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ABSTRACT

This paper introduces a data-driven method for predicting re-
maining cycles to major maintenance events in commercial
jet engines, developed for the PHM North America 2025 Data
Challenge. The method leverages measurement residuals that
capture sensor deviations from expected values after account-
ing for operating conditions with simple linear models. These
residuals serve as interpretable indicators of engine health.
Health indices are constructed for High Pressure Turbine and
High Pressure Compressor visits, while Compressor Water
Wash events are estimated through linear extrapolation.

1. INTRODUCTION

Predicting maintenance events for jet engines is a critical
task in the aviation industry, as timely interventions ensure
both operational safety and cost efficiency (Zio, 2022; Liang,
Knutsen, Vanem, Æsøy, & Zhang, 2024). With the increas-
ing availability of high-frequency sensor data from commer-
cial aircraft, data-driven methods have emerged as powerful
tools for fault detection, anomaly identification, and remain-
ing useful life (RUL) estimation (Han, Ellefsen, Li, Holme-
set, & Zhang, 2021; Han, Ellefsen, Li, Æsøy, & Zhang, 2021;
Amozegar & Khorasani, 2016; Jiao et al., 2023; Que & Xu,
2019).

Previous research in fault detection and prognostics for
complex machinery, including maritime engines and
turbines(Han, Li, Skulstad, Skjong, & Zhang, 2020; Liang,
Vanem, et al., 2023; Liang, Knutsen, Vanem, Zhang, & Æsøy,
2023; Liang, Vanem, Knutsen, Æsøy, & Zhang, 2024), has
demonstrated the effectiveness of using sensor measurements
combined with machine learning techniques. Ensemble
learning methods and gradient boosting techniques have been
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widely used for RUL prediction in industrial systems (Jiao et
al., 2023; Que & Xu, 2019). In aviation, high-fidelity sensor
data captures engine behavior across diverse conditions (Han,
Liang, Vanem, Knutsen, & Zhang, 2024), making it difficult
to distinguish operating effects from true degradation. Prior
work shows that constructing sensor residuals by remov-
ing condition influences improves detection of degradation
trends (Ellefsen et al., 2020; Vanem et al., 2023; Mathew,
Kandukuri, & Omlin, 2024). Using engine-level residu-
als enables more accurate estimation of remaining cycles
to maintenance events, including High Pressure Turbine and
High Pressure Compressor shop visits and Compressor Water
Wash operations.

The PHM North America 2025 Data Challenge focuses on
predicting the cycles of these maintenance events for com-
mercial jet engines. The challenge provides a dataset with
engine metadata, sensor readings, and historical maintenance
records. The goal is to develop models that accurately es-
timate the remaining cycles to HPT, HPC, and WW events
using engine-level measurements. Our approach uses sensor
residuals to construct engine-specific health indicators, which
are then used to predict the remaining cycles for critical main-
tenance events.

2. PROBLEM STATEMENT

The PHM North America 2025 Conference Data Challenge
focuses on predicting key maintenance events for commercial
jet engines using typically available sensor data. The main
objective is to build models to estimate the remaining cycles
to three key events:

• High Pressure Turbine (HPT) Shop Visit.

• High Pressure Compressor (HPC) Shop Visit

• HPC Water-Wash (WW)

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

2.1. Dataset description

The dataset contains metadata and sensor readings from 12
commercial jet engines, each with up to 15,000 data points
that span 2,001 flights. As is standard in the commercial avi-
ation industry, each flight provides up to eight snapshots cap-
tured at different phases (e.g., takeoff, climb, cruise). A snap-
shot represents the recorded values of multiple sensors under
predefined flight conditions. The dataset is divided by engine:
4 engines for training, 4 for testing, and 4 for validation.

The dataset is organized into three categories: (1) Meta data,
(2) Sensor Data, and (3) Targets. A detailed breakdown of the
training dataset is provided in Table 1.

Table 1. Details of the training dataset.

Id Variables
Meta Data

1 ESN
2 Cycles Since New
3 Snapshot
4 Cumulative WWs
5 Cumulative HPC SVs
6 Cumulative HPT SVs

Sensor Data
7 Sensed Altitude
8 Sensed Mach
9 Sensed Pamb
10 Sensed Pt2
11 Sensed TAT
12 Sensed WFuel
13 Sensed VAFN
14 Sensed VBV
15 Sensed Fan Speed
16 Sensed Core Speed
17 Sensed T25
18 Sensed T3
19 Sensed Ps3
20 Sensed T45

Targets
21 Cycles to WW
22 Cycles to HPC SV
23 Cycles to HPT SV

2.2. Evaluation metrics

To assess prediction performance, a time-weighted error
(TWE) metric is adopted that penalizes over- and under-
predictions asymmetrically and normalizes by the operational
horizon of each target. For each prediction–truth pair (yi, ŷi),
the time-weighted error is defined as

TWE(yi, ŷi;α, β) = w(yi, ŷi) · (ŷi − yi)
2 · β, (1)

where the weight term is given by

w(yi, ŷi) =


2

1 + αyi
, if ŷi − yi ≥ 0

1

1 + αyi
, if ŷi − yi < 0.

(2)

Here, α controls the decay of weights with respect to remain-
ing cycles, and β serves as a normalization factor to ensure
comparability across targets with different horizons.

The overall score for each target variable t ∈
{WW,HPC,HPT} is computed as the mean TWE across
all samples:

Scoret =
1

N

N∑
i=1

TWE
(
y
(t)
i , ŷ

(t)
i ;α, βt

)
, (3)

where N is the number of evaluated snapshots.

Finally, the submission score is obtained by averaging the
target-specific scores:

Score =
1

3
(ScoreWW + ScoreHPC + ScoreHPT ) . (4)

This formulation ensures that late predictions (i.e., predict-
ing failures to occur later than they actually do) are penalized
more heavily, reflecting the safety-critical nature of mainte-
nance planning in aviation.

3. METHODOLOGY

3.1. Sensor residual construction

Since sensor measurements are influenced not only by the un-
derlying degradation state but also by the operating condi-
tions, it is crucial to separate these two effects. The key idea
is to eliminate the influence of operating conditions so that the
residual signal more directly reflects degradation. To achieve
this, we categorize the sensor measurements into two groups:
operating condition–related and degradation-related. We then
extract the residual by removing the operating-condition ef-
fects using the following formulation:

rd = sd − f(so) (5)

where sd denotes the degradation-related sensor measure-
ment, so is the operating condition–related measurement, and
rd is the resulting residual. The central assumption is that,
under normal conditions, degradation-related sensors can
be predicted from the operating-condition sensors through a
mapping function f .

Importantly, residual calculation is performed at the engine
level: each engine is treated independently and a distinct
function f is estimated for each one. Rather than relying on a
physics-based model for f , we approximate it with a simple
linear regression model, flinear, fitted to the joint data so, sd.
Although this assumption is simplified, we found it to be ef-
fective in practice. We use Mach, Altitude, Pamb, TAT ,
V AFN , V BV , FanSpeed, Pt2 as so and treat the remain-
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ing sensors as degradation-related sd. Using this separation,
we compute the residual for each sensor in every snapshot.
We observed that the residuals show minimal variation across
snapshots, as shown in Figure 1. To obtain overall results,
we applied a median filter across the snapshots. The resulting
engine-level residuals are presented in Figure 2.

Figure 1. Engine-level sensor residual for T3 and T45 for
each snapshot.

Figure 2. Engine-level sensor residual for T3 and T45 after a
median filter.

In Figure 2, it is evident, particularly for T3res and T45res,
that the HPT, HPC, and WW events are clearly reflected as
sudden jumps in the residual signals.

3.2. Cycles to HPT estimation

To estimate cycles to HPT, we construct the HPT health index
HIHPT as a linear combination of T3res and T45res:

HIHPT = −αHPTT3res − T45res (6)

where αHPT is an engine-specific coefficient determined by
minimizing the deviation from the HPC reference.

Figure 3 shows the joint plot of HIHPT with
Cycles to HPT . The results suggest that, for most engines,
Cycles to HPT can be approximated as a linear function of
HIHPT , except at high cumulative HPT service for some en-
gines. It should be noted that the mapping between HIHPT

and Cycles to HPT is also engine-specific.

For the test and validation sets, determining the engine-

Figure 3. Joint plot of HIHPT and Cycles to HPT .

specific αHPT and linear mapping from HIHPT to
Cycles to HPT is not straightforward due to the short
measurement windows. To address this, we first group the
short-window samples by engine number. Within each short
window, HPC, HPT, and WW events can be clearly identified
from T3res. We then use the HPC event to determine αHPT

for each engine, and use the HPT event to establish the linear
mapping between HIHPT and Cycles to HPT by assum-
ing that the cycles equal zero at the occurrence of the HPT
event.

3.3. Cycles to HPC estimation

Similarly, the HPC health index HIHPC is formulated as a
linear combination of T3res and T45res:

HIHPC = −αHPCT3res − T45res (7)

where αHPC is an engine-specific coefficient determined by
minimizing the deviation from the HPT reference.

Figure 4 shows the joint plot of HIHPC with
Cycles to HPT . The results suggest that HPC events
cannot be separated from WW events. When the cumulative
HPC service reaches 2, some deviation appears between
HIHPT and Cycles to HPT . Nevertheless, we continue
to apply an engine-specific linear mapping between HIHPC

and Cycles to HPC.

Similarly for the test and validation sets, we first group the
short-window samples by engine number and identify HPC,
HPT, and WW events from T3res in each short window. We
then use the HPT event to determine αHPC for each engine,
and use the HPC event to establish the linear mapping be-
tween HIHPC and Cycles to HPC by assuming that the
cycles equal zero at the occurrence of the HPC event.

When the cumulative HPC service reaches 2, we build a
LightGBM model to classify it and then quantify the gap be-
tween the true service cycle and our linear prediction. We
find that this gap is linearly correlated with both the slope
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Figure 4. Joint plot of HIHPC and Cycles to HPC.

and the intercept of the linear mapping from HIHPC to
Cycles to HPC, as illustrated in Figure 5.

Figure 5. Gap predicted by the slope and the intercept of the
linear mapping from HIHPC to Cycles to HPC.

For the test and validation sets, we use the LightGBM model
to classify whether the cumulative HPC service reaches 2. If
at least 30% of the short-window predictions are positive, we
apply a gap correction derived from the slope and intercept.

3.4. Cycles to WW estimation

To estimate the cycles to WW, we rely solely on T45res. A
closer examination of T45res reveals that, once the last WW
event is identified, the timing of the next WW event is gov-
erned by two factors: (1) the slope of T45resincrease, and (2)
the increment of T45res until the next WW event. Analysis of
the training dataset shows that both factors can be reasonably
approximated as constants.

Figure 6 shows the T45res after removing the effects of HPC,
HPT, and WW events. It can be observed that the residuals
follow an approximately linear trend, which can be captured
by the fitted curve. The slope of the fitted curve is 0.029, in-
dicating that T45res increases by about 2.9 every 100 cycles
in the absence of HPC, HPT, and WW events.

Figure 6 shows the T45res after removing the effects of HPC
and HPT events. We then extracted the values of T45res
at each WW event. The results indicate that T45res at the
WW event points also increases approximately linearly with

Figure 6. T45res after removing the effects of HPC, HPT,
and WW events.

the number of WW events. The slope of the fitted curve is
0.029, suggesting that T45res increases by approximately 21
per WW event in the absence of HPC and HPT events.

Figure 7. Left: T45res after removing the effects of HPC and
HPT. Right: T45res at the WW event points versus cummu-
lative WWs.

4. RESULTS AND DISCUSSIONS

4.1. Performance

Table 2 and Table 3 summarize the test and final evaluation
results, respectively. Our method ranked 4th in the test set
but dropped to 18th in the final validation set. Notably, this
discrepancy is not unique to our approach: all of the top five
teams in the test set experienced a significant drop in ranking
on the validation set, with large score differences. This sug-
gests that there may be substantial differences between the
test and validation sets.

Table 2. Test Result.

Rank Team Name Score
#1 MathWorks 0.3528
#2 WISDOM 1.802
#3 ICDI 13.57
#4 PHHQ 21.17
#5 aeae 23.22
#6 lookhill 36.28
#7 SAM-IPA-1 37.11
#8 Justin Boredom 37.22

From our perspective, we believe that our approach provides
reasonably accurate estimates for HPT and WW events in
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Table 3. Final Validation Result.

Rank Team Name Score
#1 SAM-IPA-1 47.54
#2 lookhill 48.56
#3 Justin Boredom 49.3
... ... ...

#10 aeae 88.99
#12 WISDOM 96.46
#13 MathWorks 97.69
#14 SAM-IPA-1 37.11
#15 ICDI 104.1
... ... ...

#18 PHHQ 128.7

both the test and validation sets, but is less accurate for HPC
events. The scoring system penalizes over-predictions and
places greater importance on cases with low remaining cy-
cles. Since cycles to HPC can reach up to 12,500, even a
modest over-prediction can result in a large penalty. For ex-
ample, if the true HPC is 500 cycles and the prediction is
1,500, the score for that sample would be 1,333; if the pre-
diction is 2,500, the score jumps to 5,333. Given that there
are only 47 samples in the test and validation sets, a single
outlier can disproportionately affect the overall score.

4.2. Examples

Figure 8 and Figure 9 show examples of applying our ap-
proach to estimate cycles to HPT and HPC, respectively. The
light blue line represents the original estimation, while the
dark blue line shows the estimation after correcting for HPT
or HPC events. The red line represents our final estimation,
with its endpoint on the y-axis corresponding to our predicted
result.

Figure 8. Examples of estimating cycles to HPT in the vali-
dation set.

Figure 9. Examples of estimating cycles to HPC in the vali-
dation set.

Figure 10. Examples of estimating cycles to WW in the vali-
dation set.

Figure 10 shows examples of applying our approach to esti-
mate cycles to WW. The green line represents the signal after
correcting for both HPT and HPC events. The red vertical
lines indicate the WW events. The red line, which follows
the trend of the green signal, represents our estimation, with
its endpoint on the x-axis corresponding to the predicted WW
cycle.

5. CONCLUSION

This paper presents a solution for estimating the cycles of jet
engine maintenance events in the PHM North America 2025
Conference Data Challenge. The core idea is to construct
engine-specific sensor residuals that capture the degradation
state while removing the influence of operating conditions.

REFERENCES

Amozegar, M., & Khorasani, K. (2016). An ensemble of
dynamic neural network identifiers for fault detection
and isolation of gas turbine engines. Neural Networks,
76, 106–121.

Ellefsen, A. L., Han, P., Cheng, X., Holmeset, F. T., Æsøy,
V., & Zhang, H. (2020). Online fault detection in au-
tonomous ferries: Using fault-type independent spec-
tral anomaly detection. IEEE Transactions on instru-
mentation and measurement, 69(10), 8216–8225.

Han, P., Ellefsen, A. L., Li, G., Æsøy, V., & Zhang, H. (2021).
Fault prognostics using lstm networks: application to
marine diesel engine. IEEE Sensors Journal, 21(22),
25986–25994.

Han, P., Ellefsen, A. L., Li, G., Holmeset, F. T., & Zhang,
H. (2021). Fault detection with lstm-based variational
autoencoder for maritime components. IEEE Sensors
Journal, 21(19), 21903–21912.

Han, P., Li, G., Skulstad, R., Skjong, S., & Zhang, H. (2020).
A deep learning approach to detect and isolate thruster
failures for dynamically positioned vessels using mo-
tion data. IEEE Transactions on Instrumentation and
Measurement, 70, 1–11.

Han, P., Liang, Q., Vanem, E., Knutsen, K. E., & Zhang, H.
(2024). Assessing helicopter turbine engine health: A
simple yet robust probabilistic approach. In Annual
conference of the phm society (Vol. 16).

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Jiao, Z., Wang, H., Xing, J., Yang, Q., Yang, M., Zhou, Y.,
& Zhao, J. (2023). Lightgbm-based framework for
lithium-ion battery remaining useful life prediction un-
der driving conditions. IEEE Transactions on Indus-
trial Informatics, 19(11), 11353–11362.

Liang, Q., Knutsen, K. E., Vanem, E., Æsøy, V., & Zhang, H.
(2024). A review of maritime equipment prognostics
health management from a classification society per-
spective. Ocean Engineering, 301, 117619.

Liang, Q., Knutsen, K. E., Vanem, E., Zhang, H., & Æsøy,
V. (2023). Unsupervised anomaly detection in marine
diesel engines using transformer neural networks and
residual analysis. In Phm society asia-pacific confer-
ence (Vol. 4).

Liang, Q., Vanem, E., Knutsen, K. E., Æsøy, V., & Zhang, H.
(2024). Anomaly detection in time series data: A novel
approach using transformer neural networks for recon-
struction and residual analysis. International Journal
of Prognostics and Health Management, 15(3).

Liang, Q., Vanem, E., Xue, Y., Alnes, Ø., Zhang, H., Lam,
J., & Bruvik, K. (2023). Data-driven state of health
monitoring for maritime battery systems–a case study
on sensor data from ships in operation. Ships and Off-
shore Structures, 1–13.

Mathew, M. S., Kandukuri, S. T., & Omlin, C. W. (2024).
Soft ordering 1-d cnn to estimate the capacity factor
of windfarms for identifying the age-related perfor-
mance degradation. In Phm society european confer-
ence (Vol. 8, pp. 9–9).

Que, Z., & Xu, Z. (2019). A data-driven health prognostics
approach for steam turbines based on xgboost and dtw.
IEEE Access, 7, 93131–93138.

Vanem, E., Liang, Q., Ferreira, C., Agrell, C., Karandikar, N.,
Wang, S., . . . others (2023). Data-driven approaches to

diagnostics and state of health monitoring of maritime
battery systems. In Proceedings of the annual confer-
ence of the phm society 2023.

Zio, E. (2022). Prognostics and health management (phm):
Where are we and where do we (need to) go in theory
and practice. Reliability Engineering & System Safety,
218, 108119.

BIOGRAPHIES

Peihua Han received the Ph.D. degree in
engineering from the Norwegian University
of Science and Technology (NTNU), Aale-
sund, Norway, in 2022, where he is now
a senior researcher. His Ph.D. thesis was
recognized with the CHOROFAS Prize in
2022. His research interests include data
mining, machine learning, time series mod-

eling, and uncertainty quantification. He has published about
50 papers in peer-reviewed journals and conferences and re-
ceived the IEEE Robotics and Automation Magazine Best Pa-
per Award in 2024.

Qin Liang works as the Maritime Data Ar-
chitect at Veracity, DNV, where he leads the
development of data architecture strategies
for maritime emissions and decarbonization
solutions. He previously served as a Senior
Researcher in Group Research and Devel-
opment at DNV (2018–2025) and as a Data
Scientist in Ship Intelligence at Rolls-Royce

Marine (2015–2018). He received his Ph.D. in Engineering
from the Norwegian University of Science and Technology
(NTNU) in 2025, his M.Sc. in Product and System Design
from NTNU in 2015, and his B.Sc. in Marine Engineering
from Dalian Maritime University in 2013. His research inter-
ests include ship performance optimization, equipment con-
dition monitoring, machine learning, deep learning, and mar-
itime battery health management.

6


