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ABSTRACT 

Recently, the data driven approaches are winning popularity 

in Prognostics and Health Management (PHM) community 

due to its great scalability, reconfigurability and the reduced 

development cost. As the data-driven approaches flourished, 

the data competitions hosted by the PHM Society over the 

last ten years contribute a valuable repository of public 

resources for benchmarks and improvements.  To better 

define the directions for future development, this paper 

reviews the cutting-edge PHM methodologies and analytics 

based on the data competitions over the last decade. In this 

review, the goal of PHM and the major research tasks are 

stated and depicted, then the methodologies and analytics for 

the PHM practices are summarized in terms of failure 

detection, diagnosis, assessment and prediction, and the 

applications of PHM in various industrial sectors are 

highlighted as well. The data competitions in the last ten 

years are utilized as examples and case studies to support the 

ideas presented in this paper. Based on all the discussions and 

reviews, the current challenges and future opportunities are 

pointed out, and a conclusion remark is given at the end of 

the paper to summarize the current achievements and to 

foresee the future trends. 

1. INTRODUCTION 

PHM, as an emerging engineering discipline, mainly aims to 

detect, diagnose and predict the machine failures(Lee et al., 

2014).  For an effective PHM system, it is expected to provide 

early detection and isolation of the incipient fault precursors, 

and subsequently to predict the future propagation of the 

machine failures and the remaining useful life (RUL). Over 

the past decade, the use of artificial intelligence tools or data-

driven approaches to fulfill PHM tasks gained more 

popularity due to its simplicity, scalability and reduced 

development cost(Jia, Jin, et al., 2018). Comparing with the 

physics based model, the data driven approaches require less 

domain knowledge and it is flexible in consolidating expert 

experience. Moreover, once the data driven model is properly 

trained, the use of the model is computational more efficient 

than the complex physical models. More importantly, 

standardized toolbox can be developed for the data driven 

models and it can thus accelerate development cycle 

significantly. Users can quickly grasp how to use these tools 

after a short period of training. Although the merits, further 

development of the data-driven tools for PHM needs an open 

community and sufficient amount of public data for 

benchmarking. 

As the data-driven approaches flourished, the data 

competitions hosted by the PHM Society over the last ten 

years contribute a valuable repository of public resources for 

benchmarks and improvements. The PHM data competitions 

that are hosted by PHM Society since 2008 provide lots of 

open source dataset and successful engineer applications. 

Over the last 10 years’ data competition, a wide coverage of 

research topics in PHM was deeply discussed and a wide 

range of engineering applications were investigated.  

Therefore, standing at this time point, it is very important to 

review the achievements in the past 10 years and also to 

discuss about the future opportunities. 

To fit this purpose, this paper reviews the cutting-edge PHM 

methodologies and analytics based on the data competitions 

over the last decade. In this review, the goal of PHM and the 

major research tasks are stated and depicted, then the 

methodologies and analytics for the PHM practices are 

summarized in terms of failure detection, diagnosis, 

assessment and prediction, and the applications of PHM in 

various industrial sectors are highlighted as well. The data 
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competitions in the last ten years are utilized as examples and 

case studies to support the ideas presented in this paper. 

The rest of this paper is organized as follows. Section 2 

revisits the data competitions in the past 10 years and 

highlights the major PHM research tasks by reviewing these 

data competitions. In Section 3, methodologies and analytics 

for PHM investigated are summarized and reviewed, the data 

competition in past 10 years are used as case studies to 

support the idea. Section 4 shows the lessons learned and the 

future trend. Conclusion remarks are given in Section 5. 

2. OVERVIEW OF PHM DATA CHALLENGE 2008-2017 

2.1. Major tasks in the data competitions 

By reviewing the last 10 years’ data competitions, the major 

research tasks in PHM can be summarized as in Figure 1. 

These major tasks include: 

Detection aims to identify if a failure has occurred in an 

engineering system, without knowing the root cause. In 

detection problem, a binary outcome is expected to indicate 

whether a failure has occurred.  

Diagnosis aims to pinpoint the one or several root causes of 

the detected failures, so that corrective actions can be 

arranged accordingly. In diagnostics problems, a specific 

failure type is expected to be assigned to the detected failure. 

Assessment aims to evaluate the risks or health level of 

machine based on its recent behaviors. For machine life 

prediction, assessment is often employed to describe the 

machine degradation process. For fault detection, a failure 

can be detected when the risks exceed the pre-defined 

thresholds. 

Prognosis mainly predicts the future health states and the 

remaining useful life of the system. 

 

Figure 1. Major research tasks in PHM 

A summary of the research tasks in last 10 years’ data 

competition is presented in Table 1 and a more detailed 

review of the data competitions is presented in the Appendix. 

It is found that the fault detection and diagnosis are normally 

required at the same time. This is because fault detection only 

alarms a potential failure without recommending any 

maintenance actions. However, fault diagnosis links the 

underlying problem to a set of observable symptoms, so that 

a detailed procedure for repair can be taken. However, fault 

diagnosis is not necessary for some simple devices, like the 

anemometers (PHM Society 2011), because simple 

replacement of the parts can fix the problem when failures are 

detected.  

 

Prognosis and Health Assessment (HA) are the core 

researches in PHM, and it is often preferred by the 

engineering systems which have a slow degradation process, 

such as the battery (IEEE 2014), cutting tools (PHM Society 

2010), aircraft engine (PHM Society 2008), etc. One thing in 

common across these systems is that the machine degradation 

state can be inferred as a monotonic trend by modeling the 

operational data. Based on this degradation trend, the RUL 

and future degradation can be further predicted. Therefore, 

Prognosis and HA greatly enhances information transparency 

for operation and maintenance strategy optimization, which 

is found especially useful for the geographical distributed 

assets and the highly automated systems.  

The study of virtual Metrology (VM) in PHM Society 2011 

aims to predict the Material Removal Rate (MRR) in 

semiconductor Chemical Mechanical Polishing (CMP) 

process(Jia, Di, et al., 2018). In semiconductor industry, VM 

is a key enabler of the advanced process control to better 

account the usage material degradation and machine 

condition drifting during the manufacturing process (Jia, Di, 

et al., 2018; Kao, Cheng, Wu, Kong, & Huang, 2011). In 

Figure 1, the research task in PHM Society 2016 is listed as 

others, since it does not belong to any of the previously 

mentioned research task in PHM. 

Table 1. Research tasks for the data competition 2008 – 

2017 

 
Host & 

Year 
System Tasks 

PHMS 
2017 

Bogie 
Supervised fault detection & 
diagnosis 

PHMS 

2016 

Semiconductor 

CMP 
Virtual metrology 

PHMS 
2015 

Power plant 
Supervised fault detection & 
diagnosis 

PHMS 

2014 
Unknown 

Supervised risk assessment & 

fault detection 

IEEE 

2014 
Fuel cell 

Prognosis and health 

assessment 

PHMS 

2013 
Unknown 

Supervised fault detection & 

diagnosis 

PHMS 
2012 

Bearing Prognosis 

PHMS 

2011 
Anemometer Unsupervised fault detection 

PHMS 
2010 

Milling machine Prognosis 

PHMS 

2009 
Gearbox 

Unsupervised fault detection & 

diagnosis 

PHMS 

2008 
Aircraft engine Prognosis 
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2.2. A brief review of the data driven models  

By reviewing the data competitions in last 10 years, the 

commonly used data driven models for PHM investigation 

are summarized in Table 2. In Table 2, the learning models 

for each major PHM task are listed and the model 

specifications are described by specifying the model inputs 

and outputs at the model training and testing phase.  

In this paper, the methodologies for PHM are summarized by 

three different sub-groups: 

M1: the (semi-) supervised learning models for PHM.  

M2: the unsupervised health assessment and fault detection. 

M3: the unsupervised RUL prediction and health prediction. 

In methodology M1, the labeled training data samples or data 

clusters are employed to establish a function or mapping 

relationship between the input feature matrix and the desired 

output labels. In the testing phase, these trained models are 

deployed to label the testing samples and tell the machine 

health conditions.  Methodology M2 evaluates the machine 

health and detects potential failures in an unsupervised 

fashion. Normally, the data driven models in this 

methodology fulfills two major tasks: (1) output a risk score 

based on the known baseline (healthy data) to indicate the 

machine health or risk level quantitatively; (2) alarm 

potential machine failures when the risk level exceeds pre-

defined threshold. Methodology M3 mainly predicts the 

future machine health and the remaining useful life (RUL) 

without knowing the underlying degradation pattern for 

supervised learning. In current literature, the learning tasks in 

M3 includes two main steps: (1) to learn the underlying 

degradation trend of the machine based on the R2F data for 

model training; (2) to predict future machine health based on 

the recent machine behaviors and the prior knowledge of the 

machine degradation pattern. The learning algorithms in the 

latter step are usually done by time series extrapolation. 

It is also worth mentioning that the training input feature 𝑥𝑖 

and the testing input feature 𝑥𝑡  in Table 2 should have the 

same dimensionality. In different learning tasks and 

engineering problems, 𝑥𝑖 and 𝑥𝑡 can be either individual data 

sample (data vector) or a set of samples that are observed in 

certain time window (data distribution). Normally, the 

training labels can be continuous or categorical real numbers 

that describe certain health related information.  

3. METHODOLOGY & ANALYTICS 

In this section, the three methodologies that are described in 

previous section will be detailed. The PHM data competitions 

in Table 1 will be used as examples to illustrate the ideas.  

3.1. (Semi-)Supervised learning models for PHM 

The methodology M1 is outlined in Figure 2. In the training 

phase, the learning models are trained by taking the training 

feature matrix and the label information as input. For 

different engineering problems in Table 2, the learning 

Table 2. Data driven models for PHM research tasks 

 

PHM Tasks Model Engineering Problem 
Model Construction Model Testing 

Input 𝐗𝐭𝐫 Output 𝐘𝐭𝐫 Input 𝐗𝐭𝐬 Output 𝐘𝐭𝐬 

Health 

Assessment 

M1.a 
Regression based 

Health Assessment 
Feature 𝑥𝑖 

Measured degradation trend 

𝑦𝑖 

Feature 

𝑥𝑡 

Estimated degradation level 

𝑦𝑡 ∈ ℝ 

M1.b 
Supervised Risk 

Assessment 
Feature 𝑥𝑖 

Health indicator 𝑦𝑖 ∈
{′H′ , ′F′} 

Feature 

𝑥𝑡 
Estimated risk 𝑦𝑡 ∈ ℝ 

M2.a 
Unsupervised health 
assessment 

Baseline 

feature 𝑥𝑖 
NA 

Feature 

𝑥𝑡 

Estimated heath/risk indicator 

𝑦𝑡 ∈ ℝ 

Fault 
Detection 

M2.b 
Unsupervised fault 

detection 

Baseline 

feature 𝑥𝑖 
NA 

Feature 

𝑥𝑡 

Estimated health indicator 𝑦𝑡 ∈
{′H′ , ′F′} 

M1.c 
Clustering Based Fault 

Detection 
Feature 𝑥𝑖 

Heath indicator for each 

cluster 

Feature 

𝑥𝑡 

Estimated health indicator 𝑦𝑡 ∈
{′H′ , ′F′} 

M1.d 
Classification Based 

Fault Detection 
Feature 𝑥𝑖 

Health indicator 𝑦𝑖 ∈
{′H′ , ′F′} 

Feature 

𝑥𝑡 

Estimated health indicator 𝑦𝑡 ∈
{′H′ , ′F′} 

Fault 

Diagnosis 

M1.e 
Clustering Based Fault 
Diagnosis 

Feature 𝑥𝑖 
Failure type for each 
identified cluster 

Feature 

𝑥𝑡 

Estimated health indicator 𝑦𝑡 ∈
{′H′ ,′ F1′, … ,′ FN′} 

M1.f 
Classification Based 

Fault Diagnosis 
Feature 𝑥𝑖 

Health indicator 𝑦𝑖 ∈
{′H′ ,′ F1′, … ,′ FN′} 

Feature 

𝑥𝑡 

Estimated health indicator 𝑦𝑡 ∈
{′H′ ,′ F1′, … ,′ FN′} 

Prognosis 

M1.g 
Supervised RUL 

Prediction 
Feature 𝑥𝑖 

Remaining life cycles 𝑦𝑖 ∈
ℝ 

Feature 

𝑥𝑡 

Estimated remaining life cycles 

𝑦𝑡 ∈ ℝ 

M3 Unsupervised prognosis R2F data NA 
Recent 

data 

RUL and future fault 

propagation 
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models can be regression algorithms, classification or 

clustering techniques as shown in Table 3. For the testing 

phase in Figure 2, the label information for the unlabeled 

testing samples are computed and the results from different 

models can be further fused by multiple strategies, as shown 

in Figure 2.  

 

Figure 2. Methodology for the (semi-) supervised PHM 

The (semi-)supervised learning methodology covers the 

majority of the learning tasks in PHM, which includes the 

M1.a~g as in Table 1 and Table 3. The methodology M1.a 

addresses the health assessment problem using regression 

techniques. One good example for this methodology involves 

the data competition in PHM Society 2010 where the 

participants are asked to evaluate the cutter wear in the 

milling machines. In the competition, the cutter wear was 

measure by LEICA MZ12 microscopy system and was given 

in the training data for model construction. In the result 

submission, the participants are asked to build a data driven 

model based on the training data to replace the expensive 

photographing device for tool wear measuring. In this 

investigation, the monitoring data consists of the vibration, 

force and acoustic emission signals. The analytics that are 

applicable to this investigation is tabulated in Table 3. One 

can find that most of algorithms are regression techniques 

which map the monitoring data to the tool wear indices. In 

these literatures (Sreerupa Das, Hall, Herzog, Harrison, & 

Bodkin, 2011) (Peel, 2008), rather accurate estimations are 

achieved by using these regression algorithms.  

The methodology M1.b aims to evaluate the operation risks 

with known healthy and faulty data samples. In this 

application, the probabilistic classifier like logistic regression 

(LogiReg), Naive Bayes (NB) classifiers are usually 

employed. For this type of classifiers, the training labels are 

categorical integers, but the testing output indicates the 

probability of the testing sample belong to certain class. In 

terms of risk assessment and fault detection, the training 

labels are normally binary to represent healthy and faulty. 

The testing output of these models indicates the operation 

risks. By thresholding the risk indicators properly, the 

machine failures can be further detected. Examples for 

methodology M1.b involve the LogiReg that is used to assess 

the engine degradation in PHM Society 2008 (Tianyi Wang, 

2010) and the NB classifier that is utilizes in PHM Society 

2013 to detect a non-nuisance case (Katsouros, Papavassiliou, 

& Emmanouilidis, 2013).  

The methodology M1.c~f can be discussed together since the 

fault detection and diagnosis (FD&D) are normally required 

together in practice. The analytics that are commonly for 

FD&D are clustering or classification techniques. The major 

difference between clustering and classification is that the 

label information is assigned to individual data sample for 

Table 3. Examples and analytics for the methodology M1 

 
Methodo

logy 

Learning 

Algorithms 
Examples Analytics 

M1.a Regression 

PHM2010 

(Milling 

Machine 
Cutters) 

Ensemble Regression 
Tree, Random Forest 

(RF) (Sreerupa Das et al., 

2011); ANN (Peel, 2008); 
Bayesian LinReg (H. 

Chen, 2011) 

M1.b 
Probabilisti

c classifier 

PHM2008 
(Aero-craft 

Engine) 

LogiReg (Tianyi Wang, 

2010) 

PHM2013 

(Unknown 
assets) 

NB (Katsouros et al., 

2013) 

M1.c clustering 
PHM2009 

(Gearbox) 
See M1.e 

M1.d 
Binary 
classificatio

n 

PHM2015 
(Power 

Plant) 
See M1.f 

PHM2013 
(Unknown 

Assets) 

M1.e Clustering 
PHM2009 
(Gearbox) 

Holo-coefficients map 

(Wu & Lee, 2011); 

Distance from baseline 

(Al-Atat, Siegel, & Lee, 
2011) 

M1.f 
Classificati

on 

PHM2015 

(Power 
plant) 

FDA(Kim et al., 2016); 

RF, KNN, NB,  

GBM(Xiao, 2016); 
Ensemble DT (Xie, Yang, 

Huang, & Sun, 2015) 

PHM2013 

(Unknown 

assets) 

Collaborative 
Filtering(Santanu Das, 

2013);NB(Katsouros et 

al., 2013); KNN, ANN, 
DT, RF, SVM(James K 

Kimotho, Sondermann-

Woelke, Meyer, & 
Sextro, 2013) 

M1.g Regression 

PHM2008 

(Aero-craft 

Engine) 

RNN, MLP(Heimes, 

2008); MLP(Peel, 2008) 

PHM2012 

(Bearing) 

GP(Boškoski, Gašperin, 

& Petelin, 2012); LS-

SVR(Sutrisno, Oh, 
Vasan, & Pecht, 2012) 
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classification problem, but to the identified data clusters for 

the clustering tasks. In PHM, the clustering and classification 

based FD&D has been extensively covered. Several 

examples and the commonly used analytics in recent data 

competitions are listed in Table 3. It is also noted that most 

of algorithms in Table 3 are now well developed and several 

off-the-shelf toolboxes are available in different 

programming languages. 

The methodology M1.g predicts the RUL of the machine by 

establishing a function relationship with monitoring data and 

the remaining operation cycles directly. In this application 

scenario, the training data contains several run-to-failure 

(R2F) datasets for model training. For individual training 

sample in the R2F data, the remaining operation cycles of the 

machine can be simply obtained by counting the remaining 

number of operation cycles before machine failure. This 

methodology simplifies the RUL prediction problem 

significantly. However, the shortcoming of this methodology 

is also obvious since the degradation trend of the machine in 

this approach is linear over operation cycles, which may 

seriously limit the prediction accuracy of this method. As has 

been reported in the PHM Society 2008 and 2012, this 

supervised RUL prediction is found less accurate compared 

with more advance filtering technique which will be 

discussed later. Although, this method is still valuable due to 

its simplicity and efficiency, and it can be used to establish 

baseline prediction accuracy for further improvements. 

3.2. Unsupervised health assessment and fault detection 

 

Figure 3. Methodology for unsupervised HA and FD 

The methodology M2 is outlined in Figure 3. In the setting 

methodology M2, the baseline data which represents the 

machine healthy behaviors are utilized to establish a baseline 

model. In the testing phase, the expected outcome of the 

model includes: (1) a health/risk score to demonstrate the 

machine health or risks. For the machine degradation with a 

trend over time, the estimated degradation trend (DT) is 

obtained from this step; (2) a health label to indicate whether 

any failure happens.  

Examples and analytics for this methodology are summarized 

in Table 4. By reviewing these studies, the analytical tools for 

the unsupervised HA and FD can be summarized as the 

distance-based approaches and the residual based approaches. 

Typical distance based approaches involve the k -Nearest 

Neighbor (kNN), Local outlier Factors (LoF), etc (Jia, Zhao, 

Di, Yang, & Lee, 2017). In addition, (C. Li, Liu, Tian, Cui, 

& Wu, 2017) employs the deviation ratio of the testing 

samples toward the baseline as criterion to detect the failure 

data in PHM Society 2017, and satisfactory fault detection 

rate was reported. The residual based approach builds a 

machine learning models to learn the data distribution under 

machine health condition. In the testing phase, the residuals 

of the testing samples are utilized as indicator to demonstrate 

the deviation of the testing sample toward the baseline. 

Typical examples for the residual based approach can be 

found in the Auto-Associative Neural Network (AANN)-

residual method for anemometer failure detection in PHM 

Society 2011 (Siegel & Lee, 2011), and the physical model + 

residual method in PHM Society 2017 for vehicle suspension 

system fault detection (S. Li, YuanTian, Jing, Huang, & Yang, 

2017; Park et al., 2017). 

 

By comparing these two approaches, the distance-based 

approaches normally take vectors as input and the outlier 

score for individual input vector is computed. In the residual 

based approach, the model can take both vectors and matrices 

(or distributions) as input, so that the residuals or the statistics 

of residuals can demonstrate the deviation of recent 

observations toward the baseline. If the recent observation 

apparently deviates from the baseline, then a failure is 

Table 4. Examples and analytics for the methodology M2 

 
Methodol

ogy 

Learning 

Algorithms 
Examples Analytics 

M2a 

Unsupervise
d Anomaly 

Detection / 

Statistics 

PHM Society 

2011 

(Anemomete

r) 

See M2b 

 PHM 

Society 2014 

(Unknown 
Asset) 

Statistics of system 
reliability (Kim, Hwang, 

Park, Oh, & Youn, 2014; 

Nakagawa, 1986; 
Rezvanizaniani, 

Dempsey, & Lee, 2014) 

M2b 
Unsupervise
d Anomaly 

Detection 

 PHM 
Society 2011 

(Anemomete

r) 

Auto-Associative Neural 
Network (AANN) – 

Residual(Siegel & Lee, 

2011) 
Empirical Model + 

Residual (L. Sun, Chen, 

& Cheng, 2012) 

PHM Society 
2017 

(Vehicle 

Suspension) 

Distance Based AD (C. 

Li et al., 2017) 

Residual Based AD(S. 
Li et al., 2017; Park et 

al., 2017) 
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detected and a larger risk score is assigned. In both distance 

based and the residual based approach, the threshold for fault 

detection can be tuned by the Receptive Operative Curve 

(ROC) by accounting the tradeoff between fault detection 

rate (FDR) and false alarm rate (FAR).  

3.3. Unsupervised health assessment and fault detection 

 

Figure 4. Methodology for unsupervised prognosis 

The methodology M3 for unsupervised prognosis is outlined 

in Figure 4. Different with the supervised prognosis M1.g in 

Figure 2, the pattern of the DT for the machine is not known 

before and it may not be linear over operation cycles or time. 

Therefore, the flow chart in Figure 4 needs to build an 

unsupervised HA model first to uncover the underlying 

degradation pattern of the machine. The HA model in Figure 

4 utilizes the methodology M2 in Figure 3 to derive the DT 

of the machine based on the R2F data in the training set. In 

the prediction step, three different prediction methods are 

available to fulfill the prediction tasks – the similarity based 

approach, the regression or curve fitting approach and the 

SSM.  

The similarity-based approach employs the historical DTs in 

the training library as simulation to predict the future 

degradation and RUL. Advantages of this approach involves 

its efficiency and simplicity. However, it requires significant 

amount of R2F datasets to obtain rather accurate prediction 

and this method fails to demonstrate the uncertainty of the 

prediction. Another simple approach for prognosis is 

extrapolating the DT using curve fitting or regression 

techniques. In this scenario, the DT obtained from the HA 

module is treated as a time series and a mapping relationship 

can be established between time index and the health value 

or confidence value. Commonly used time series 

extrapolation methods involve Auto-Regressive Moving 

Averaging (ARMA), support vector regression (SVR), 

Gaussian Process Regression (GPR), etc. Although these 

regressors work well for some simple cases when the DT of 

the machine can be represented by certain basis function, 

their prediction accuracy deteriorates very fast for larger 

prediction horizons. To further enhance the prediction 

accuracy for more complex situation, KF and particle filters 

are commonly employed. In the literature, these filtering 

techniques are usually used together with parameterized state 

space model (SSM) for long term prediction. As being 

summarized in (J. K. Kimotho, Meyer, & Sextro, 2014), these 

parameterized SSM includes the commonly used Exponential 

model, logarithmic model, log-linear model, linear model and 

polynomial model.  

 

3.4. Others 

The prediction of MRR in PHM Society 2016 does not fit the 

major tasks of PHM. However, this prediction task is 

important for advanced process control since it allows the 

controller to account machine degradation when setting the 

recipe parameters(Di, Jia, & Lee, 2017). The analytics used 

in PHM Society 2016 are mainly regression techniques and 

the engineering problem behind this data competition 

resembles the PHM Society 2010 for milling machine cutter 

wear estimation, where the former is a virtual metrology 

problem and the latter is a virtual sensing problem.  

Virtual metrology (VM) and virtual sensing are quite similar 

but also different. Virtual metrology is normally quality 

oriented and it aims to enhance the product quality by 

identifying the important quality indicators. Taking 

semiconductor fabrication for example, the VM models are 

widely used to identify the faulty wafer runs. The VM models 

regards health indicator as a hard-to-measure quantities and 

predicts it from the easy-to-measure process variables. This 

concept resembles the idea of virtual sensing which aims to 

the estimate the hard-to-measure quantity from easy-to-

measure variables. However, the virtual sensing technique 

Table 5. Examples and analytics for the methodology M3 

 
Metho
dology 

Learning 
Algorithms 

Examples Analytics 

M3 
Time 

Series 

Prediction 

PHM2008 
(Aero-craft 

Engine) 

Similarity Based 

Approach(Tianyi Wang, 

2010; T. Wang, Jianbo, 
Siegel, & Lee, 2008) 

State Space Model(J. Sun, 

Zuo, Wang, & Pecht, 2012, 
2014) 

PHM2012 

(Bearing) 

Exponential Model + 

PF(N. Li, Lei, Lin, & Ding, 
2015); RBM+SOM-

MQE+Similarity based 

approach(Liao, Jin, & 
Pavel, 2016) 

IEEE2014 

(Fuel Cell) 

Particle Filter(J. K. 

Kimotho et al., 2014; 

Olivares, Munoz, Orchard, 
& Silva, 2013); LinReg(T. 

Kim et al., 2014; Vianna, 

de Medeiros, Aflalo, 

Rodrigues, & Malère, 

2014) 
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usually requires real-time online implementation and it has 

been extensively discussed for decades.  

4. DISCUSSION AND PROSPECTS 

The methodologies and analytics reviewed in this paper are 

mainly the data-driven approaches for PHM applications. 

These methods are all highly scalable and can be easily 

replicate to different engineering applications. The main 

advantage of this review is to give readers a systematic 

review of the current data driven or machine learning models 

in PHM applications.  The mapping between the machine 

learning tasks and the PHM major task are established and 

reviewed.  

Although these data driven models are now widely studied in 

PHM, there are still several pioneer topics that need to be 

further explored in the future. 

• The presence of multiple working regimes or dynamic 

working regimes. A residual clustering based 

methodology is proposed in (Siegel, 2013) to explore 

this topic. In their investigation, the robotics arms and 

wind turbine drive train are employed as examples to 

illustrate the effectiveness of their approach. 

•  Data quality is another important topic that needs to be 

further investigation. It is expected that a toolbox is 

available to allow users quickly decided whether their 

data hold value for PHM investigation. Related 

discussion can be (Y. Chen, 2012; Y. Chen, Zhu, & Lee, 

2013) who mainly investigates the diangosability of the 

system. (Jia et al., 2017; P. Li et al., 2018) recently 

propose a systematic methodology to evaluate the data 

suitability for PHM from the aspects of data 

detectability, diagnosability and prognosablity. 

• A fleet based prognostic is another important topic to 

explore. This applies to the situation when large amount 

of data is available from a fleet of similar machines. 

These historical data from machine fleet can help 

establish strong database for data mining and how to 

rely on the fleet data for health prognosis is still an open 

question for the PHM community. 

• Prognostic based maintenance strategy optimization is 

important to convert the health-related information to 

values. The prognostic based maintenance scheduling 

for off-shore wind farm is investigated in (Van 

Horenbeek, Van Ostaeyen, Duflou, & Pintelon, 2012) 

and the added value for prognostic based maintenance 

policy is justified.  

5. CONCLUSION 

In this paper, the PHM data competitions from 2008 to 2017 

are revisited. The methodologies and analytics that are 

employed for these PHM problems are reviewed and 

summarized. Based on the discussion in this paper, the 

methodologies for PHM are summarized as three 

methodologies: (1) M1: the methodology for 

(semi-)supervised learning for PHM as shown in Figure 2; (2) 

M2: the methodology for unsupervised HA and fault 

detection as shown in Figure 3; (3) M3: the methodology for 

unsupervised health prognosis in Figure 4. After reviewing 

the methodologies and analytics, the lessons learned from 

these data competitions are pointed out and the further trend 

of PHM are briefly discussed. 
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APPENDIX

 

 

 

Year Data Description & Task Description URL 

PHMS2008 

Aircraft 
Engine 

Train Data R2F data for 218 engine units, each engine has 26 sensor variables 
https://c3.nasa.gov/dashlink/projects/15/ 

or http://phmchallenge.blogspot.com/  
Test Data Sensor readings for 218 partially degraded engines 

Tasks (1) Engine RUL prediction 

PHMS2009 
Gearbox 

Provided Data Unlabeled vibration data that is collected under 10 different working regimes. https://www.phmsociety.org/references/
datasets Tasks (1) Label the fault samples; (2) Diagnose the failure type. 

PHMS2010 
Milling 

Cutter 

Train Data R2F data for 3 cutters: force, vibration and acoustic emission; Wear measurement by LEICA MZ12 microscopy system;  
https://www.phmsociety.org/competition

/phm/10 
Test Data R2F data for 3 cutters with the same measurements 

Tasks (1) Virtual sensing or health assessment: estimate the wear measurement from the R2F data 

PHMS2011 
Anemometer 

Train Data Baseline anemometer measurements at different height levels 
https://www.phmsociety.org/competition
/phm/11 Test Data Unlabeled anemometer measurements 

Tasks (1) Anemometer failure detection for the testing samples 

PHMS2012 

Bearing 

Train Data R2F bearing data: vibration in 2 axis and temperature measurements http://www.femto-st.fr/en/Research-

departments/AS2M/Research-

groups/PHM/IEEE-PHM-2012-Data-
challenge.php 

Test Data Same measurements from partially degraded bearings 

Tasks (1) RUL prediction 

PHMS2013 

Unknown 
Asset 

Train Data Labelled maintenance logs with 207 problematic cases with failure types, 14979 nuisance cases and 1,316,653 events. 

https://www.phmsociety.org/events/conf

erence/phm/13/challenge  
Test Data Unlabeled maintenance log with 1,893,882 events from the same piece of industrial equipment. 

Tasks Fault detection and diagnosis 

PHMS2014 

Unknown 

Asset 

Train Data Part consumption records, usage measurement, failure time for 1913 assets in the first two years. 

https://www.phmsociety.org/events/conf
erence/phm/14/data-challenge 

Test Data Same data without failure time for 2076 assets in the third year. 

Tasks (1) Risk assessment; (2) fault detection. 

IEEE’2014 
Fuel Cell 

Train Data 
24 process variables in aging data, 8 process variables in polarization data and 3 process variables in EIS data for 1 FC 

stack; R2F data (1155h) in stationary regime. 
https://www.phmsociety.org/events/conf
erence/phm/15/data-challenge Test Data the same measurement for another 1 FC stack; partially given in lifespan (550h) in dynamic regime. 

Tasks (1) Health assessment; (2) RUL prediction  

PHMS2015 
Power Plant 

Train Data 6 process variables, 4 control variables for 33 plants for 3~4 year; failure times and failure types are labeled. 

https://www.phmsociety.org/events/conf
erence/phm/15/data-challenge 

Test Data Same variables for another 15 unlabeled plants. 

Tasks (1) Fault detection; (2) Fault diagnosis 

PHMS2016 
CMP 

Train Data 26 process variables from 1981 wafer runs; MRR measurements for the training wafer runs 
https://www.phmsociety.org/events/conf

erence/phm/16/data-challenge 

 

Test Data The same process variables for 424 wafer runs without MRR measurement. 

Tasks (1) To predict MRR for the testing wafer runs. 

PHMS2017 

Bogie 

Train Data 90 spectral features represent vehicle healthy behavior;  200 training samples 

https://www.phmsociety.org/events/conf

erence/phm/17/data-challenge 
Test Data Same features; 200 unlabeled samples 

Tasks (1) Fault detection; (2) Fault diagnosis 

 

 

https://c3.nasa.gov/dashlink/projects/15/
http://phmchallenge.blogspot.com/
https://www.phmsociety.org/references/datasets
https://www.phmsociety.org/references/datasets
https://www.phmsociety.org/competition/phm/10
https://www.phmsociety.org/competition/phm/10
https://www.phmsociety.org/competition/phm/11
https://www.phmsociety.org/competition/phm/11
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
https://www.phmsociety.org/events/conference/phm/13/challenge
https://www.phmsociety.org/events/conference/phm/13/challenge
https://www.phmsociety.org/events/conference/phm/14/data-challenge
https://www.phmsociety.org/events/conference/phm/14/data-challenge
https://www.phmsociety.org/events/conference/phm/15/data-challenge
https://www.phmsociety.org/events/conference/phm/15/data-challenge
https://www.phmsociety.org/events/conference/phm/15/data-challenge
https://www.phmsociety.org/events/conference/phm/15/data-challenge
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