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ABSTRACT

This work addresses the PHM North America 2025
Conference data challenge for multi-event Remaining Useful
Life (RUL) estimation on aircraft gas turbine engine
modules, predicting the time-to-event for three maintenance
actions: High Pressure Turbine shop visits (HPT SV), High
Pressure Compressor shop visits (HPC SV), and Water Wash
(WW).

We present a comprehensive workflow that integrates
snapshot data quality control, virtual sensing for missing
sensors (P»s and Ts), domain-informed feature engineering,
and event-specific modeling with consensus mechanisms.
Long short-term memory (LSTM) regression models are
trained for HPC and WW using a custom loss function
adapted from the competition, which heavily penalizes errors
on early and near-term events. HPT RUL is produced by a
confluence of an Artificial Neural Network (ANN) regressor
and a linear degradation prior to stabilize extrapolation. A
profile registration algorithm reconstructs temporal ordering
in shuffled test/validation files, preserving health indicator
(HI) monotonicity and degradation physics, proving a vital
sanity check and building trust on the submitted results.

The MathWorks team achieved 1% place in the public test
phase with the best submission score of 0.3528, proving the
high quality of predictions. The functionalities and tools
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demonstrated in our work are generally applicable aircraft
fleet maintenance services RUL predictions.

1. INTRODUCTION

Predicting the RUL of aircraft engines required maintenance
service events is a long-standing challenge in prognostics and
health management (PHM). Accurate prediction of
maintenance events is critical not only for cost efficiency but
also for safety and mission readiness. The 2025 PHM Society
Data Challenge provided a dataset from the AGTF30 engine
simulation, including multi-snapshot sensor measurements,
flight condition data, and labels for three maintenance events
of interest: HPC SV, HPT SV, and WW.

Unlike conventional RUL tasks where a single failure mode
is studied, this challenge required simultaneous modeling of
three interdependent service events, each with different
degradation characteristics and time scales. The data also
contained challenges typical of fleet operations, including
missing sensors in validation/test sets, duplicates, noisy
signals, and shuffled file ordering.

Our methodology is outlined in Figure 1.
contributions of this paper are:

The key

1. A comprehensive data cleaning and preprocessing
pipeline tailored for noisy datasets under varying
operating conditions.

2. Virtual sensor models to estimate missing parameters in
validation/test data.
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3. Domain-informed feature
pressure ratios, relative
efficiency proxies.

engineering, including
temperature drops, and

4. Design of health indicators (HIs) for compressor and
turbine modules, revealing interactions between WW
events and compressor degradation.

5. An ensemble of machine learning models — including
ANNSs, LSTMs, and survival models — tailored to each
event type.

6. A novel test-time profile registration algorithm to
correctly align shuffled Engine Serial Number (ESN)
sequences, crucial for validating RUL predictions.
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Figure 1. Workflow for multi-event RUL prediction

2. DATA PREPROCESSING
2.1 Data Exploration and Visualization

The training dataset consisted of four engine serial numbers
(ESNs 101-104), each covering 20,000 operating cycles. At
each cycle, engine measurements were recorded at up to eight
snapshots, representing different operating conditions such as
ground idle, takeoff, cruise, descent, etc. Sixteen primary
sensors were provided, covering air flowpath pressures &
temperatures, rotor speeds, and actuator positions. In
addition, maintenance event labels were available in the form
of cumulative counters and remaining cycles before the next
event for HPC SV, HPT SV, and WW.

The test and validation datasets each consist of data from four
separate ESNs. Specifically, the test set includes ESNs 105,
106, 111, and 112, while the validation set contains ESNs
107,108, 113, and 114. Both datasets are made up of multiple
files, with each file containing data from 150 cycles. The Pas
and Ts signals are not presented in both the test and validation
sets. The objective of this data challenge is to predict the

number of cycles remaining until the next event for HPC SV,
HPT SV, and WW.

To better understand the training data and distinguish it from
the test and validation datasets, we conducted initial data
exploration including:

e reviewing summary statistics for each snapshot.

e analysing the flight envelope by plotting Mach
number against altitude.

e visualizing sensor signals in relation to altitude.

Through this analysis, the artificially planted event markers
are found in final cycles of each ESN, forcing each engine to
end at 20,000 cycles as shown in Figure 2. These cycles were
removed from subsequent analysis to avoid bias.
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Figure 2. RUL for 3 events on the training data ESN 104

By examining the snapshot statistics, we observe that
Snapshot 5 contains significantly fewer observations than the
other seven snapshots as illustrated in Figure 3. This
inconsistency in data recording frequency motivates us to
aggregate the information from all snapshots within each
cycle, thereby ensuring consistent data for every cycle. The
details of this aggregation process are discussed in Section
3.1
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Figure 3. Training data distribution across snapshots

Operating  conditions  significantly  affect engine
performance. The Mach number represents the speed of
airflow entering or exiting the engine, while altitude refers to
the height above sea level. By analyzing these conditions for
different ESNs, we can better understand how the units in the
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test and validation datasets differ from those in the training
dataset. Figure 4 presents the flight envelope, specifically,
Mach number versus altitude—for three datasets (Kratz,
2024). Certain ESNs (111 and 112 in the test set, and 113 and
114 in the validation set) exhibit a broader safe operating
region, as defined by both altitude and Mach number. This
broader range is associated with more rapid degradation
patterns compared to other ESNs, which is highlighted in
Section 5.2.
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Figure 4. Flight envelope showing ESNs 111-114 operated
closer to margins and exhibited more rapid degradation

Analysis of raw feature plots and data statistics revealed
several anomalies in the dataset, including:
e duplicate rows, particularly within the metadata
fields.
e negative altitude values, likely resulting from
simulation artifacts.
e significant noise and inconsistent scaling across
ESNs.
These issues highlight the need for normalization and outlier
removal, which are addressed in the following section.

2.2 Data Cleaning

Data preprocessing was critical to ensure the robustness of
downstream models’ reliability. Duplicates were identified
by checking for repeated values across all sixteen sensors and
subsequently removed. Missing data were handled using
snapshot-wise interpolation per ESN, ensuring temporal
continuity.

Outlier treatment was performed on a per-snapshot, per-ESN
basis. For each sensor, outliers were defined as elements
more than 1.5 interquartile ranges above and below the upper
and lower quartiles, respectively. Outliers were removed
using MATLAB’s “rmoutliers” function. Figure 5 shows the
data range before and after cleaning. This strategy ensured
that spurious spikes did not propagate into HIs or learned
models.

After cleaning, the dataset retained sufficient coverage across
all eight snapshots for meaningful feature extraction.
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Figure 5. Boxplots of sample Altitude sensor before (top)
and after (bottom) outlier treatment across snapshots in the
training
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2.3 Virtual Sensor Modeling

A unique aspect of this year’s challenge was the absence of
two key sensors, P»s and Ts, in the validation and test sets. To
overcome this, we developed linear regression-based virtual
sensor models.

Inputs included upstream and downstream sensors, snapshot
labels and ambient conditions. Multiple machine learning
models were trained and compared using the
R? RMSE, MAE and MAPE metrics. The Interaction Linear
Regression model was selected based on performance on
randomly split training (80%) and test data (20%) from the
competition’s training dataset. The RMSE for the P»s and Ts
virtual sensors on the partitioned test data was 0.039 and
0.781 respectively, as shown in Figure 6. These virtual
sensors were subsequently used to populate missing values in
the validation and test sets, ensuring consistent feature sets
across all phases of the competition.
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Figure 6. Interaction Linear Regression model was selected
for P,s virtual sensor amongst several models. The same
approach was used for the Ts virtual sensor model.

3. FEATURE PREPARATION
3.1 Feature Engineering and Selection

Feature engineering and selection are critical steps in the
engine analysis process, as they directly influence the
performance and interpretability of predictive models.
Extracting relevant features from raw sensor data enables a
deeper physical understanding the engine system.

The dataset comprises a comprehensive set of engine sensor
signals, including measurements such as altitude, Mach
number, ambient and total pressures (Pamp, Pt2), total air
temperature (TAT), fuel flow (Wrye), variable area fan
nozzle (VAFN), variable bleed valve (VBV), and key
rotational speeds (Fan_Speed, Core_Speed). Additionally, it
captures critical thermodynamic states at various engine
stations, such as temperatures (T2s, T3, T4s, Ts) and pressures
(P25, Ps3). To better capture the degradation trends, a series of
domain-informed features were extracted to characterize
engine performance and health:

1. Pressure ratios across fan, HPC, LPC, and the
overall compressor system.

e HPC pressure ratio = Ps; /P,

e LPC pressure ratio = P,5/Pt,

e Fanpressure ratio = Pty /P,

e Compressor pressure ratio = Ps;/Pt,

e Overall engine pressure ratio = Ps3/Pyyp

2. Relative temperature drops across the HPT, LPT,
and combined turbine modules with respect to the
corresponding entry temperature.

e HPT relative temp drops = @
3
e LPT relative temp drops = TsT— Tus
45
Tg—Ts

e Turbine relative temp drops =
3

3. Proxies for thermal efficiency and fuel efficiency
derived from enthalpy balance approximations.

. . Ts — TAT
e Thermal efficiency proxy = -
T3 — TAT
. . _ Tys—Tzs
e Combustor efficiency proxy = ——=—==
Tys — TAT

e Compressor Thermal efficiency proxy =

1
1= y—1
Overall pressure ratio ¥
s : _ WEuel
e Specific Fuel consumption proxy = To_rar

e Specific power proxy = Ty X Mach
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4. Corrected rotor speeds using TAT.

Fan_Speed
VTAT

Core_Speed
VTAT

These domain knowledge-based features enable robust
monitoring, diagnostics, and performance analysis of the
engine system.

e Corrected fan speed =

e Corrected core speed =

As noted in Section 2, some snapshots were missing in the
raw data. To address this, we summarized the snapshot data
for each cycle using statistical measures such as mean,
standard deviation, minimum, maximum, range, median, and
RMS. This approach transforms the original eight-snapshot
data into a compact set of cycle-level features.

To further reduce the dimensionality of the features, we
selected key features based on the feature variance, and
dropped the features with variance lower than 0.01. Those
selected features were utilized in HI design and modelling
process.

3.2 HEALTH INDICATOR DESIGN AND FEATURE FOR WW
EVENT

To capture progressive degradation, we designed HIs for the
HPC and HPT modules using MATLAB’s Health Indicator
Designer as shown in Figure 7. These indicators were
developed using cycle-level statistical features, which were
normalized to range from 1 (indicating a healthy state) to 0
(indicating failure). The health index is calculated as a
weighted sum of these features, with each feature assigned a
specific weight reflecting its contribution to the overall index
(Zou, Hui & Hastie, 2005; Moradi, Morteza, et al, 2023).
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Figure 7. Health Indicator Designer result for HPC SV event

Interestingly, the HPC HIs showed a step-change in
behaviour after each WW event. As illustrated in Figure 8,
each WW partially restored the indicator, thereby delaying
the onset of compressor degradation. This observed pattern
accurately represents the real-world effect of water washing
in extending the life of the HPC module, which we
incorporated into our WW and HPC modeling strategies. The
details of the feature are described in the Section 4.2.
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Figure 8. Example HI (left axis, blue) for HPC Degradation
for ESN 102 with WW events (vertical dashed lines) and
stem plot of change in HI (right axis, green)

4. MULTI-EVENT RUL MODELING

In this section, we present separate modeling strategies, each
tailored to each event type.

4.1 HPT Shop Visit Predictions

For the HPT SV prediction, we trained several machine
learning models and ANNs on the cycle-level feature set.
Predictions were compared among different families of
models on the randomly split training and test sets with 5-fold
cross-validation, and an ANN model was observed to
perform best among several machine learning algorithms as
shown in Figure 9. The ANN was later fine-tuned to improve
accuracy even further.
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Test Predicted vs. Actual Plot for Predictions: model 2.24
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4.2 Water Wash Events Prediction

An LSTM sequence-to-sequence regression model was
trained on time-series features (Saxena, Goebel, Simon &
Eklund, 2008). To optimize the model, we used the
competition’s time-weighted scoring function as a custom
loss function during training.

For training, we used the cycle-level features from ESNs 101-
103. ESN 104 was reserved for validation and testing. Since
each file in the validation and test sets contains 1500 cycles,
we also divided the training data into multiple sub-sequences,
each with 1,500 cycles. From ESN 104, 20% of these sub-
sequences were used for validation, and the remaining 80%
were used for testing.

As described in Section 3.2, we observed that HPC HIs
tended to drop by a consistent amount prior to WW events
and recovered significantly after the WW. This pattern
provided another cue for prediction. Hence, a binary feature
was included in the training dataset to have a value of 1
wherever the HPC HI recovery is observed, and 0 for the rest
of the observations.

Incorporating this WW specific feature and custom loss
function, the model performed well on both validation and
test part in the training dataset, as shown in Figure 10.
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Figure 10. WW LSTM model predictions from training set
on ESN 104
4.3 HPC Shop Visit Predictions

For the compressor, we trained an LSTM model with a
custom time-weighted loss function, identical to that used in
the competition scoring (Hochreiter and Schmidhuber, 1997).
This loss penalized late predictions relative to the true RUL
more than early predictions, especially near event cycles as
shown in Figure 11. Both engineered features and HIs were
used as inputs, along with binary labels for recovery in the
HI, making this the most comprehensive of our models.

Comparison of Time Weighted Penalty for Near Term and Far Away Events
1000.0

so00 | ——FarEvent

—s—Near Term Event

e T

e o a0 a0 0 ™ o0 ™

Error in RUL Prediction for Water Wash Event (in Cycles)

Figure 11. Time-weighted Error Function for the WW and
HPC event derived from the training data, demonstrates that
the competition’s scoring function significantly penalizes
the late predictions made for near-term events as compared
to far events
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HPC SV RUL Predictions: ESN 104
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Figure 12. Ground Truth vs LSTM model predictions for
HPC SV

5. Verification & Validation Of Predicted ResultsS.1
Profile Registration of Test and Validation Files

All ESNs in the training data were stopped at 20,000 cycles,
causing the final HPC, HPT, and WW event predictions to
end abruptly rather than exhibiting the typical degradation
trend. This presented a significant challenge, as the test and
validation datasets also featured a randomized ordering of
files for each ESN. Such shuffling disrupted the temporal
sequence necessary for sequence modeling and maintaining
health index coherence.

To address these issues, we incorporated domain knowledge
and observational insights to reorder the files appropriately.
As part of our verification and validation process, we
developed an optimization-based profile registration
algorithm to reconstruct the correct temporal sequence. The
algorithm evaluates the HI in both HPC and HPT events,
minimizing score discrepancies between consecutive files.
By aligning HI trajectories and degradation trends, the
algorithm effectively “stitches” the files into their true
chronological order.

This process is crucial for ensuring accurate RUL predictions,
particularly for the final events, and was a key factor in
achieving a top ranking during the test phase. Given the
abrupt stops at 20,000 cycles, the final HPC, HPT, and WW
events often deviate from typical degradation patterns. To
ensure precise predictions for these last events, a manual
prediction adjustment was applied based on the results of the
profile registration. This step was essential for delivering
accurate outcomes for the final HPC, HPT, and WW events.
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Figure 13. Model predictions shown for one of the ESNs in
test data (ESN 106) after profile registration. It reflects the
proper temporal order for both HPC & HPT degradation

5.2 Health State Recovery Analysis

As part of the validation and verification process, we
analyzed the temporal sequence of HI profiles for each test
and validation file following the profile registration step. One
key observation from the training dataset—also confirmed by
domain experts—is that the recovery in health state after
major HPC and HPT service events is progressively reduced
compared to earlier service events. This indicates that the
health state continues to degrade even after each HPT or HPC
shop visit.

Additionally, as discussed in Section 2.1, ESNs 111 and 112
in the test data operate closer to the flight envelope compared
to ESNs 101-106 from the training and test datasets. The
effects of such operational conditions are evident, as these
engines exhibit more frequent HPC and HPT service events,
as illustrated in Figure 14.

These observations confirm that our predictions are
consistent with established physical understanding and
accurately reflect the expected degradation behavior.
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Figure 14. RUL prediction from model reflects lower health
state recovery after each service event compared to the
previous. More service events for ESN 112 compared to
ESN 106 in the test data.

5.3. Review of Far Away WW Event Predictions

While the profile registration validation check was a
breakthrough, we understood the impact of the competition’s
scoring function on late predictions made by the Al models.
Thus, the submitted predictions on the test and validation
files were carefully examined to ensure that the far away
predictions made for the water wash events are backed by
clear evidence of HPC HIs offset before the end of file as
shown in Figure 15 for ESN 106 in test data.
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Figure 15. Careful Examination of Offset in HPC HI slope
when far away WW predictions are submitted at end of
these files

These sanity checks helped us achieve strong results in the
test phase, and we also took a conservative approach on some
of the WW predictions to avoid large penalties on the
validation data, rather than chasing a perfect score.

6. CONCLUSION

We presented a comprehensive workflow for multi-event
RUL prediction in gas turbine engines, as part of the 2025
PHM Society Data Challenge. Our approach combined
careful data preprocessing, virtual sensor modeling, domain-
informed feature engineering, HI design, and ensemble
learning methods.

The methodology successfully captured degradation patterns
for HPC, HPT, and WW events, achieving 1% place in the test
phase of the competition.
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