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ABSTRACT 

Time series segmentation plays a critical role in feature 

engineering for prognostics and health management (PHM), 

yet most existing approaches rely on domain-specific rules or 

fail to preserve meaningful transient patterns. This research 

proposes a segmentation-driven framework that leverages a 

greedy Perceptually Important Point (PIP) algorithm to 

identify informative structural regimes in sensor signals 

without prior domain knowledge. A global reference signal is 

constructed from class-level Euclidean-barycenter averages, 

and consistent segment boundaries are applied across all 

samples. Segment-level statistical features are then extracted 

and used for classification. Evaluation on a chemical gas 

sensor dataset demonstrates that the proposed method 

significantly outperforms traditional whole-signal summary 

statistics, achieving improved robustness to drift and unit 

variability. Future work includes parameter optimization of 

the PIP algorithm, exploration of class-sensitive 

segmentation strategies, and extension of the framework to 

remaining useful life (RUL) prediction and anomaly 

detection tasks. 

1. PROBLEM STATEMENT  

Time series data have long played a critical role in PHM, 

serving as the foundational information source for health 

assessment, fault diagnosis, and remaining useful life 

prediction. Figure 1 illustrates the end-to-end modeling 

process—from time series data collection and segmentation 

strategies to feature engineering and prognostic model 

outputs. Traditionally, the extraction of features from time 

series data relies heavily on summary statistics, such as mean, 

standard deviation, kurtosis, and skewness. While these 

statistical measures are straightforward, computationally 

efficient, and broadly applied, they frequently fail to capture 

crucial transient and dynamic behaviors inherent in complex 

systems. As a result, traditional statistical approaches may 

overlook valuable diagnostic information, significantly 

limiting the accuracy and robustness of subsequent health 

monitoring models. Alternative methods rely heavily on 

domain knowledge, segmenting signals based on predefined 

operational steps (e.g., recipe steps in semiconductor 

manufacturing). However, this reliance limits scalability and 

applicability to new or unknown operational contexts. 

Therefore, there is a critical need for a robust, automated 

segmentation method capable of effectively identifying 

meaningful signal segments without prior domain-specific 

knowledge, thus significantly enhancing feature extraction 

quality and prognostic accuracy. 

 

Figure 1. Comprehensive Workflow of Time Series 

Modeling for PHM Applications. 
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Recent literature highlights a variety of segmentation 

methods employed in time series-based PHM frameworks. 

Common approaches include:  

• Piecewise Approximation Methods: This category 

includes techniques (Wilson, 2017) such as Piecewise 

Aggregate Approximation (PAA), Piecewise Linear 

Approximation (PLA), Piecewise Constant 

Approximation (PCA), and Symbolic Aggregate 

Approximation (SAX), which divide signals into equal-

length or fixed-structure segments. These methods are 

computationally efficient and suitable for large-scale or 

streaming applications. However, they typically ignore 

the underlying signal dynamics, often producing 

segments that span multiple operational states, which 

limits interpretability and reduces the quality of 

extracted features. 

• Event- and threshold-based segmentation: This 

includes techniques that segment signals based on 

predefined domain rules or threshold crossings (Yang, 

2016), such as changes in valve positions or setpoint 

levels. It allows alignment with meaningful process 

events but depends heavily on domain knowledge and is 

not generalizable across systems. 

• Statistical changepoint detection: These methods, such 

as Binary Segmentation and PELT(Killick et al., 2012), 

detect abrupt changes in distribution (e.g., mean, 

variance) and are useful for capturing transitions in 

operational modes. However, they struggle with noisy or 

gradual transitions and require tuning.  

• Pattern-based or structure-aware segmentation: This 

category includes methods such as spike detection using 

wavelets (Quiroga et al., 2004), ramp and oscillation 

pattern fitting (Olszewski, 2001; Srinivasan & 

Rengaswamy, 2012), or shapelet-based matching. These 

techniques capture functional primitives and yield 

segments that are semantically meaningful for 

diagnostics but often require careful parameterization 

and are computationally more demanding. 

Despite the diversity of existing segmentation methods—

including piecewise approximation, event/threshold-based, 

statistical changepoint, and pattern-based techniques—they 

all share critical limitations. Many require manual rule-

setting, are sensitive to noise or hyperparameters, or are 

computationally intensive. Current approaches fall short 

when faced with complex, variable-length behaviors typical 

of real-world PHM data. These deficiencies underscore the 

fundamental importance of accurate segmentation. When 

time series data are treated uniformly—ignoring inherent 

structures such as ramps, spikes, or oscillations—critical 

degradation cues may be diluted or lost entirely. Poor 

segmentation directly weakens the relevance and separability 

of extracted features, leading to compromised model 

accuracy and reduced interpretability. In contrast, precise and 

meaningful segmentation can expose latent degradation 

mechanisms, enhance signal clarity, and significantly 

improve downstream fault diagnosis and RUL prediction. 

Therefore, there is an urgent need for a segmentation-driven 

feature engineering methodology that is both automated and 

robust, capable of adaptively identifying and isolating 

dynamic regimes without strong assumptions or prior domain 

knowledge. Such an approach offers strong potential to 

improve the diagnostic quality and reliability of PHM 

systems across a wide range of industrial applications. 

2. EXPECTED NOVEL CONTRIBUTIONS 

This research proposes a segmentation-driven framework 

that directly addresses the limitations identified in existing 

segmentation methods, such as rigidity, noise sensitivity, and 

reliance on expert knowledge. The expected contributions are 

as follows: 

1. Design and implementation of an automated, data-driven 

segmentation methodology capable of adaptively 

identifying meaningful structural patterns—such as 

ramps, spikes, and oscillations—without requiring prior 

knowledge of operational steps or predefined rules. 

2. Advancement of time series feature engineering in PHM 

by isolating homogeneous signal regimes, enabling more 

precise and context-aware extraction of diagnostic and 

prognostic features. 

3. Development of a generalizable and scalable framework 

applicable across diverse industrial datasets, overcoming 

the specificity constraints of traditional rule-based or 

fixed-window methods. 

4. Empirical validation of the framework using industrial 

sensor data (e.g., gas sensor calibration), demonstrating 

improved signal interpretability, enhanced feature 

relevance, and increased classification and prediction 

accuracy relative to conventional techniques. 

5. Contribution to PHM system interpretability by 

producing segment-aware insights that can inform 

domain experts and operators, thus supporting more 

effective maintenance strategies and improving system 

reliability. 

3. PROPOSED RESEARCH PLAN 

The proposed research plan includes several structured 

phases: 

1.  Development and validation of a segmentation-driven 

preprocessing methodology capable of accurately 

identifying and isolating key patterns within complex 

time series signals. 

2.     Implementation of robust and adaptive feature extraction 

techniques tailored to each identified segment, ensuring 

high-quality, pattern-specific diagnostics and 

prognostics. 
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3.  Evaluation of the developed methodology using gas  

sensor calibration data as a practical case study, 

comparing the performance of the proposed approach 

with conventional methods through metrics such as 

accuracy, sensitivity, and specificity. 

4.   Integration of the segmentation-driven framework into 

broader PHM systems, assessing its scalability and 

applicability across various industrial scenarios, thus 

ensuring comprehensive validation and broad relevance. 

3.1. Work Performed and Preliminary Results 

To evaluate the effectiveness of the proposed segmentation-

driven framework, we apply it to the problem of chemical gas 

classification using uncalibrated sensor data, a challenging 

task that involves significant sensor variability, drift, and 

multi-regime operating conditions. The dataset is sourced 

from the University of California, Irvine Machine Learning 

Repository (Fonollosa et al., 2016). The dataset includes 

signals from five sensor units exposed to four gas types at ten 

concentration levels. Each test lasts 600 seconds and is 

recorded at 100 Hz. Raw signals are first interpolated to a 

fixed time base of 60,000 points and then downsampled to 

0.5 Hz using linear interpolation followed by downsampling. 

All sensor channels were individually normalized using z-

score normalization to ensure comparability across different 

units. 

We use data from Unit 2, based on four testing days, each 

covering 4 gases × 5 selected concentration levels, totaling 

80 training samples. The remaining 560 samples—including 

the other 5 concentration levels from Unit 2 as well as all 

samples from Units 1, 3, 4, and 5—are reserved for testing. 

This configuration ensures both manageable training 

complexity and comprehensive evaluation of model 

generalization under unit variation, concentration shift, and 

temporal drift. We compare two approaches: (1) a traditional 

whole-signal summary statistics method, and (2) the 

proposed segmentation-based feature extraction method. In 

the summary statistics approach, statistical features such as 

mean, max, min, standard deviation, skewness, and kurtosis 

are extracted from each sensor signal over the full duration. 

In contrast, our segmentation-based approach first groups 

sensor signals by gas type and identifies the most 

representative response channel using peak-to-peak 

amplitude. Figure 2 visualizes class-level representative 

signals computed using Euclidean barycenter for each gas 

type. These class-wise signals are then averaged to construct 

a global reference signal, which serves as the foundation for 

universal segmentation. 

 

 

 

 

Figure 2. Class-Level Representative Signals Computed 

Using Euclidean barycenter. 

A greedy Perceptually Important Point (PIP) segmentation 

algorithm, shown in Table 1, is applied to the global signal to 

determine key turning points, which serve as cut points. 

These fixed segment boundaries are then used to consistently 

segment all other signals. Within each segment and channel, 

we extract statistical descriptors such as mean, standard 

deviation, max, min, skewness, and kurtosis. This structured 

segmentation, shown in Figures 3 and 4, enables consistent 

and interpretable feature extraction across varying sensor 

dynamics. Classification is performed using a support vector 

machine (SVM) with an RBF kernel. The segmentation-

driven approach achieves a significantly higher classification 

accuracy of 96.79%, as illustrated by the confusion matrix in 

Figure 5, outperforming the 84.64% achieved by the 

summary statistics baseline. The segmentation method also 

demonstrates greater consistency across units and days, 

highlighting its robustness to sensor drift and operational 

variability. This case study supports the effectiveness of 

structure-aware segmentation in enhancing feature relevance 

and improving PHM classification performance. 

Table 1. Greedy PIP Selection for Time Serie Segmentation. 

Algorithm 1: GreedyPIPSegmentation(signal, k, min_gap) 

Input:  
Signal // A 1-D array of length N representing the input time series 
k   // Desired number of PIP points to select (including start and end) 
min_gap // Minimum index distance allowed between any two selected PIP    
points 
Output: 
    pip_indices // A sorted list of k perceptually important point (PIP) 
indices 
 
1:  pip_indices ← {0, N − 1}     ▷ Initialize with first and last point 
2:  while |pip_indices| < k do 
3:      max_dist ← −∞ 
4:      max_idx  ← −1 
5:      for i ← 0 to N − 1 do 
6:          if i ∈ pip_indices then 
7:              continue 
8:          if ∃ j ∈ pip_indices such that |i − j| < min_gap then 
9:              continue 
10:         left  ← max({j ∈ pip_indices | j < i}, default = 0) 
11:         right ← min({j ∈ pip_indices | j > i}, default = N − 1) 
12:         if left = right then 
13:             continue 
14:         x0 ← left;  y0 ← signal[left] 
15:         x1 ← right; y1 ← signal[right] 
16:         x  ← i;     y  ← signal[i] 
17:         y_proj ← y0 + (y1 − y0) × (x − x0) / (x1 − x0)  
18:         dist ← |y − y_proj| 
19:         if dist > max_dist then 
20:             max_dist ← dist 
21:             max_idx  ← i 
22:     if max_idx ≠ −1 then 
23:         pip_indices ← pip_indices ∪ {max_idx} 
24: return sort(pip_indices) 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

4 

Figure 3. Greedy-based PIP selection process. 

 

Figure 4. Representative points. 

 

Figure 5. Confusion matrix for the proposed segmentation-

based feature extraction method. 

3.2. Remaining Work 

Several important tasks remain to be addressed in the next 

step.  

• First, although the current segmentation strategy based 

on a greedy Perceptually Important Point (PIP) 

algorithm has demonstrated strong performance, its 

effectiveness is sensitive to the choice of parameters—

specifically, the number of PIP points (k) and the 

minimum gap between selected points (min_gap). Future 

work will explore systematic methods for parameter 

optimization, such as cross-validation, heuristic search, 

or Bayesian optimization, to adaptively tune these 

hyperparameters for different signal types or domains. 

• Second, the current segmentation relies on a single 

global reference signal derived from class-wise 

Euclidean barycenter. While this promotes consistency, 

it may obscure class-specific segment boundaries that 

are informative for classification. An extension of the 

framework could incorporate hybrid segmentation 

strategies that combine global consistency with class-

level sensitivity. 

• Third, additional robustness testing will be conducted 

using other public or industrial time series datasets with 

different signal characteristics, drift behaviors, and fault 

types. This will help assess the generalizability and 

scalability of the proposed approach. 

• Finally, the integration of the segmentation-driven 

framework into broader PHM pipelines—including data 

fusion, prognostics, and uncertainty quantification—

remains an open area for development. By extending the 

framework beyond fault classification to tasks such as 

RUL prediction and anomaly detection, the full potential 

of structured segmentation in industrial AI systems can 

be realized. 
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