extraction and learning long-term 
dependencies. The CRNN is a model that combines the 
local feature extraction capabilities of Convolutional 
Neural Networks (CNN) with the time-series 
dependency learning capabilities of Recurrent Neural 
Networks (RNN). 

(3) Training: The CRNN was trained by dividing 𝑦𝑦𝑚𝑚𝑚𝑚 into 
sliding windows of width 128. ESN101 to ESN103 were 
used as the training data (5619 samples), while ESN104 
was used as the unseen data (1873 samples). 

(4) Remaining Cycle Estimation: By applying a moving 
average (window size = 3) to the Remaining Cycle 
regressed by the CRNN, we reduced noise. 

6. ESTIMATION OPTIMIZATION 

Taking the scoring rules into account, we aimed to optimize 
the estimation process. The optimizing process is as follows: 

(1) Assumption of Probability Distribution: Suppose that 
initial estimation is 2500 cycles, we assume the 
probability distribution of the true value distributes 
around the initial estimation as shown in the first plot of 
Figure 7, where probability distribution function is 
Weibull distribution with a shape parameter of 4.0, and 
the characteristic life is set to align with the initial 
estimation. 

(2) Minimization of the Expected Value of the Score: 
Assuming the probability distribution, we evaluate the 
expected value of the score for each estimated value of 
remaining cycles. By minimizing the expected value, we 
obtain the optimized estimation. 

 

 

 
Figure 7. Estimation Optimization. 

7. RESULTS AND DISCUSSION 

Our method achieved a score of 48.56 on the validation data, 
placing it second among the competitors. This result suggests 
the effectiveness of our approach. 

Table 2 shows the evaluation results using the training data. 
We randomly extracted 10 test datasets from each Engine 
Serial Number (ESN), and scores were calculated using 
cross-validation. 

Table 2. Experimental Results. 
 

 
 

As shown in the table, the scores improved through 
estimation optimization. Notably, the maximum (worst) 
score value was 75.38, whereas the initial estimation was 
282.31, indicating the stability of our method. 

8. CONCLUSION 

We presented a remaining cycle estimation method based on 
a maintenance cycle model. The model is simple yet fits the 
aircraft engine data in the PHM 2025 Data Challenge very 
well. The model-based method, along with the physics-
informed feature exploration and the estimation optimization, 
yielded accurate and stable results. 
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WW HPC HPT mean WW HPC HPT mean
score (mean) 29.35 92.35 20.38 47.36 20.93 35.27 16.45 24.22
score (max) 162.05 826.37 147.88 282.31 130.96 151.97 48.44 75.38
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