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ABSTRACT

Condition-Based Maintenance Plus (CBM+) aims to enhance
operational readiness for U.S. Navy assets by using
predictive models to forecast equipment failures. Applying
CBM+ in the U.S. Navy faces a unique challenge: ships
operate globally for extended periods, exposing machinery to
a wide range of ambient air and seawater temperatures that
alter their characteristic vibration signatures and can
compromise model performance. This paper investigates the
extent to which these seasonal temperature variations
degrade the performance of a vibration-based fault detection
model for a naval air compressor.

Using data from controlled testing, vibration data was
collected under healthy and various induced-fault conditions
during both winter and summer to create two
environmentally distinct datasets. Power Spectral Density
analysis was used to extract features for training classifiers.
Results show that models trained exclusively on data from
one season performed poorly when tested against data from
the other, confirming that environmental shifts significantly
degrade predictive accuracy. In contrast, a model trained on
a combined dataset incorporating data from both seasons
demonstrated substantially improved and more generalized
performance. These findings underscore that the
development of robust, field-ready CBM+ systems is
critically dependent on training ML models with
comprehensive and environmentally diverse datasets that
reflect the full spectrum of anticipated operational conditions.

1. INTRODUCTION

Condition-Based Maintenance Plus (CBM+) elevates
traditional CBM by incorporating predictive analytics and
knowledge-based systems to forecast, rather than simply
detect, equipment failures (DoD, 2018). While conventional
CBM triggers maintenance based on real-time asset
monitoring, CBM+ employs predictive algorithms -
including machine learning and artificial intelligence — to
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estimate an asset's Remaining Useful Life (RUL). This
advanced, prognostic capability allows organizations to
transition from a reactive to a truly proactive maintenance
strategy. The result is optimized repair schedules, minimized
unscheduled downtime, and a significant improvement in
overall system reliability and operational efficiency (DoD,
2018).

The U.S. Navy is a strong advocate for the implementation of
CBM+ and strives to incorporate CBM+ early in the design
of new technologies. At a high level, a U.S. Navy ship
represent an industrial environment like any other setting
using heavy-duty machinery. However, it is no secret that
these ships can be anywhere in the world on any given day.
It is possible that a ship can start her deployment in the winter
in the Arctic Circle for several months and then migrate
towards the equator in the summer for several more months.
The vibration signatures of the machinery onboard a ship
with this mission will change significantly due to changes in
ambient temperatures. Building a machine learning (ML)
classifier model generalized enough to detect faults across
not just these two extreme scenarios, but also the potential
environment in between them will be challenging.

This project focuses on deploying prognostics and health
management (PHM) technologies to enable CBM+ for the
U.S. Navy (Baker et al., 2020). New ship construction offers
a unique opportunity to affordably implement an advanced
hull, mechanical, and electrical (HM&E) monitoring system
that integrates sensor data collection, processing,
visualization, and machine learning-based predictive
analytics. The application of these embedded CBM+
capabilities is expected to significantly reduce sailor
troubleshooting workload, lower lifecycle sustainment costs,
minimize preventive maintenance actions, and increase
overall ship reliability.

A critical requirement for developing effective predictive
analytics is the availability of representative, vibration-based
fault data to train and validate the machine learning
algorithms. To address this, the paper discusses an initiative
undertaken by the Naval Surface Warfare Center,
Philadelphia Division (NSWCPD) to conduct controlled fault
testing on critical ship systems. This effort focuses on



generating the essential datasets needed to develop, train, and
validate robust predictive models.

Using data from this initiative, this paper seeks to address two
key questions: 1) To what extent does seasonal temperature
variation degrade the performance of a vibration-based fault
detection model? and 2) Can this degradation be overcome
by training a model on a more environmentally diverse
dataset? The central hypothesis is that a model's performance
is strongly dependent on the environmental conditions
represented in its training data.

2. TEST EQUIPMENT AND FAULTS STUDIED

Every system onboard these ships is mission critical; without
their reliable performance over the length of a mission, the
chances of that mission’s success degrade significantly. This
testing focuses on implementing CBM+ on one of those
essential systems: compressed air. Air compressors provide
ships with compressed air that serve a wide range of
applications essential for day-to-day operations. This
compressed air enables buoyancy control for routine
surfacing and emergency ascents for submarines, powers
main propulsion startup, and supports weapon system launch
mechanisms. Furthermore, they control numerous pneumatic
systems critical for daily operations, including valve
actuators, control systems, instrumentation, and emergency
life support redundancy. The compressed air system is
integral for many other systems onboard a ship as well,
underscoring the necessity of continuous, reliable air
compressor operation for maintaining ship readiness and
operational effectiveness.

Faults develop over time in any industrial equipment
deployed to a harsh environment. Air compressors have
several common faults. Air leaks, both internal and external,
constitute a common category of compressor problems.
Internally, valve-related issues frequently arise due to the
high-pressure and cyclic loading inherent in compressor
operations, causing wear on valve seats and internal valve
components. Valves can become stuck or break because of
mechanical stress or carbon buildup from oil carryover.
Valve leaks due to improper seating or damaged seals further
degrade compressor efficiency and reduce output pressure
(Cui, et al., 2009). Similarly, piston rings, cylinder liners, rod
packaging, and other sealing elements are subjected to
significant stress and wear, leading to blow-by, reduced
compression efficiency, increased oil consumption, and
potential oil carryover into the compressed air stream.
External leaks are also common, typically originating from
fittings, hoses, gaskets, or component casings. These leaks
can result from vibration, pressure cycling, corrosion, or
improper assembly, contributing significantly to operational
inefficiency.

Inlet air restrictions typically result from fouled intake filters
or malfunctioning inlet valves. Such restrictions reduce
airflow into the compressor, causing decreased output

capacity and efficiency. Fouled or clogged intake filters can
occur due to particulate ingestion, while inlet valves may
become stuck or damaged due to mechanical issues or
contaminants. Reduced inlet airflow increases the workload
placed on the compressor and leads to elevated operating
temperatures and accelerated component wear.

Cooling water restrictions represent another significant
source of compressor faults. Multi-stage compressors depend
heavily on efficient intercoolers and after-coolers. A sea
strainer filters raw seawater before reaching the air
compressor, and this strainer requires routine maintenance as
debris restricts flow over time. Blockage at the sea strainer
directly impedes heat transfer efficiency, resulting in
overheating and increased wear rates over time. Additionally,
improper condensate management—caused by inefficient
cooling or faulty condensate traps—can allow excess
moisture to enter the compressed air system, negatively
affecting air quality and compressor reliability.

To represent the range of faults a compressor might
encounter, we collected data from eight conditions:

Off: the compressor is powered down

Baseline: normal function, with the compressor warmed up
Air Leak A & Air Leak B: two different types of air leak
Faulted Piston: a worn piston was placed in the compressor
Restricted Inlet Air: the air inlet was partially covered
Restricted Inlet Seawater: the seawater inlet was partially
obstructed

o Restricted Inlet Air & Seawater: both air and seawater flow
were limited.

2.1. Challenges in Fault Detection for the U.S. Navy

The unique integration of machinery onboard U.S. Navy
ships complicates detecting and isolating faults in a device
from another event onboard. All equipment is installed in
confined spaces that complicate routine visual inspections or
direct measurements during underway operations.
Additionally, vibration signatures from other onboard
mechanical systems may mask subtle early-stage faults
(Kumar, 2025), while load variations further complicate
diagnostics (Kibrete et al., 2024). Ambient temperature is the
only environmental factor addressed in this paper.

The ambient operating environment machinery spaces
onboard U.S. Navy ships commonly changes for three main
reasons: (1) seasonal wvariation in air and seawater
temperature; (2) the ship has relocated to a different location
where the air and seawater temperatures have changed; and
(3) other machinery in the same space as an air compressor
power on and off. The temperature of the air in a space
onboard a U.S. Navy ship changes dramatically depending on
how many other machines are powered on. For example, an
engine room with an electric generator and two gas turbines
running at full power generates much more heat than if they
were shutdown. This means the inlet air that an air



compressor ingests will be significantly warmer, leading to
changes in vibration signatures. Developing a predictive ML
model that is robust enough to detect these changes across all
potential operating environments will require very diverse
datasets for training, testing, and validation.

A key obstacle in developing advanced ML algorithms for
PHM is the scarcity of representative historical fault data.
Real-world compressor failures occur infrequently and with
little to no warning, so comprehensive datasets representing
diverse faults under realistic operational conditions are
limited. Inducing specific faults aboard operational
equipment is both impractical and potentially unsafe. Thus,
dedicated laboratory testing initiatives are essential to
generate diverse, representative fault datasets critical for
effective predictive algorithm development.

3. VIBRATION-BASED FAULT DETECTION

This study compares two datasets collected in a lab at
NSWCPD during different parts of the calendar year. Each
dataset contains vibration data from a mix of both healthy and
faulty conditions. The only difference between these datasets
is that one was collected in the winter while the other was
collected in the summer. The raw data are cleaned and
inspected before the most important features are extracted to
train and test the models (see Eklund, et al. (2025) for details
of the analysis). Figures 1 and 2 show the temperature
distributions of the inlet air and the coolant of the air
compressor for both the winter and summer datasets.

Each test event conducted at NSWCPD is comprised of three
distinct phases: data acquisition and preprocessing, feature
extraction and selection, and training, testing, and deploying
a model onto an edge device for real-time diagnostics.
Vibration data was collected under controlled operating
conditions. The collected data underwent preprocessing
followed by extraction of condition indicators via frequency-
domain analysis.

3.1 Data Collection & Feature Extraction

For each data collection run, we first established a baseline
by operating the compressor for 20-30 minutes under normal
conditions. A specific fault was then introduced, and the
compressor ran for approximately 10 minutes to collect data
under steady-state fault conditions. Vibration data was
sampled continuously using three orthogonally mounted
accelerometers sampling at a rate of 10,000 Hz.

Vibration analysis for mechanical fault detection is based on
the principle that mechanical defects alter the dynamic
behavior of rotating or reciprocating machinery, inducing
distinct patterns in measured vibration signals. These
vibration signatures reflect changes in the mechanical energy
distribution within the system and manifest as shifts in
amplitude, frequency content, or phase characteristics of the
measured acceleration signals.
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Figure 1. Distribution of ambient air temperature by season.
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Figure 2. Distribution of coolant temperatures by season.

Power spectral density (PSD) is a frequency-domain analysis
method that identifies the characteristic signatures of
vibrations. PSD analysis, derived from the Fast Fourier
Transform (FFT), quantifies the distribution of signal power
over frequency, enabling the identification of characteristic
fault frequencies and their harmonics. Under the assumption
that vibration signatures change when a piece of equipment
is degraded, PSDs provide the optimal method of identifying
what those deviations are. An ML classifier model trained on
these PSDs can identify the specific frequencies that change
the most and use it to make fault predictions.

The hardware used to collect data is discussed in depth in
Farinholt, et al. (2019) and Banks, et al. (2022). The details
of the analysis are described in Eklund et al. (2025).

Note that the cooling water restriction fault was not
implemented as planned during testing. While a 50% flow
restriction was intended, later analysis indicated only
approximately 15% actual restriction occurred. This



discrepancy explains the relatively poorer detection
performance observed for this fault condition, including why
it was primarily mislabeled as Baseline, in the results below.

3.2 Seasonal PSD Comparison

Data was collected as described above in both the summer
and winter, using a common set of sensors. Figure 3 shows
the PSD of a healthy, baseline condition in the morning of the
winter dataset versus another baseline condition in the
morning of the summer dataset; the range of the axes is the
same in both plots.

There are clear differences between the two PSDs. While
certain frequencies exhibit similar behaviors, others show
dramatic differences. For a machine learning model to
accurately estimate RUL in machinery onboard a U.S. Navy
ship, the training data will need to be diverse enough to
capture these different PSD behaviors. Moreover, these two
PSD plots do not represent all the varying environments an
air compressor encounters during normal operations — they
simply demonstrate the need for this work.

While a data-driven approach (Eklund, et al., 2025)
successfully identified key frequencies to differentiate
between normal and faulty operation, we discovered that the
optimal features were highly dataset-dependent. For instance,
a model built using features selected from a “winter” dataset
could not effectively identify faults in a “summer” dataset. A
separate analysis of the summer data revealed that its most
important predictive frequencies were distinctly different

from those found in the winter data. This demonstrates that a
feature set optimized for one operational environment does
not guarantee success in another, highlighting the need to
identify more robust, environment-invariant features for
reliable fault detection.

These results also demonstrate a hazard of attempting to field
an algorithm based solely on data collected on relatively
sterile laboratory conditions. Future data collection efforts
will focus on intentionally exposing the system to the full
range of expected operational and environmental conditions,
such as varying temperatures, humidity, and workloads.
Creating and testing against such a diverse dataset is a
prerequisite for developing a truly robust model that can
transition successfully from the laboratory to the field

3. CLASSIFIER PERFORMANCE

Several Random Forests (RF; Breiman, 2001) were built to
classify state of the compressor. One RF was trained on PSD
features extracted from the winter dataset and tested against
the summer dataset (Figure 4). Additionally, a separate RF
was trained on PSD features from the summer dataset and
tested against the winter dataset (Figure 5). The goal of this
test was to determine how accurate each model was when
tested against data taken under different environmental
conditions. Feature selection and model development are
described in detail in Eklund ef al., (2025).
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Figure 3: Seasonal variation in power spectral density during normal operation.
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Figure 4. Cross-seasonal evaluation: winter-trained model
on summer data
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Figure 5. Cross-seasonal evaluation: winter-trained model
on summer data.

These two confusion matrices show that the models did not
perform well when tested with data from a different
environment. This performance degradation occurred
because the PSD signatures for any given fault are
significantly different across calendar seasons. This variation
is a direct result of how environmental temperature affects
the compressor's mechanical operation.

For example, seasonal shifts in the temperature of the inlet air
and cooling water alter fundamental operating parameters.

Colder, denser winter air changes the load on the compressor,
while warmer summer temperatures can reduce the viscosity
of lubricants and cause thermal expansion in mechanical
components. These factors can slightly change critical
clearances in bearings and shafts, altering the machine's
overall vibration signature. These subtle, temperature-driven
changes in the physical system manifest as distinct shifts in
the PSD data, ultimately causing a model trained on one set
of thermal conditions to fail when presented with another.

A third model was constructed, training on both the winter
and summer dataset, under the expectation this is this model
would be much better at predicting operational conditions
when the environmental impacts from both seasons are
included in the training set. This combined model performed
significantly better than the previous two individual models,
although there are still opportunities for improvement (Figure
6).
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Figure 6. Overall performance: combined-season model
S. DISCUSSION

While this study supports the feasibility of implementing
CBM+ technologies in variable naval environments, the
results also highlight critical challenges that must be
overcome to field an impactful solution. The analysis of the
model performance reveals areas for improvement in
experimental design, sensor strategy, and data collection.

A key finding is the consistent failure of all three models to
detect the “Restricted Inlet Air” fault. This poor performance
suggests two potential issues. First, the performance of any
vibration-based  diagnostic model is fundamentally
constrained by the quality and placement of its sensors. It’s
possible that the accelerometer locations were not well suited
to capture the subtle dynamic changes associated with an
airflow restriction. Therefore, a crucial next step is to
systematically evaluate sensor placement, either by
relocating existing sensors closer to the air intake system or



by augmenting the setup with additional accelerometers in
targeted areas. A similar strategic relocation of sensors could
also enhance the detection of faults related to “Restricted
Seawater Cooling”.

Second, it is possible that the induced fault condition was not
large enough to generate a distinct and measurable change in
the compressor's performance. A subtle fault may be masked
by the machine's baseline operational noise, making it
difficult for a model to distinguish. Future experiments
should aim to induce a more pronounced fault by further
restricting the inlet air or seawater supply, thereby creating a
more robust signal.

Beyond these specific faults, this study's primary conclusion
is the critical importance of data diversity. Building a
generalized model that can reliably detect faults across a wide
range of operating environments requires a comprehensive
training set inclusive of as many conditions as possible. As
demonstrated by the superior performance of the combined
model, collecting more data and engineering feature sets that
encompass multiple operational environments directly lead to
more robust and accurate predictive maintenance tools.

6. FUTURE WORK

The findings of this study provide a clear roadmap for future
research, which will focus on refining the current
experimental approach while simultaneously expanding its
scope to better replicate the complexities of a naval
operational environment.

Immediate future work will concentrate on improving the
existing single-compressor test setup. This involves
acquiring more extensive data across a wider range of
environmental conditions to build a more generalized and
robust training set. Concurrently, a systematic optimization
of sensor locations will be undertaken to enhance the
detection of previously challenging faults. This effort will be
complemented by the exploration of alternative and more
advanced machine learning classifiers, which may better
capture the nuanced relationships between vibration
signatures and fault states across different thermal profiles.

A significant next step will be to transition from testing the
air compressor in isolation to evaluating it within an
integrated system loop. This is critical because ambient
temperature is not the only environmental factor that
influences vibration signatures aboard a U.S. Navy ship. The
proximity of other equipment introduces sympathetic
vibrations and operational noise that can mask the signatures
of developing faults. Testing within a complete loop will
allow for the evaluation of the model's ability to isolate true
fault conditions from the complex vibration landscape of an
active machinery space.

Finally, the long-term research plan includes applying these
validated methodologies to different types of naval
machinery. By performing similar analyses on a variety of

systems, the goal is to develop a framework for evaluating
which equipment is best suited for PHM technologies and
provides the most return on investment for CBM+
implementation across the fleet.
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