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ABSTRACT 

Condition-Based Maintenance Plus (CBM+) aims to enhance 
operational readiness for U.S. Navy assets by using 
predictive models to forecast equipment failures. Applying 
CBM+ in the U.S. Navy faces a unique challenge: ships 
operate globally for extended periods, exposing machinery to 
a wide range of ambient air and seawater temperatures that 
alter their characteristic vibration signatures and can 
compromise model performance. This paper investigates the 
extent to which these seasonal temperature variations 
degrade the performance of a vibration-based fault detection 
model for a naval air compressor. 

Using data from controlled testing, vibration data was 
collected under healthy and various induced-fault conditions 
during both winter and summer to create two 
environmentally distinct datasets. Power Spectral Density 
analysis was used to extract features for training classifiers. 
Results show that models trained exclusively on data from 
one season performed poorly when tested against data from 
the other, confirming that environmental shifts significantly 
degrade predictive accuracy. In contrast, a model trained on 
a combined dataset incorporating data from both seasons 
demonstrated substantially improved and more generalized 
performance. These findings underscore that the 
development of robust, field-ready CBM+ systems is 
critically dependent on training ML models with 
comprehensive and environmentally diverse datasets that 
reflect the full spectrum of anticipated operational conditions. 

1. INTRODUCTION 

Condition-Based Maintenance Plus (CBM+) elevates 
traditional CBM by incorporating predictive analytics and 
knowledge-based systems to forecast, rather than simply 
detect, equipment failures (DoD, 2018). While conventional 
CBM triggers maintenance based on real-time asset 
monitoring, CBM+ employs predictive algorithms – 
including machine learning and artificial intelligence – to 

estimate an asset's Remaining Useful Life (RUL). This 
advanced, prognostic capability allows organizations to 
transition from a reactive to a truly proactive maintenance 
strategy. The result is optimized repair schedules, minimized 
unscheduled downtime, and a significant improvement in 
overall system reliability and operational efficiency (DoD, 
2018).  

The U.S. Navy is a strong advocate for the implementation of 
CBM+ and strives to incorporate CBM+ early in the design 
of new technologies. At a high level, a U.S. Navy ship 
represent an industrial environment like any other setting 
using heavy-duty machinery. However, it is no secret that 
these ships can be anywhere in the world on any given day. 
It is possible that a ship can start her deployment in the winter 
in the Arctic Circle for several months and then migrate 
towards the equator in the summer for several more months. 
The vibration signatures of the machinery onboard a ship 
with this mission will change significantly due to changes in 
ambient temperatures. Building a machine learning (ML) 
classifier model generalized enough to detect faults across 
not just these two extreme scenarios, but also the potential 
environment in between them will be challenging. 

This project focuses on deploying prognostics and health 
management (PHM) technologies to enable CBM+ for the 
U.S. Navy (Baker et al., 2020). New ship construction offers 
a unique opportunity to affordably implement an advanced 
hull, mechanical, and electrical (HM&E) monitoring system 
that integrates sensor data collection, processing, 
visualization, and machine learning-based predictive 
analytics. The application of these embedded CBM+ 
capabilities is expected to significantly reduce sailor 
troubleshooting workload, lower lifecycle sustainment costs, 
minimize preventive maintenance actions, and increase 
overall ship reliability. 

A critical requirement for developing effective predictive 
analytics is the availability of representative, vibration-based 
fault data to train and validate the machine learning 
algorithms. To address this, the paper discusses an initiative 
undertaken by the Naval Surface Warfare Center, 
Philadelphia Division (NSWCPD) to conduct controlled fault 
testing on critical ship systems. This effort focuses on 
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generating the essential datasets needed to develop, train, and 
validate robust predictive models. 

Using data from this initiative, this paper seeks to address two 
key questions: 1) To what extent does seasonal temperature 
variation degrade the performance of a vibration-based fault 
detection model? and 2) Can this degradation be overcome 
by training a model on a more environmentally diverse 
dataset? The central hypothesis is that a model's performance 
is strongly dependent on the environmental conditions 
represented in its training data. 

2. TEST EQUIPMENT AND FAULTS STUDIED 

Every system onboard these ships is mission critical; without 
their reliable performance over the length of a mission, the 
chances of that mission’s success degrade significantly. This 
testing focuses on implementing CBM+ on one of those 
essential systems: compressed air. Air compressors provide 
ships with compressed air that serve a wide range of 
applications essential for day-to-day operations. This 
compressed air enables buoyancy control for routine 
surfacing and emergency ascents for submarines, powers 
main propulsion startup, and supports weapon system launch 
mechanisms. Furthermore, they control numerous pneumatic 
systems critical for daily operations, including valve 
actuators, control systems, instrumentation, and emergency 
life support redundancy. The compressed air system is 
integral for many other systems onboard a ship as well, 
underscoring the necessity of continuous, reliable air 
compressor operation for maintaining ship readiness and 
operational effectiveness.   

Faults develop over time in any industrial equipment 
deployed to a harsh environment.  Air compressors have 
several common faults. Air leaks, both internal and external, 
constitute a common category of compressor problems. 
Internally, valve-related issues frequently arise due to the 
high-pressure and cyclic loading inherent in compressor 
operations, causing wear on valve seats and internal valve 
components. Valves can become stuck or break because of 
mechanical stress or carbon buildup from oil carryover. 
Valve leaks due to improper seating or damaged seals further 
degrade compressor efficiency and reduce output pressure 
(Cui, et al., 2009). Similarly, piston rings, cylinder liners, rod 
packaging, and other sealing elements are subjected to 
significant stress and wear, leading to blow-by, reduced 
compression efficiency, increased oil consumption, and 
potential oil carryover into the compressed air stream. 
External leaks are also common, typically originating from 
fittings, hoses, gaskets, or component casings. These leaks 
can result from vibration, pressure cycling, corrosion, or 
improper assembly, contributing significantly to operational 
inefficiency.  

Inlet air restrictions typically result from fouled intake filters 
or malfunctioning inlet valves. Such restrictions reduce 
airflow into the compressor, causing decreased output 

capacity and efficiency. Fouled or clogged intake filters can 
occur due to particulate ingestion, while inlet valves may 
become stuck or damaged due to mechanical issues or 
contaminants. Reduced inlet airflow increases the workload 
placed on the compressor and leads to elevated operating 
temperatures and accelerated component wear.  

Cooling water restrictions represent another significant 
source of compressor faults. Multi-stage compressors depend 
heavily on efficient intercoolers and after-coolers.  A sea 
strainer filters raw seawater before reaching the air 
compressor, and this strainer requires routine maintenance as 
debris restricts flow over time. Blockage at the sea strainer 
directly impedes heat transfer efficiency, resulting in 
overheating and increased wear rates over time. Additionally, 
improper condensate management—caused by inefficient 
cooling or faulty condensate traps—can allow excess 
moisture to enter the compressed air system, negatively 
affecting air quality and compressor reliability.  

To represent the range of faults a compressor might 
encounter, we collected data from eight conditions: 

• Off: the compressor is powered down 
• Baseline: normal function, with the compressor warmed up 
• Air Leak A & Air Leak B: two different types of air leak 
• Faulted Piston: a worn piston was placed in the compressor 
• Restricted Inlet Air: the air inlet was partially covered 
• Restricted Inlet Seawater: the seawater inlet was partially 

obstructed 
• Restricted Inlet Air & Seawater: both air and seawater flow 

were limited. 

2.1. Challenges in Fault Detection for the U.S. Navy 

The unique integration of machinery onboard U.S. Navy 
ships complicates detecting and isolating faults in a device 
from another event onboard. All equipment is installed in 
confined spaces that complicate routine visual inspections or 
direct measurements during underway operations. 
Additionally, vibration signatures from other onboard 
mechanical systems may mask subtle early-stage faults 
(Kumar, 2025), while load variations further complicate 
diagnostics (Kibrete et al., 2024). Ambient temperature is the 
only environmental factor addressed in this paper. 

The ambient operating environment machinery spaces 
onboard U.S. Navy ships commonly changes for three main 
reasons: (1) seasonal variation in air and seawater 
temperature; (2) the ship has relocated to a different location 
where the air and seawater temperatures have changed; and 
(3) other machinery in the same space as an air compressor 
power on and off. The temperature of the air in a space 
onboard a U.S. Navy ship changes dramatically depending on 
how many other machines are powered on. For example, an 
engine room with an electric generator and two gas turbines 
running at full power generates much more heat than if they 
were shutdown. This means the inlet air that an air 
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compressor ingests will be significantly warmer, leading to 
changes in vibration signatures. Developing a predictive ML 
model that is robust enough to detect these changes across all 
potential operating environments will require very diverse 
datasets for training, testing, and validation. 

A key obstacle in developing advanced ML algorithms for 
PHM is the scarcity of representative historical fault data. 
Real-world compressor failures occur infrequently and with 
little to no warning, so comprehensive datasets representing 
diverse faults under realistic operational conditions are 
limited. Inducing specific faults aboard operational 
equipment is both impractical and potentially unsafe. Thus, 
dedicated laboratory testing initiatives are essential to 
generate diverse, representative fault datasets critical for 
effective predictive algorithm development. 

3. VIBRATION-BASED FAULT DETECTION  

This study compares two datasets collected in a lab at 
NSWCPD during different parts of the calendar year. Each 
dataset contains vibration data from a mix of both healthy and 
faulty conditions. The only difference between these datasets 
is that one was collected in the winter while the other was 
collected in the summer. The raw data are cleaned and 
inspected before the most important features are extracted to 
train and test the models (see Eklund, et al. (2025) for details 
of the analysis). Figures 1 and 2 show the temperature 
distributions of the inlet air and the coolant of the air 
compressor for both the winter and summer datasets. 

Each test event conducted at NSWCPD is comprised of three 
distinct phases: data acquisition and preprocessing, feature 
extraction and selection, and training, testing, and deploying 
a model onto an edge device for real-time diagnostics. 
Vibration data was collected under controlled operating 
conditions. The collected data underwent preprocessing 
followed by extraction of condition indicators via frequency-
domain analysis.  

3.1 Data Collection & Feature Extraction 

For each data collection run, we first established a baseline 
by operating the compressor for 20-30 minutes under normal 
conditions. A specific fault was then introduced, and the 
compressor ran for approximately 10 minutes to collect data 
under steady-state fault conditions. Vibration data was 
sampled continuously using three orthogonally mounted 
accelerometers sampling at a rate of 10,000 Hz.  

Vibration analysis for mechanical fault detection is based on 
the principle that mechanical defects alter the dynamic 
behavior of rotating or reciprocating machinery, inducing 
distinct patterns in measured vibration signals. These 
vibration signatures reflect changes in the mechanical energy 
distribution within the system and manifest as shifts in 
amplitude, frequency content, or phase characteristics of the 
measured acceleration signals.  

Power spectral density (PSD) is a frequency-domain analysis 
method that identifies the characteristic signatures of 
vibrations. PSD analysis, derived from the Fast Fourier 
Transform (FFT), quantifies the distribution of signal power 
over frequency, enabling the identification of characteristic 
fault frequencies and their harmonics. Under the assumption 
that vibration signatures change when a piece of equipment 
is degraded, PSDs provide the optimal method of identifying 
what those deviations are. An ML classifier model trained on 
these PSDs can identify the specific frequencies that change 
the most and use it to make fault predictions. 

The hardware used to collect data is discussed in depth in 
Farinholt, et al. (2019) and Banks, et al. (2022). The details 
of the analysis are described in Eklund et al. (2025).  

Note that the cooling water restriction fault was not 
implemented as planned during testing. While a 50% flow 
restriction was intended, later analysis indicated only 
approximately 15% actual restriction occurred. This 

Figure 1. Distribution of ambient air temperature by season. 

Figure 2. Distribution of coolant temperatures by season. 
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discrepancy explains the relatively poorer detection 
performance observed for this fault condition, including why 
it was primarily mislabeled as Baseline, in the results below.  

3.2 Seasonal PSD Comparison 

Data was collected as described above in both the summer 
and winter, using a common set of sensors. Figure 3 shows 
the PSD of a healthy, baseline condition in the morning of the 
winter dataset versus another baseline condition in the 
morning of the summer dataset; the range of the axes is the 
same in both plots. 

There are clear differences between the two PSDs. While 
certain frequencies exhibit similar behaviors, others show 
dramatic differences. For a machine learning model to 
accurately estimate RUL in machinery onboard a U.S. Navy 
ship, the training data will need to be diverse enough to 
capture these different PSD behaviors. Moreover, these two 
PSD plots do not represent all the varying environments an 
air compressor encounters during normal operations – they 
simply demonstrate the need for this work. 

While a data-driven approach (Eklund, et al., 2025) 
successfully identified key frequencies to differentiate 
between normal and faulty operation, we discovered that the 
optimal features were highly dataset-dependent. For instance, 
a model built using features selected from a “winter” dataset 
could not effectively identify faults in a “summer” dataset. A 
separate analysis of the summer data revealed that its most 
important predictive frequencies were distinctly different 

from those found in the winter data. This demonstrates that a 
feature set optimized for one operational environment does 
not guarantee success in another, highlighting the need to 
identify more robust, environment-invariant features for 
reliable fault detection.  

These results also demonstrate a hazard of attempting to field 
an algorithm based solely on data collected on relatively 
sterile laboratory conditions. Future data collection efforts 
will focus on intentionally exposing the system to the full 
range of expected operational and environmental conditions, 
such as varying temperatures, humidity, and workloads. 
Creating and testing against such a diverse dataset is a 
prerequisite for developing a truly robust model that can 
transition successfully from the laboratory to the field 

3. CLASSIFIER PERFORMANCE 

Several Random Forests (RF; Breiman, 2001) were built to 
classify state of the compressor. One RF was trained on PSD 
features extracted from the winter dataset and tested against 
the summer dataset (Figure 4). Additionally, a separate RF 
was trained on PSD features from the summer dataset and 
tested against the winter dataset (Figure 5). The goal of this 
test was to determine how accurate each model was when 
tested against data taken under different environmental 
conditions. Feature selection and model development are 
described in detail in Eklund et al., (2025). 

Figure 3: Seasonal variation in power spectral density during normal operation. 
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These two confusion matrices show that the models did not 
perform well when tested with data from a different 
environment. This performance degradation occurred 
because the PSD signatures for any given fault are 
significantly different across calendar seasons. This variation 
is a direct result of how environmental temperature affects 
the compressor's mechanical operation.  

For example, seasonal shifts in the temperature of the inlet air 
and cooling water alter fundamental operating parameters. 

Colder, denser winter air changes the load on the compressor, 
while warmer summer temperatures can reduce the viscosity 
of lubricants and cause thermal expansion in mechanical 
components. These factors can slightly change critical 
clearances in bearings and shafts, altering the machine's 
overall vibration signature. These subtle, temperature-driven 
changes in the physical system manifest as distinct shifts in 
the PSD data, ultimately causing a model trained on one set 
of thermal conditions to fail when presented with another. 

A third model was constructed, training on both the winter 
and summer dataset, under the expectation this is this model 
would be much better at predicting operational conditions 
when the environmental impacts from both seasons are 
included in the training set. This combined model performed 
significantly better than the previous two individual models, 
although there are still opportunities for improvement (Figure 
6).  

5. DISCUSSION 

While this study supports the feasibility of implementing 
CBM+ technologies in variable naval environments, the 
results also highlight critical challenges that must be 
overcome to field an impactful solution. The analysis of the 
model performance reveals areas for improvement in 
experimental design, sensor strategy, and data collection. 

A key finding is the consistent failure of all three models to 
detect the “Restricted Inlet Air” fault. This poor performance 
suggests two potential issues. First, the performance of any 
vibration-based diagnostic model is fundamentally 
constrained by the quality and placement of its sensors. It’s 
possible that the accelerometer locations were not well suited 
to capture the subtle dynamic changes associated with an 
airflow restriction. Therefore, a crucial next step is to 
systematically evaluate sensor placement, either by 
relocating existing sensors closer to the air intake system or 

Figure 5. Cross-seasonal evaluation: summer-trained model 
on winter data 

Figure 4. Cross-seasonal evaluation: winter-trained model 
on summer data 

Figure 5. Cross-seasonal evaluation: winter-trained model 
on summer data. 

Figure 6. Overall performance: combined-season model 
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by augmenting the setup with additional accelerometers in 
targeted areas. A similar strategic relocation of sensors could 
also enhance the detection of faults related to “Restricted 
Seawater Cooling”. 

Second, it is possible that the induced fault condition was not 
large enough to generate a distinct and measurable change in 
the compressor's performance. A subtle fault may be masked 
by the machine's baseline operational noise, making it 
difficult for a model to distinguish. Future experiments 
should aim to induce a more pronounced fault by further 
restricting the inlet air or seawater supply, thereby creating a 
more robust signal.  

Beyond these specific faults, this study's primary conclusion 
is the critical importance of data diversity. Building a 
generalized model that can reliably detect faults across a wide 
range of operating environments requires a comprehensive 
training set inclusive of as many conditions as possible. As 
demonstrated by the superior performance of the combined 
model, collecting more data and engineering feature sets that 
encompass multiple operational environments directly lead to 
more robust and accurate predictive maintenance tools. 

6. FUTURE WORK 

The findings of this study provide a clear roadmap for future 
research, which will focus on refining the current 
experimental approach while simultaneously expanding its 
scope to better replicate the complexities of a naval 
operational environment. 

Immediate future work will concentrate on improving the 
existing single-compressor test setup. This involves 
acquiring more extensive data across a wider range of 
environmental conditions to build a more generalized and 
robust training set. Concurrently, a systematic optimization 
of sensor locations will be undertaken to enhance the 
detection of previously challenging faults. This effort will be 
complemented by the exploration of alternative and more 
advanced machine learning classifiers, which may better 
capture the nuanced relationships between vibration 
signatures and fault states across different thermal profiles. 

A significant next step will be to transition from testing the 
air compressor in isolation to evaluating it within an 
integrated system loop. This is critical because ambient 
temperature is not the only environmental factor that 
influences vibration signatures aboard a U.S. Navy ship. The 
proximity of other equipment introduces sympathetic 
vibrations and operational noise that can mask the signatures 
of developing faults. Testing within a complete loop will 
allow for the evaluation of the model's ability to isolate true 
fault conditions from the complex vibration landscape of an 
active machinery space. 

Finally, the long-term research plan includes applying these 
validated methodologies to different types of naval 
machinery. By performing similar analyses on a variety of 

systems, the goal is to develop a framework for evaluating 
which equipment is best suited for PHM technologies and 
provides the most return on investment for CBM+ 
implementation across the fleet.  
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