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ABSTRACT

The friction brake system reduces the speed of the train by
transforming the kinematic energy into heat through the abra-
sion between the carbon pads and the disk. The British Rail
Class 390 fleet (Pendolino) features a very high availabil-
ity, running 1000 miles a day on average, so their wear rate
is monotonic and acceptably constant. The prognostics for
brake pad degradation are typically conducted with a robust
online linear regression technique, which seamlessly accom-
modates asset-based idiosyncrasies, like the different effort
that is exerted on the pad given its location on a motor or a
trailer car, on the left or the right hand side of the caliper,
etc. This technique is also resilient to abrupt measurement
changes due to asset replacements, sensor imprecision, and
acquisition failures, while retaining the physical evolution of
the wear, which erodes the surface of the pad. This article
evaluates the effectiveness of this approach with a dataset of
brake pad thickness measurements, at the fleet level (around
12000 asset instances), using a sliding window technique,
and refines its performance with a neural network ensemble,
which blends physical and location features. The results of
the analysis prove that this method meets the requirements of
the maintenance staff and thus yields a new avenue for busi-
ness improvement through the application of the predictive
maintenance approach for brake pads.

1. INTRODUCTION

There exist many studies that review the advantages of the
PHM technology for the industry (Sikorska, J. Z. and Hod-
kiewicz, M. and Ma, L., 2011). This work is especially con-
cerned with the application of PHM to the maintenance of
railway and rolling-stock assets (Atamuradov, V. and Medja-
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Figure 1. ALSTOM TrainScanner deployment at the Manch-
ester Traincare Centre.

her, K. and Dersin, P. and Lamoureux, B. and Zerhouni, N.,
2017). In this regard, ALSTOM has developed the Train-
Scanner, see Figure 1, which is a train monitoring system
that is aimed at optimising the maintenance of brake pads,
pantograph carbon strips, and wheelsets, through the deploy-
ment of the PHM methodology and its associated techniques.
TrainScanner integrates a series of acquisition subsystems
with lasers and 3D cameras that capture the related measures
as a train traverses its portal. Then, it automatically conducts
the processing and analysis of the collected data, and finally
it triggers alarms and issues reports to the maintenance staff.
This work is particularly focused on the brake pad prognos-
tics that are attainable with the carbon thickness data provided
by TrainScanner over time.

Brake pad prognostics have been initially approached with
finite element method simulation (AbuBakar, A. R. and
Ouyang, H., 2008), highlighting the importance to consider
the braking forces (Malvezzi, M. and Papini, S. and Pugi, L.
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and Vettori, G. and Tesi, S. and Rindi, A. and Meli, E., 2013).
Other variables have also been incorporated to better estimate
the degradation, like the braking energy and the tempera-
ture (Antanaitis, D. B. and Riefe, M. T., 2016), the braking
action time and the vehicle route (Kreis, C. and Dobberphul,
T., 2018), or the brake pad location (Jegadeeshwaran, R. and
Sugumaran, V., 2015). Other authors have focused on statisti-
cal and histogram information to create a reference wear pro-
file and detect deviations (Chassefeyre, V., 2012) or diagnose
brake faults directly (Manghai, T. M. A. and Jegadeeshwaran,
R. and Sugumaran, V., 2017).

This work conducts a thorough analysis of brake pad wear at
the fleet level in order to quantify the uncertainty of the pre-
diction at 40000km into the operating life of the brake pad,
which is expected to stretch up to 350000km. The time it
takes the trains to run 40000km (around 20 days) is the no-
tice requested by the maintenance team in order to schedule
the depot resources effectively. This prognosis evaluation is
performed with a sliding window prediction technique, using
regression techniques and neural networks (Hota, H. S. and
Handa, R. and Shrivas, A. K., 2007). The article is organ-
ised as follows: Section 2 describes the analysis procedure
that has been followed, including the description of the data,
the evaluation technique, and the prognostic methods, along
with their preliminary results. Section 3 discusses the overall
results and the limitations of the approach, and Section 4 con-
cludes the manuscript and reflects on its impact to the current
maintenance plan.

2. METHODS AND RESULTS

This section describes the sequential process that has been
followed in order to obtain a robust brake pad prognostics
procedure. Thus, the development is incremental and prelim-
inary results are provided.

2.1. Carbon Pad Data Preprocessing

This article evaluates the effectiveness of brake pad prognos-
tics with a dataset of brake pad thickness measurements at
the fleet level, obtained with TrainScanner from November
1, 2016, to March 1, 2017. It comprises the evaluation of
11836 brake pad assets. Each set of carbon pad thickness
measurements needs to be preprocessed to add robustness to
the prediction. To this end, the following issues are taken into
account:

1. Asset replacement: steep positive thickness increments
(greater than 20mm) with a final value close to a new
asset measure, i.e., 34mm, need to be segmented and
treated as different assets

2. Acquisition failures: extreme values need to be regarded
as invalid data and discarded from the analysis, such as
values out of pad range, zeroes, etc.

3. Sensor precision: TrainScanner’s rated measurement
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Figure 2. Evaluation of brake pad prognostics with the sliding
window prediction technique.

precision is 0.5mm. The prediction needs to be robust
to this measurement variability

The resulting set of data is smooth and ready to be subject to
further modelling and analysis.

The British Rail Class 390 fleet (Pendolino) is composed of
9-car trainsets, and 11-car trainsets, with 6 or 7 motor cars
respectively. Each motor car has two motor axles, and two
trailer axles. For a trailer car, all axles are trailer. The most
common braking operation combines the electrical braking
force of the motor (obviously, this is only available on motor
axles), and the friction braking force of the pads, which are
available on all axles, but typically they are not used on motor
axles (their use is restricted to emergency braking, parking,
etc). In addition, the pneumatic pressure applied to the vari-
ous pads along the train is different, to compensate the con-
tribution of these different technologies and attain a balanced
dynamic behaviour for all cars, regardless of the different car
weights, service load, speed, etc. The Class 390 Pendolino
trains run a steady mission profile (i.e, the West Coast Main
Line in the UK), which leads to expect a uniform degrada-
tion at the pad level. However, the aforementioned brake sys-
tem differences also lead to expect differences at the car/axle
level.

2.2. Sliding Window Prediction Evaluation

A rolling window is used on the continuum of clean carbon
thickness measurements in order to provide a history frame
that is used to make a prediction, which is then evaluated
with the remaining points at a given horizon (Hota, H. S. and
Handa, R. and Shrivas, A. K., 2007), see Figure 2. Similar
approaches have also been derived using the uncertainty in-
tervals that surround the trend (Greitzer & Ferryman, 2001).
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It is to note that according to the ISO 13374 standard (ISO,
2003), which is our main PHM development guideline, this
prediction effectiveness assessment should be conducted with
the Remaining Useful Life figures (i.e., the output of the
Prognosis module) instead of the brake pad thickness mea-
surements. However, the actual replacement record is not
available due to the uncertainty between the asset replace-
ment actions (which can be done in any depot) and the asset
monitoring events (which is only available at Manchester).
Therefore, we reframe the objective as a sequence prediction
problem.

2.2.1. Estimation of Uncertainty

The specific statistical terms of “accuracy” and “precision”
are related with the difference between a real magnitude and
a calculated value, both in terms of bias and variance error.
Its bias, also known as trueness (ISO, 1994), is of little impor-
tance in this work to evaluate the effectiveness of a predictive
technique, because it can be easily corrected if it is known (or
experimentally estimated) in advance, which is a side objec-
tive of the evaluation techniques presented in this paper (the
main use of bias is for detecting model underfitting). How-
ever, the variability of the error has a random nature, and this
is the main driver of the prognostics performance: given a
predictive system, its uncertainty is assumed to represent the
expected maximum variability of the error, for a confidence
interval of 95%, i.e., two standard deviations for a Normal
distribution.

2.3. Weighted Online Linear Regression

In order to cope with the uniform degradation at the carbon
level given by the steady mission profile of the fleet, and
the different operating idiosyncrasies at the brake level (i.e.,
motor or trailer axle), this section reviews the online linear
regression technique. The optimisation method to fit a lin-
ear model f(·) to the brake pad data points x framed under
the sliding history window HW is based on the weighted
squared-error cost function C (i.e., a least-squares optimisa-
tion procedure), see Eq. (1). Note that the data xT repre-
sents the carbon thickness value and xM represents the train
mileage, for one single brake pad asset, following the online
approach.

C =
∑

∀x∈HW

w(xT−f(xM ))2 =
∑

∀x∈HW

w(xT−(αxM+β))2

(1)

Also note that the linear model has two variables, the slope
α, which is commonly referred to as the “wear rate”, and
the intercept β, which biases the regression. However, the
wear rate is the term that most accurately captures the dy-
namic behaviour of the carbon degradation (i.e., the speed
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Figure 3. Histogram of the prediction error for a history win-
dow of 40000km with weighted online linear regression. In
brackets, the estimated uncertainty.

of the degradation), and therefore it is used extensively here-
after. The weighting function w(·) is used to incorporate the
robustness considerations described in Section 2.1. Finally, in
order to make the prediction P , the linear regression function
is used to extrapolate the evolution of the degradation over
a given prediction horizon PH , and the difference with the
actual measure is computed as an indicator of effectiveness,
which is regarded as the prediction error PE, see Eq. (2).

PE = xPH
T − P (xPH

M ) = xPH
T − f(xPH

M ) (2)

Figure 3 shows the distribution of the prediction error for a
given history window of 40000km. Note that its shape is sym-
metric around zero, similar to the expected Gaussian, despite
being somewhat more peaked. However, the fitting process
shows to be correct, supported by more than 36500 instances.

At this point, the brake pad prognosis uncertainty baseline
is therefore set to 2.96mm. While the prediction horizon is
set by the maintenance staff to 40000km to provide for depot
resources, the length of the history window is a degree of
freedom that may help to attain better results. This is explored
in the next section, among other refinement considerations.

2.4. History Window and Location Analysis

Changing the length of the history window turns the linear
regression method more conservative and stable (frame in-
crease), or more responsive and sensitive to recent measure-
ments (frame decrease) (Greitzer & Ferryman, 2001). Table 1
shows the impact of this change on the prediction error, and
the support is defined as the number of instances per asset.

It can be noted that as the amount of history points increases
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Table 1. History window analysis.

History [km] Uncertainty [mm] Support [/asset]
20000 4.49 4.29
40000 2.96 3.09
60000 2.13 1.94
80000 2.03 1.05
100000 1.65 0.37
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pad location.

(wider frame), the performance results reduce their uncer-
tainty, but so does their support as there are less cases where
the predictions can be applied. The decision as to which his-
tory length is the optimum may be somewhat arbitrary, but
for 100000km, the support value well under one shows that
some brake pad assets have not been evaluated, which is un-
acceptable to our criteria. Therefore, 80000km is regarded as
the optimum history length, and the new performance score
has been reduced to 2.03mm.

Despite all the former efforts to reduce the uncertainty, there
is still a limit to the effectiveness of the prediction. In order
to delve into the source of this issue, the brake pad location
diversity may be used in order to better understand the nature
of the degradation. Figure 4 correlates the pad wear rate with
the prediction error, and with the pad location. The error has
been centred around zero because its mean is assumed to be a
location bias that can be reintroduced in the linear regression
intercept term.

The main aspect to be observed is that there is a strong pos-
itive relation between the wear rate and the prediction error:
the faster the pads wear, the more difficult it becomes to pre-
dict their evolution. Therefore, the pads located on motor cars
and non-traction axles are generally the most critical ones.
There is a small group of predictions that lie out of the con-

fidence interval of 95% (way over 4mm) that are regarded as
“inconsistent” because they are shared among all the differ-
ent locations, not following the group trends. Whenever the
system detects that a particular situation is likely to lead to
poor prognostic results, it defaults to the average wear rate
for the corresponding location. The next section takes advan-
tage of this location information to enhance the value of the
prediction output to further push the performance boundary.

2.5. Neural Network Feature Ensemble

Neural networks are plausibly renown to be the universal
learning system (Hertz, Krogh, & Palmer, 1991). They are in-
teresting models in Artificial Intelligence and Machine Learn-
ing because they are powerful enough to succeed at solving
many different problems. Historical evidence of their impor-
tance can be found as most leading technical books dedicate
many pages to cover them comprehensively (Bishop, C. M.,
2006; Duda, Hart, & Stork, 2000). Moreover, with the recent
advent of Deep Learning, which requires very intricate net-
works, the neural computation paradigm is leading the state
of the art (LeCun, Y. and Bengio, Y. and Hinton, G., 2015).

Neural networks exploit the connectionist learning approach,
where a set of non-linear units are interconnected, and their
links are weighted in order to accomplish a specific task. One
of their greatest advantages is their ability to seamlessly in-
tegrate data from different sources. In this regard, Figure 5
shows a neural framework that blends the linear prediction
obtained in the former section, with three flags that are in-
dicative of the location of the brake pad asset, thus creating
an ensemble of features. The stacking of the neurons into
layers and their feed-forward arrangement from left to right
is known as multilayer perceptron, and it is a very practical
architecture for solving general-purpose problems. Note that
at this level, the approach to predict the brake pad thickness
is global, as there will be one single model for all assets (the
online prediction is treated as an asset feature here).

The range of the input values needs to be normalised around
a unitary magnitude to guarantee an effective learning con-
vergence. The pad thickness linear prediction feature is nor-
malised to its maximum (i.e., 34mm), and the location fea-
tures are treated as binary variables. The non-linear smooth-
ing function for all the units is set to be the logistic sig-
moid. Therefore, the maximum output value of the network
is normalised and scaled to the 0.79 value to avoid satura-
tion. The network is trained with stochastic gradient descent
using backpropagation, with a fast learning rate of 0.2 that
is checked to avoid cost overshooting, and a maximum num-
ber of dataset iterations of 30 to consider early stopping and
improve generalisation.

The challenge with this neural network is to match its ex-
pressiveness, which is related to the number of hidden units
H , with the complexity of the data. The more weights it

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Linear prediction

Motor car - Motor axle

Motor car - Trailer axle

Trailer car

i1

+1

i2

i3

i4

+1

h1

h2

...

hH

o1 Refined prediction

Figure 5. Neural network feature ensemble for brake pad prognostics.

has (for every hidden unit, 6 new weights are added to the
network), the more data idiosyncrasies is it able to learn,
at the risk of overfitting. In order to determine the opti-
mum size of the hidden layer, a range of values are evalu-
ated with cross-validation (“Encyclopedia of Machine Learn-
ing and Data Mining”, 2010), applying 3 rounds of random
sub-sampling with a train/test split of 95%/5%. This proce-
dure yields over 1800 evaluation points, which is a sufficient
sample size to reliably estimate the uncertainty. Figure 6
shows the results of this study. It can be seen that the per-
formance score decreases gradually as the expressiveness of
the network grows, especially at the beginning of the process
(reduce error bias). At the end, the average score tends to
reach a flat spot, but there is also a growing variability for a
difference of one single hidden unit (increase error variance).
We deem that the optimum size of the hidden layer is of 4
units. The error distribution for this network configuration is
shown in Figure 7, where it can be seen that the final system
outperforms the previous approaches and reaches a brake pad
prognosis uncertainty score of 1.87mm.

3. DISCUSSION

This work exposes the gradual performance enhancement of
a brake pad prognosis technique based on linear regression,
which also intends to emulate the uniform physical degrada-
tion of carbon pads subject to a steady operational regime.
The adjustment of the history window yields a prediction un-
certainty of 2.03mm, and its refinement with location infor-
mation through a neural network ensemble drops this figure to
1.87mm, which may add value to the current alarm threshold
set at 7mm. However, the final asymmetric distribution of the
error seems to indicate that this procedure cannot be pushed
any further. The observed error overlap among pads with dif-
ferent working conditions also points toward this conclusion.
Maybe the occasional use of a variable history length could
be of help to reduce the higher uncertainty of pads showing a
faster wear rate (Greitzer & Ferryman, 2001). Finally, given

2 4 6 8 10 12 14
Hidden layer size [H]

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Va
ria

bi
lit

y 
[m

m
]

Neural network feature ensemble performance

Uncertainty
Trend
Optimum

Figure 6. Neural network performance with respect to the
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that the dimensionality of the hidden layer of the neural net
maintains that of the input layer, we are inclined to believe
that the obtained solution is a feature space transformation
that is more suitable for making better predictions, rather than
a direct multivariate regression.

In addition to the techniques presented in this work, we have
also informally evaluated other possible methods. We have
tested non-linear regression with a higher order polynomial,
but the results show no advantage, which reinforces the linear
degradation behaviour. This also discards using more com-
pact autoregressive techniques like ARMA and ARIMA. We
have also tried to map the dynamic character of the pad thick-
ness evolution into a spatial pattern, looking forward to apply-
ing a sequence recognition technique based on a Time-Delay
Neural Network (Peddinti, Povey, & Khudanpur, 2015). For
reference, a distance window of 40000km can be encoded in
8-10 shifts (i.e., acquisition delays) with our data. The net-
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Figure 7. Histogram of the refined prediction error with a
neural network feature ensemble using 4 hidden units. In
brackets, the estimated uncertainty.

work has effectively converged, but not improving the pro-
posed approach with the feature ensemble. In this line, we
have also tried to approach a deep learning architecture with
an additional hidden layer, but the results have been some-
what disappointing. We attribute this to the curse of dimen-
sionality and the lack of sufficient training instances (this
could be intuited based on the reported expressiveness anal-
ysis for the multilayer perceptron). Furthermore, given the
high degree of overlap among the asset degradation char-
acteristics, we consider it would we worth looking into a
similarity-based prognostic technique as an alternative to the
aforementioned parametric approaches. Similarly, the inclu-
sion of other features related to the passenger weight distri-
bution, weather conditions, and the like, may reasonably im-
pact the degradation of the carbon pads, but so far we have
not found any evident behaviour associated with the small air
pressure difference at the car level. However, exploring it fur-
ther is out of the scope of this article.

4. CONCLUSION

At present, the replacement maintenance criterion for the
Class 390 brake pads is based on a single thickness thresh-
old value. This is an evident ineffective approach because it
does not take into account the rate of wear that the different
pads have, and thus, the same thickness value can lead to very
different operating mileages before the asset reaches its actual
end of life (say, when there is no carbon left on the pad).

This article presents the most sophisticated technique for
TrainScanner brake pad prognostics, which is based on a neu-
ral network ensemble that blends a robust linear regression
with brake location features. It yields an uncertainty perfor-
mance around 1.87mm at the asset level and for a prediction

horizon of 40000km (25000mi), which is related to the time
that is necessary for planning maintenance resources at the
depot. Therefore, if the expected mileage until the next visit
is under this distance frame, the pad limit can be safely ex-
tended to the aforementioned thickness value.

The future work that is currently envisaged may further deal
with data idiosyncrasies in order to add more robustness to
the method, dealing with the data that lies out of the confi-
dence interval. Alternatively, we also expect to explore other
learning paradigms and seek the complementary characteris-
tics that may help the current approach thrive and further push
the effectiveness boundary.
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