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ABSTRACT 

This work addresses the PHM North America 2025 

Conference data challenge for multi-event Remaining Useful 

Life (RUL) estimation on aircraft gas turbine engine 

modules, predicting the time-to-event for three maintenance 

actions: High Pressure Turbine shop visits (HPT SV), High 

Pressure Compressor shop visits (HPC SV), and Water Wash 

(WW).  

We present a comprehensive workflow that integrates 

snapshot data quality control, virtual sensing for missing 

sensors (P25 and T5), domain-informed feature engineering, 

and event-specific modeling with consensus mechanisms. 

Long short-term memory (LSTM) regression models are 

trained for HPC and WW using a custom loss function 

adapted from the competition, which heavily penalizes errors 

on early and near-term events. HPT RUL is produced by a 

confluence of an Artificial Neural Network (ANN) regressor 

and a linear degradation prior to stabilize extrapolation. A 

profile registration algorithm reconstructs temporal ordering 

in shuffled test/validation files, preserving health indicator 

(HI) monotonicity and degradation physics, proving a vital 

sanity check and building trust on the submitted results. 

The MathWorks team achieved 1st place in the public test 

phase with the best submission score of 0.3528, proving the 

high quality of predictions. The functionalities and tools 

demonstrated in our work are generally applicable aircraft 

fleet maintenance services RUL predictions. 

1. INTRODUCTION 

Predicting the RUL of aircraft engines required maintenance 

service events is a long-standing challenge in prognostics and 

health management (PHM). Accurate prediction of 

maintenance events is critical not only for cost efficiency but 

also for safety and mission readiness. The 2025 PHM Society 

Data Challenge provided a dataset from the AGTF30 engine 

simulation, including multi-snapshot sensor measurements, 

flight condition data, and labels for three maintenance events 

of interest: HPC SV, HPT SV, and WW. 

Unlike conventional RUL tasks where a single failure mode 

is studied, this challenge required simultaneous modeling of 

three interdependent service events, each with different 

degradation characteristics and time scales. The data also 

contained challenges typical of fleet operations, including 

missing sensors in validation/test sets, duplicates, noisy 

signals, and shuffled file ordering. 

Our methodology is outlined in Figure 1. The key 

contributions of this paper are: 

1. A comprehensive data cleaning and preprocessing 

pipeline tailored for noisy datasets under varying 

operating conditions.  

2. Virtual sensor models to estimate missing parameters in 

validation/test data. 
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3. Domain-informed feature engineering, including 

pressure ratios, relative temperature drops, and 

efficiency proxies. 

4. Design of health indicators (HIs) for compressor and 

turbine modules, revealing interactions between WW 

events and compressor degradation. 

5. An ensemble of machine learning models — including 

ANNs, LSTMs, and survival models — tailored to each 

event type. 

6. A novel test-time profile registration algorithm to 

correctly align shuffled Engine Serial Number (ESN) 

sequences, crucial for validating RUL predictions. 

 
 

Figure 1. Workflow for multi-event RUL prediction  

2.  DATA PREPROCESSING 

2.1 Data Exploration and Visualization 

The training dataset consisted of four engine serial numbers 

(ESNs 101-104), each covering 20,000 operating cycles. At 

each cycle, engine measurements were recorded at up to eight 

snapshots, representing different operating conditions such as 

ground idle, takeoff, cruise, descent, etc. Sixteen primary 

sensors were provided, covering air flowpath pressures & 

temperatures, rotor speeds, and actuator positions. In 

addition, maintenance event labels were available in the form 

of cumulative counters and remaining cycles before the next 

event for HPC SV, HPT SV, and WW. 

The test and validation datasets each consist of data from four 

separate ESNs. Specifically, the test set includes ESNs 105, 

106, 111, and 112, while the validation set contains ESNs 

107, 108, 113, and 114. Both datasets are made up of multiple 

files, with each file containing data from 150 cycles. The P25 

and T5 signals are not presented in both the test and validation 

sets. The objective of this data challenge is to predict the 

number of cycles remaining until the next event for HPC SV, 

HPT SV, and WW. 

To better understand the training data and distinguish it from 

the test and validation datasets, we conducted initial data 

exploration including: 

• reviewing summary statistics for each snapshot.  

• analysing the flight envelope by plotting Mach 

number against altitude. 

• visualizing sensor signals in relation to altitude. 

Through this analysis, the artificially planted event markers 

are found in final cycles of each ESN, forcing each engine to 

end at 20,000 cycles as shown in Figure 2. These cycles were 

removed from subsequent analysis to avoid bias. 

 

Figure 2. RUL for 3 events on the training data ESN 104 

By examining the snapshot statistics, we observe that 

Snapshot 5 contains significantly fewer observations than the 

other seven snapshots as illustrated in Figure 3. This 

inconsistency in data recording frequency motivates us to 

aggregate the information from all snapshots within each 

cycle, thereby ensuring consistent data for every cycle. The 

details of this aggregation process are discussed in Section 

3.1. 

  

Figure 3. Training data distribution across snapshots 

Operating conditions significantly affect engine 

performance. The Mach number represents the speed of 

airflow entering or exiting the engine, while altitude refers to 

the height above sea level. By analyzing these conditions for 

different ESNs, we can better understand how the units in the 
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test and validation datasets differ from those in the training 

dataset. Figure 4 presents the flight envelope, specifically, 

Mach number versus altitude—for three datasets (Kratz, 

2024). Certain ESNs (111 and 112 in the test set, and 113 and 

114 in the validation set) exhibit a broader safe operating 

region, as defined by both altitude and Mach number. This 

broader range is associated with more rapid degradation 

patterns compared to other ESNs, which is highlighted in 

Section 5.2.  

 

(a) Flight envelope for training dataset 

 

(b) Flight envelope for test dataset 

 

(c) Flight envelope for validation dataset 

Figure 4. Flight envelope showing ESNs 111-114 operated 

closer to margins and exhibited more rapid degradation 

 

Analysis of raw feature plots and data statistics revealed 

several anomalies in the dataset, including: 

• duplicate rows, particularly within the metadata 

fields. 

• negative altitude values, likely resulting from 

simulation artifacts. 

• significant noise and inconsistent scaling across 

ESNs. 

These issues highlight the need for normalization and outlier 

removal, which are addressed in the following section. 

2.2 Data Cleaning 

Data preprocessing was critical to ensure the robustness of 

downstream models’ reliability. Duplicates were identified 

by checking for repeated values across all sixteen sensors and 

subsequently removed. Missing data were handled using 

snapshot-wise interpolation per ESN, ensuring temporal 

continuity. 

Outlier treatment was performed on a per-snapshot, per-ESN 

basis. For each sensor, outliers were defined as elements 

more than 1.5 interquartile ranges above and below the upper 

and lower quartiles, respectively. Outliers were removed 

using MATLAB’s “rmoutliers” function. Figure 5 shows the 

data range before and after cleaning. This strategy ensured 

that spurious spikes did not propagate into HIs or learned 

models. 

After cleaning, the dataset retained sufficient coverage across 

all eight snapshots for meaningful feature extraction. 

 

 

Figure 5. Boxplots of sample Altitude sensor before (top) 

and after (bottom) outlier treatment across snapshots in the 

training 
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2.3 Virtual Sensor Modeling 

A unique aspect of this year’s challenge was the absence of 

two key sensors, P25 and T5, in the validation and test sets. To 

overcome this, we developed linear regression-based virtual 

sensor models. 

Inputs included upstream and downstream sensors, snapshot 

labels and ambient conditions. Multiple machine learning 

models were trained and compared using the 

𝑅2, 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 and 𝑀𝐴𝑃𝐸 metrics. The Interaction Linear 

Regression model was selected based on performance on 

randomly split training (80%) and test data (20%) from the 

competition’s training dataset. The RMSE for the P25 and T5 

virtual sensors on the partitioned test data was 0.039 and 

0.781 respectively, as shown in Figure 6. These virtual 

sensors were subsequently used to populate missing values in 

the validation and test sets, ensuring consistent feature sets 

across all phases of the competition.  

 

 

Figure 6. Interaction Linear Regression model was selected 

for P25 virtual sensor amongst several models. The same 

approach was used for the T5 virtual sensor model. 

3. FEATURE PREPARATION 

3.1 Feature Engineering and Selection 

Feature engineering and selection are critical steps in the 

engine analysis process, as they directly influence the 

performance and interpretability of predictive models. 

Extracting relevant features from raw sensor data enables a 

deeper physical understanding the engine system.  

The dataset comprises a comprehensive set of engine sensor 

signals, including measurements such as altitude, Mach 

number, ambient and total pressures (Pamb, Pt2), total air 

temperature (TAT), fuel flow (WFuel), variable area fan 

nozzle (VAFN), variable bleed valve (VBV), and key 

rotational speeds (Fan_Speed, Core_Speed). Additionally, it 

captures critical thermodynamic states at various engine 

stations, such as temperatures (T25, T3, T45, T5) and pressures 

(P25, Ps3). To better capture the degradation trends, a series of 

domain-informed features were extracted to characterize 

engine performance and health: 

1. Pressure ratios across fan, HPC, LPC, and the 

overall compressor system. 

• HPC pressure ratio = 𝑃𝑠3 𝑃25⁄  

• LPC pressure ratio = 𝑃25 𝑃𝑡2⁄  

• Fan pressure ratio = 𝑃𝑡2 𝑃𝑎𝑚𝑏⁄  

• Compressor pressure ratio = 𝑃𝑠3 𝑃𝑡2⁄  

• Overall engine pressure ratio = 𝑃𝑠3 𝑃𝑎𝑚𝑏⁄  

2. Relative temperature drops across the HPT, LPT, 

and combined turbine modules with respect to the 

corresponding entry temperature. 

• HPT relative temp drops =
𝑇45 − 𝑇3

𝑇3
 

• LPT relative temp drops =
𝑇5 − 𝑇45

𝑇45
 

• Turbine relative temp drops =
𝑇5 − 𝑇3

𝑇3
 

3. Proxies for thermal efficiency and fuel efficiency 

derived from enthalpy balance approximations. 

• Thermal efficiency proxy =
𝑇5 − 𝑇𝐴𝑇

𝑇3 − 𝑇𝐴𝑇
 

• Combustor efficiency proxy =
𝑇45 − 𝑇25

𝑇25 − 𝑇𝐴𝑇
 

• Compressor Thermal efficiency proxy = 

             1 −
1

Overall pressure ratio
𝛾−1

𝛾

  

• Specific Fuel consumption proxy =
𝑊𝐹𝑢𝑒𝑙

𝑇5 − 𝑇𝐴𝑇
 

• Specific power proxy = 𝑇5 × 𝑀𝑎𝑐ℎ 
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4. Corrected rotor speeds using TAT. 

• Corrected fan speed =
𝐹𝑎𝑛_𝑆𝑝𝑒𝑒𝑑

√𝑇𝐴𝑇
 

• Corrected core speed =
𝐶𝑜𝑟𝑒_𝑆𝑝𝑒𝑒𝑑

√𝑇𝐴𝑇
 

These domain knowledge-based features enable robust 

monitoring, diagnostics, and performance analysis of the 

engine system. 

As noted in Section 2, some snapshots were missing in the 

raw data. To address this, we summarized the snapshot data 

for each cycle using statistical measures such as mean, 

standard deviation, minimum, maximum, range, median, and 

RMS. This approach transforms the original eight-snapshot 

data into a compact set of cycle-level features. 

To further reduce the dimensionality of the features, we 

selected key features based on the feature variance, and 

dropped the features with variance lower than 0.01. Those 

selected features were utilized in HI design and modelling 

process. 

3.2 HEALTH INDICATOR DESIGN AND FEATURE FOR WW 

EVENT 

To capture progressive degradation, we designed HIs for the 

HPC and HPT modules using MATLAB’s Health Indicator 

Designer as shown in Figure 7. These indicators were 

developed using cycle-level statistical features, which were 

normalized to range from 1 (indicating a healthy state) to 0 

(indicating failure). The health index is calculated as a 

weighted sum of these features, with each feature assigned a 

specific weight reflecting its contribution to the overall index 

(Zou, Hui & Hastie, 2005; Moradi, Morteza, et al, 2023). 

 

Figure 7. Health Indicator Designer result for HPC SV event 

Interestingly, the HPC HIs showed a step-change in 

behaviour after each WW event. As illustrated in Figure 8, 

each WW partially restored the indicator, thereby delaying 

the onset of compressor degradation. This observed pattern 

accurately represents the real-world effect of water washing 

in extending the life of the HPC module, which we 

incorporated into our WW and HPC modeling strategies. The 

details of the feature are described in the Section 4.2. 

 

 

Figure 8. Example HI (left axis, blue) for HPC Degradation 

for ESN 102 with WW events (vertical dashed lines) and 

stem plot of change in HI (right axis, green) 

 

 

4. MULTI-EVENT RUL MODELING 

In this section, we present separate modeling strategies, each 

tailored to each event type.  

4.1 HPT Shop Visit Predictions 

For the HPT SV prediction, we trained several machine 

learning models and ANNs on the cycle-level feature set. 

Predictions were compared among different families of 

models on the randomly split training and test sets with 5-fold 

cross-validation, and an ANN model was observed to 

perform best among several machine learning algorithms as 

shown in Figure 9. The ANN was later fine-tuned to improve 

accuracy even further.  
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Figure 9. Model Comparison for HPT SV Predictions. 

ANNs performed best on the training data  

4.2 Water Wash Events Prediction 

An LSTM sequence-to-sequence regression model was 

trained on time-series features (Saxena, Goebel, Simon & 

Eklund, 2008). To optimize the model, we used the 

competition’s time-weighted scoring function as a custom 

loss function during training. 

For training, we used the cycle-level features from ESNs 101-

103. ESN 104 was reserved for validation and testing. Since 

each file in the validation and test sets contains 1500 cycles, 

we also divided the training data into multiple sub-sequences, 

each with 1,500 cycles. From ESN 104, 20% of these sub-

sequences were used for validation, and the remaining 80% 

were used for testing. 

As described in Section 3.2, we observed that HPC HIs 

tended to drop by a consistent amount prior to WW events 

and recovered significantly after the WW. This pattern 

provided another cue for prediction. Hence, a binary feature 

was included in the training dataset to have a value of 1 

wherever the HPC HI recovery is observed, and 0 for the rest 

of the observations.  

Incorporating this WW specific feature and custom loss 

function, the model performed well on both validation and 

test part in the training dataset, as shown in Figure 10. 

 

Figure 10.  WW LSTM model predictions from training set 

on ESN 104 

4.3 HPC Shop Visit Predictions 

For the compressor, we trained an LSTM model with a 

custom time-weighted loss function, identical to that used in 

the competition scoring (Hochreiter and Schmidhuber, 1997). 

This loss penalized late predictions relative to the true RUL 

more than early predictions, especially near event cycles as 

shown in Figure 11. Both engineered features and HIs were 

used as inputs, along with binary labels for recovery in the 

HI, making this the most comprehensive of our models.  

 

Figure 11. Time-weighted Error Function for the WW and 

HPC event derived from the training data, demonstrates that 

the competition’s scoring function significantly penalizes 

the late predictions made for near-term events as compared 

to far events 
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Figure 12. Ground Truth vs LSTM model predictions for 

HPC SV 

5. Verification & Validation Of Predicted Results5.1 

Profile Registration of Test and Validation Files 

All ESNs in the training data were stopped at 20,000 cycles, 

causing the final HPC, HPT, and WW event predictions to 

end abruptly rather than exhibiting the typical degradation 

trend. This presented a significant challenge, as the test and 

validation datasets also featured a randomized ordering of 

files for each ESN. Such shuffling disrupted the temporal 

sequence necessary for sequence modeling and maintaining 

health index coherence. 

To address these issues, we incorporated domain knowledge 

and observational insights to reorder the files appropriately. 

As part of our verification and validation process, we 

developed an optimization-based profile registration 

algorithm to reconstruct the correct temporal sequence. The 

algorithm evaluates the HI in both HPC and HPT events, 

minimizing score discrepancies between consecutive files. 

By aligning HI trajectories and degradation trends, the 

algorithm effectively “stitches” the files into their true 

chronological order. 

This process is crucial for ensuring accurate RUL predictions, 

particularly for the final events, and was a key factor in 

achieving a top ranking during the test phase. Given the 

abrupt stops at 20,000 cycles, the final HPC, HPT, and WW 

events often deviate from typical degradation patterns. To 

ensure precise predictions for these last events, a manual 

prediction adjustment was applied based on the results of the 

profile registration. This step was essential for delivering 

accurate outcomes for the final HPC, HPT, and WW events. 

 

 

Figure 13. Model predictions shown for one of the ESNs in 

test data (ESN 106) after profile registration. It reflects the 

proper temporal order for both HPC & HPT degradation 

 

5.2 Health State Recovery Analysis 

As part of the validation and verification process, we 

analyzed the temporal sequence of HI profiles for each test 

and validation file following the profile registration step. One 

key observation from the training dataset—also confirmed by 

domain experts—is that the recovery in health state after 

major HPC and HPT service events is progressively reduced 

compared to earlier service events. This indicates that the 

health state continues to degrade even after each HPT or HPC 

shop visit. 

Additionally, as discussed in Section 2.1, ESNs 111 and 112 

in the test data operate closer to the flight envelope compared 

to ESNs 101-106 from the training and test datasets. The 

effects of such operational conditions are evident, as these 

engines exhibit more frequent HPC and HPT service events, 

as illustrated in Figure 14. 

These observations confirm that our predictions are 

consistent with established physical understanding and 

accurately reflect the expected degradation behavior. 
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Figure 14. RUL prediction from model reflects lower health 

state recovery after each service event compared to the 

previous. More service events for ESN 112 compared to 

ESN 106 in the test data. 

 

5.3. Review of Far Away WW Event Predictions 

While the profile registration validation check was a 

breakthrough, we understood the impact of the competition’s 

scoring function on late predictions made by the AI models. 

Thus, the submitted predictions on the test and validation 

files were carefully examined to ensure that the far away 

predictions made for the water wash events are backed by 

clear evidence of HPC HIs offset before the end of file as 

shown in Figure 15 for ESN 106 in test data. 

 

Figure 15. Careful Examination of Offset in HPC HI slope 

when far away WW predictions are submitted at end of 

these files 

 

These sanity checks helped us achieve strong results in the 

test phase, and we also took a conservative approach on some 

of the WW predictions to avoid large penalties on the 

validation data, rather than chasing a perfect score. 

6. CONCLUSION 

We presented a comprehensive workflow for multi-event 

RUL prediction in gas turbine engines, as part of the 2025 

PHM Society Data Challenge. Our approach combined 

careful data preprocessing, virtual sensor modeling, domain-

informed feature engineering, HI design, and ensemble 

learning methods. 

The methodology successfully captured degradation patterns 

for HPC, HPT, and WW events, achieving 1st place in the test 

phase of the competition. 
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