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ABSTRACT

Efficient maintenance management is essential—not only to
reduce costs but also to maximize aircraft availability and
uphold safety standards. This requires balancing mainte-
nance scheduling (MS), which drives downtime, with tail as-
signment (TA), which governs aircraft utilization. While re-
cent research has explored the integration of MS and TA,
these efforts have largely neglected the role of Condition-
Based Maintenance (CBM) and the uncertainty inherent in
prognostic models. This research proposes a novel, unified
framework that jointly optimizes MS, TA, and CBM using
stochastic programming and health-aware models. The ap-
proach leverages sensor-derived prognostic information to
forecast component degradation and incorporates its prob-
abilistic nature directly into the planning process. By ac-
counting for uncertainty in remaining useful life (RUL) pre-
dictions, the model produces robust flight and maintenance
schedules that reduce the risk of unplanned disruptions. Pre-
liminary experiments using real-world airline data demon-
strate that explicitly modeling health uncertainty leads to
more reliable scheduling outcomes, while improving opera-
tional efficiency and reducing maintenance costs. Compared
to current industry practice, the integrated framework enables
data-driven, future-oriented decision-making at the interface
between fleet operations and maintenance planning. This
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work advances the state-of-the-art by holistically addressing
TA, MS, and CBM within a scalable and interpretable op-
timization model—closing a critical gap in the practical de-
ployment of CBM strategies in civil aviation.

1. INTRODUCTION

Efficient maintenance management is crucial in aviation, im-
pacting both operational reliability and cost, with mainte-
nance comprising approximately 11% of total airline ex-
penses (International Air Transport Association, 2024). Tra-
ditionally, Maintenance Scheduling (MS) and Tail Assign-
ment (TA) have been addressed in sequential, decoupled pro-
cesses: MS seeks to minimize downtime through optimal task
allocation, while TA maximizes fleet utilization by assigning
aircraft to flights. This separation often results in suboptimal
solutions, particularly under operational constraints.

The industry is increasingly adopting data-driven and predic-
tive strategies such as Condition-Based Maintenance (CBM),
which leverages real-time sensor data and prognostic models
to estimate Remaining Useful Life (RUL) and dynamically
schedule interventions. While these methods enhance relia-
bility and reduce unnecessary maintenance, their integration
with operational planning remains limited due to data qual-
ity challenges and the intrinsic uncertainty of prognostic out-
puts (Verhagen & Curran, 2023).

Recent studies have sought to jointly optimize MS and
TA (Sriram & Haghani, 2003; Lagos, Delgado, & Klapp,
2020), but existing frameworks rarely incorporate CBM
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or model prognostic uncertainty. Additionally, advances
in large language models (LLMs) have shown promise in
improving the interactivity and adaptability of scheduling
systems (Pallagani, Katz, Marques-Silva, Kumar, & Yeoh,
2024).

This work introduces a unified framework that concurrently
optimizes MS, TA, and CBM using stochastic programming
and health-aware optimization. By integrating sensor-driven
prognostic data and modeling RUL uncertainty, the approach
delivers robust, cost-efficient schedules suitable for real-
world airline operations.

2. RESEARCH GAPS AND OBJECTIVES

The contributions are:

* A joint optimization model is formulated that integrates
tail assignment, maintenance scheduling, and condition-
based maintenance.

* Uncertainty from prognostic health models is explicitly
incorporated using stochastic programming, enabling re-
alistic and risk-aware planning.

* The proposed approach is validated on real-world airline
data, demonstrating that health-aware scheduling results
in fewer disruptions and reduced maintenance costs com-
pared to current industry practice.

* The integration of LLMs is assessed to facilitate natural
language interaction within the scheduling framework,
thereby enhancing usability for planners.

This work aims to close a critical gap between CBM research
and airline operations by offering a scalable and interpretable
solution that supports the practical adoption of CBM in real-
world planning environments.

3. METHODOLOGY

The proposed framework (Fig. 1) integrates three primary in-
put streams:

* Maintenance Data: Task lists, available slots, and work-
force capacity, enabling efficient resource allocation un-
der operational constraints.

» Flight Plan: Scheduled flights and routes, ensuring op-
timal tail assignment and seamless integration of mainte-
nance without disrupting operations.

* Prognostic Models: Sensor-driven, uncertainty-aware
predictions of component end-of-life, supporting risk-
informed, condition-based maintenance decisions.

The framework leverages LLMs to translate optimization out-
comes into interpretable language for planners, and enables
interactive updates for real-time solution refinement.
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Schedule
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Flight Schedule
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Figure 1. Integrated framework overview: maintenance,
flight plan, and prognostic models jointly inform the op-
timization of MS and TA, supporting both automated and
planner-involved scheduling.

3.1. Integrated Stochastic Optimization

At its core, the framework employs a unified optimization
model that simultaneously addresses:

1. Maintenance Scheduling (MS): Assignment of tasks to
slots considering constraints and deadlines.

2. Tail Assignment (TA): Optimal aircraft-to-flight alloca-
tion respecting operational requirements.

3. Condition-Based Maintenance (CBM): Scheduling of
prognostic maintenance tasks under uncertainty.

S= 15 Predictive &
- & MS TaSk

Optimized Flight and
Maintenance Plan

Figure 2. Unified MILP formulation integrating MS, TA, and
CBM with explicit uncertainty modeling.

Unlike sequential or decoupled methods, the problem is for-
mulated as a single extensive framework, capturing interde-
pendencies between maintenance and flight operations while
explicitly modeling prognostic uncertainty.

3.2. Uncertainty Modeling in Prognostic Tasks

A distinguishing feature is the explicit incorporation of prog-
nostic uncertainty. For each monitored component, the model
includes:

¢ Estimated Remaining Useful Life (RUL): Data-driven
failure forecasts,

¢ Uncertainty Distributions: Confidence intervals for

RUL estimates,

¢ Scenario Sampling: Multiple realizations of health tra-
jectories drawn from the uncertainty distribution.
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This scenario-based formulation supports robust optimiza-
tion, allowing maintenance schedules to proactively manage
operational risk and adapt to the probabilistic nature of com-
ponent degradation.

4. INITIAL RESULTS

Building upon the foundational work of Oremans (Oremans,
n.d.), this study advances the joint optimization of flight and
maintenance scheduling under prognostic uncertainty. From
her work and the further development of the framework, flight
cancellations were identified as the predominant cost driver
within the objective function. Incorporating uncertainty into
prognostic maintenance tasks reveals that certain realizations
of component health trajectories may cause additional can-
cellations—a phenomenon that deterministic models fail to
capture.

To address this challenge, the risk of cancellations arising
from uncertainty in component health predictions is modeled
using two methodological approaches:

¢ A neural network-based model to estimate cancellation
probabilities as a function of maintenance scheduling de-
cisions and stochastic health scenarios;

* A compact mini-MILP formulation to assess schedule
robustness across multiple uncertainty scenarios.

These methods are evaluated on a real-world case study from
SWISS International Air Lines Ltd., involving 5 short-haul
aircraft, 92 scheduled maintenance tasks, 5 prognostic tasks,
and 132 flights over a 5-day horizon. The following solution
strategies are compared:

* Deterministic: MILP integrating maintenance schedul-
ing (MS), task assignment (TA), and prognostic tasks,
without uncertainty;

* Stochastic: An approach that explicitly models uncer-
tainty in component health;

* Reality: The actual schedule implemented by the airline.

The resulting deterministic schedule is illustrated in Figure 3,
with flights depicted in blue and maintenance slots in yellow.

Figure 3. Flight (blue) and Maintenance (yellow) schedule
resulting from deterministic optimization. Uncertainty is not
considered in this framework.

A central finding is that cancellations predominantly arise
when the RUL of components is overestimated. To quantify
the operational impact of RUL uncertainty, probabilistic can-
cellation costs are modeled under various prognostic scenar-
ios. For illustration, a simplified example with two aircraft
and three operational days is analyzed, highlighting the sen-
sitivity of cancellations to deviations from mean RUL predic-
tions (see Figure 4).
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Figure 4. Impact of RUL variation on flight cancellations for
two aircraft over three days. Red indicates an increase in can-
cellations relative to the mean RUL scenario, while green in-
dicates a reduction, hence less cancellations compared to the
mean RUL. Mean RULSs of aircraft A and B are 2 and 3 flight
cycles, respectively; 15 flights are scheduled in total.

Preliminary results indicate that the stochastic frame-
work—whether based on neural network or mini-
MILP—yields schedules that are more robust to prognos-
tic uncertainty, substantially reducing the risk of cancellation
due to unforeseen component failures. The additional compu-
tational effort is justified by the resulting gains in operational
resilience.

5. RESEARCH PLAN AND FUTURE WORK

Ongoing and future research is organized into the following
work packages:

5.1. WP1:
proaches

Advanced Stochastic Programming Ap-

Extending the current implementation, advanced stochastic
programming methods are investigated to more accurately
represent uncertainty in prognostic maintenance, as proposed
by Dumouchelle et al. (Dumouchelle et al., 2022). In their
approach, a neural network is used to estimate second-stage
costs, which are subsequently linearized for MILP integra-
tion. Key focus areas include:

* Applying scenario reduction to manage computational
complexity,
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* Adopting risk-averse optimization to address worst-case
outcomes.

5.2. WP2: Reinforcement Learning and Hybrid Ap-
proaches

Recent work (Tseremoglou & Santos, 2024; Silva, Alves,
Ribeiro, Rizzotto, & Weigang, 2023; Song, Liu, Qin, Wang,
& Chen, 2024) demonstrates the efficacy of reinforcement
learning (RL) for complex maintenance scheduling. Notable
approaches combine dynamic scheduling via POMDPs and
deep RL, adaptive rescheduling, and DRL-augmented genetic
algorithms. Building on these insights, the following direc-
tions are proposed:

* Apply Advantage Actor-Critic (A2C) algorithms to dy-
namic scheduling,

* Investigate hybrid MILP-RL frameworks integrating
mathematical optimization and RL.

Further decomposition of the scheduling problem into bin-
packing and slot/flight assignment components (Witteman,
Santos, & Leal de Matos, 2021) is proposed, with reinforce-
ment learning applied to both subproblems using delayed re-
wards to capture interdependencies.

5.3. WP3: Scaling to Different Fleets

Practical deployment requires scaling to realistic airline fleets
characterized by:

e Multiple aircraft with diverse maintenance

regimes,

types

* Varied operational profiles (short-haul and long-haul),

* Numerous components, each with unique maintenance
requirements.

Decomposition, parallelization, and hierarchical optimization
will be investigated to ensure tractability for large, heteroge-
neous fleets.

5.4. WP4: Enhanced Explainability with Large Lan-
guage Models

To enhance framework usability for planners, the integration
of large language models (LLMs) is explored to:

» Translate optimization outputs into interpretable natural
language explanations,

* Enable user interaction via natural language, supporting
real-time updates and solution refinement.

6. CONCLUSION

This research introduces a novel, integrated framework for
the stochastic optimization of maintenance scheduling and

tail assignment with condition-based maintenance in aviation.
The current gap in the literature is addressed by jointly opti-
mizing maintenance scheduling and tail assignment while in-
corporating condition-based maintenance and its inherent un-
certainty within a single, comprehensive optimization model.

Initial results indicate that the proposed approach improves
operational efficiency and reduces maintenance costs com-
pared to current industry practice. The framework’s ability
to schedule additional maintenance tasks while maintaining
robust flight operations underscores its practical value for air-
lines.

Ongoing research is focused on enhancing stochastic model-
ing capabilities, exploring hybrid optimization—learning ap-
proaches, scaling the framework to diverse fleets, and im-
proving explainability through integration with large lan-
guage models. By addressing these challenges, a comprehen-
sive and practical solution is being developed to enable air-
lines to optimize maintenance operations under uncertainty.
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