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ABSTRACT

Unforeseen technical failures contribute significantly to air-
line delays, highlighting the need for predictive maintenance.
However, developing reliable prognostic models in aviation
is challenging due to strict safety requirements, limited la-
beled data, and the need for interpretable and trustworthy
predictions. This research proposes a hybrid framework for
remaining useful life (RUL) prediction that integrates multi-
modal domain knowledge available to airlines, such as sensor
data, contextual information and reliability insights, into in-
terpretable and uncertainty-aware algorithms. To this end, the
proposed framework resorts to unsupervised degradation ex-
traction with knowledge-informed autoencoders and supports
extensions for failure mode segmentation. Initial experiments
on a benchmark dataset show promising results, and applica-
tion to real-world commercial aircraft data is planned to fur-
ther validate the approach.

1. INTRODUCTION & RELATED WORK

Airline delays, which account for approximately 25% of the
delays reported in 2023 (Eurocontrol, 2024), are often at-
tributed to unforeseen technical issues, placing additional
strain on already tight airline operations. In response, avia-
tion industry has shown a growing interest in predictive main-
tenance. In particular, machine learning solutions for predic-
tive maintenance have gained popularity due to the increased
availability of condition monitoring data, technological ad-
vancements, and improved algorithms. It plays a crucial role
in enabling predictive maintenance strategies, thus improv-
ing the efficiency of airline maintenance, leading to increased
safety, reduced costs, and improved operational availability
(Walthall & Rajamani, 2018; Verhagen et al., 2023).

Despite advances in purely data-driven models that directly
predict RUL without providing information about the current
health condition and its temporal evolution, these models are
often seen as black-box models and face limited acceptance
due to their lack of transparency and interpretability (Fink et
al., 2020). To overcome this issue and achieve practical us-
ability in aircraft systems, recent works such as (Guo, Li, Jia,
Lei, & Lin, 2017; Kumar et al., 2022; Zhang, Zhang, Wang,
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Dui, & Chen, 2024) have proposed resorting to the inference
of health indicators (HI) to offer a more interpretable alterna-
tive to RUL models based on direct mappings. However, de-
veloping operational prognostic models in aviation is notably
challenging due to stringent safety requirements, legislative
regulations, and the need for high predictive accuracy amid
the scarcity of labeled data.

To mitigate the limitations posed by scarcity, Physics-
Informed Machine Learning (PIML) offers a promising
approach by embedding domain knowledge directly into
model architectures. Karniadakis et al. (Karniadakis et al.,
2021) provided a comprehensive review of PIML and catego-
rized its strategies for embedding domain-specific knowledge
into machine learning pipelines into three main types, each
introducing a different kind of bias:

1. Observational bias integrates domain knowledge
through data or feature augmentation, embedding phys-
ical behavior directly into the training data (Biggio,
Bendinelli, Kulkarni, & Fink, 2023; Li et al., 2023).

2. Inductive bias incorporates structural or mathematical
constraints into the model architecture to guide learning
(Song & Liu, 2018).

3. Learning bias shapes the training process through cus-
tomized loss functions or optimization schemes that re-
flect known physical principles (Qin, Yang, Zhou, Pu, &
Mao, 2023).

In the context of aviation, these strategies are particularly
well-suited, as airlines possess rich and diverse sources of do-
main knowledge. This includes time-series sensor data from
onboard monitoring systems, structured reliability data such
as failure rates and time-to-failure distributions, and unstruc-
tured maintenance records (commonly referred to as work
orders). This work addresses the need for interpretable and
uncertainty-aware prognostic models that can leverage het-
erogeneous sources of information available in airline opera-
tions.

Nonetheless, a critical limitation of most existing models is
that they are deterministic, producing single-point predictions
without accounting for uncertainty, neglecting the inherent
stochasticity of the RUL estimation problem. Capturing this
uncertainty is crucial for decision-making in aviation, where
safety depends not only on accurate predictions but also on
the quality of predictive uncertainty (Nemani et al., 2023).
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2. RESEARCH GAP
In summary, this research aims to address the following gaps:

» Insufficient Integration of Reliability Data in deep learn-
ing Prognostics Model: There is a need to enhance model
interpretability and predictive accuracy by incorporating
reliability data.

* Lack of Interpretability in machine learning Models:
Current machine learning models often lack trans-
parency, making it difficult for domain experts to trust
and act on predictions. There is a need to develop
interpretable machine learning models that align with
regulatory frameworks like the EASA AI Roadmap
(Soudain, 2024).

* Underutilization of Contextual Information: Existing
prognostic models do not fully leverage contextual infor-
mation from maintenance records, work orders, and fault
codes. Utilizing Large Language Models (LLMs) to ex-
tract and integrate this information can improve model
performance.

* Inadequate Uncertainty Quantification: Most current
deep learning methods for RUL estimation do not ade-
quately address both epistemic and aleatoric uncertainty,
which is crucial for making robust and reliable predic-
tions in critical decision systems.

3. METHODOLOGY AND WORK PACKAGES

This research aims to address the gaps identified in section 2
by developing an uncertainty-aware hybrid framework for
predicting failure times of critical sub-systems and compo-
nents in commercial aircraft. The proposed framework inte-
grates multimodal maintenance domain knowledge, includ-
ing time-series sensor data, reliability information, and main-
tenance text records. It is hypothesized that incorporating
several sources of knowledge can potentially increase fail-
ure time prediction. Additionally, combining diagnostics and
prognostics into one framework, and hence increasing inter-
pretability, will lead to higher acceptance and usability. In or-
der to investigate the hypothesis, the following research con-
sists of four work packages (WP).

3.1. WP1: Reliability-Informed Deep Learning Models
for Uncertainty-Aware Prognostics

This work package integrates reliability theory and deep
learning to develop uncertainty-aware prognostic models.

* Learn a probabilistic HI function representing compo-
nent degradation, informed by reliability theory.

* Quantify uncertainty in RUL predictions to support risk-
aware decision-making and trustworthiness.

* Enable extrapolation through learned HI function for in-
terpretable RUL predictions under varying operational
conditions.

3.2. WP2:
Models

Enhancing Interpretability in Prognostic

Improving support and acceptance from users, such as engi-
neering departments and troubleshooting teams, is crucial for
the success of prognostic models. Therefore, WP2 enhances
interpretability by analyzing and researching in following ar-
eas:

¢ Attention Mechanisms: Time-feature attention models
(Wang, Qin, Lu, Sun, & Shu, 2023) will be explored to
highlight the most influential features and time windows
contributing to degradation.

* Failure Mode Segmentation: Failure mode segmen-
tation will be performed using insights from Mainte-
nance Steering Group 3 (MSG-3) analysis, an industry-
standard methodology in aviation for identifying and un-
derstanding failure modes. By clearly representing the
degradation state of each failure mode, this approach
supports more precise maintenance actions and long-
term repair strategies.

e Interpretability Tooling and LLMs: Tools such as
Pyreal (Zytek, Wang, Liu, Berti-Equille, & Veeramacha-
neni, 2023) will be explored to explain model predic-
tions, and LLMs will be used to generate user-friendly
output explanations for maintenance engineers (Zytek,
Pido, & Veeramachaneni, 2024).

3.3. WP3: Leveraging Contextual Information for Prog-
nostics with LLM

The objective of this work package is to improve prognostic
models by leveraging contextual information through LLMs.

e LLMs will be trained to extract relevant insights from
structured and unstructured sources (e.g., fault codes,
maintenance manuals, work orders).

» Extracting and classifying failure modes based on main-
tenance records

» Integrating contextual insights such as health index ad-
justments following maintenance actions

3.4. WP4: Transfer Learning for Cross-fleet Prognostics
with Multimodal Domain Knowledge-based Prog-
nostics Models

This WP focuses on adapting the developed models to other
fleets with limited data.

» Transfer learning will be applied to adapt models devel-
oped on a data-rich source fleet (e.g., Airbus A220) to a
data-sparse target fleet (e.g., Airbus A320neo).

* Techniques such as fine-tuning and domain adaptation
will be employed. Data augmentation may be used to
compensate for sparsity in the target domain.
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4. RESULTS & ANALYSIS

In this study, HIs are considered a stochastic definition of
health over time, incorporating reliability information via
Weibull distribution parameters derived from fleet reliability
information. The HI is expressed as (Dersin, Bajarunas, &
Chao, 2024):

h(t) =1—bt? 1)

where p is a fleet-wide shape parameter and b is a unit-specific
random variable modeled via a 2-parameter Fréchet (\p,5p)
distribution, derived from Weibull (53, 1) time-to-failure pri-
ors.

4.1. Reliability-Informed Deep Learning (RIDL)

Three variants of the RIDL framework are developed to em-
bed reliability knowledge into deep learning models:

e RIDL-VAE: A variational autoencoder (VAE) embed-
ding b ~ Fréchet(\y, B8p) in the latent space, regularized
via a closed-form KL divergence derived for the Fréchet
distribution. The sampled b is then used to compute the
analytical HI curve (see eq. 1), which serves as input
to the decoder, hence introducing reliability-informed in-
ductive bias. Note that the exponent p was assumed to be
known.

e RIDL-AAE: An adversarial autoencoder (AAE)
(Bermejo-Barbanoj, Moya, Badias, Chinesta, & Cueto,
2024) embedding the random variable b in the latent
space. A discriminator enforces alignment with the
Fréchet prior, introducing inductive bias without explicit
likelihood assumptions, similar in architecture to RIDL-
VAE. A secondary AAE variant was also explored,
embedding the health index directly in the latent space.
However, lacking an analytical degradation curve, this
approach does not support extrapolation and was there-
fore not evaluated.

* RIDL-AE: A conditional autoencoder, inspired by
(Bajarunas, Baptista, Goebel, & Chao, 2023), where
the health index is embedded in the latent space. Initial
RIDL models assumed a constant, known exponent p.
However, this is unrealistic as degradation curves are
normally not known beforehand. To address this, the
current model extends the RIDL framework by learning
both the health index and the degradation shape function
p = p(s) in parallel, where p exponent depends on the
degradation level s. The health index is then given by:

: p(s)
) e
n(—logq)?

This formulation is equivalent to the analytical model
(Eq. 1), where the random variable b is derived from re-
liability theory (Dersin et al., 2024). This hybrid model
jointly learns unit-specific degradation parameters g and

h(t) =

the fleet-wide shape function p(s), allowing both fleet-
level generalization and unit-level adaptation. It lever-
ages reliability-based priors to regularize health index es-
timation during training, while supporting extrapolation
during inference.

4.2. Experimental Setup

Experiments were performed on the N-CMAPSS DS03
dataset (Arias Chao, Kulkarni, Goebel, & Fink, 2021), which
simulates turbofan degradation under realistic flight condi-
tions and closely mirrors Quick Access Recorder (QAR)
sensor data used by airlines. Following frameworks were
compared:

* RIDL-AE: with learned p(s) and extrapolated HI.

¢ RIDL-AAE: with fixed p and statistical prior on b.

* Supervised Model: trained on sensor-to-RUL mappings
(Arias Chao, Kulkarni, Goebel, & Fink, 2022)

Prediction is performed at fixed observation cycles, and the
MAE of the RUL estimates is reported.

Cycle RIDL-AE | RIDL-AAE | Supervised Model
5 41.22 6.83 7.66
15 30.67 6.17 7.08
30 9.08 6.33 8.66
45 5.25 6.50 6.68
Average | 21.55 | 6.46 | 7.53

Table 1. Mean Absolute Error (MAE) for RUL predictions
made at different observation cycles.

4.3. Discussion

RIDL-AE achieves the lowest MAE at cycle 45, indicating
strong performance as the system nears failure. However, its
early-cycle errors are higher, partly attributed due to numeri-
cal instability in estimating ¢ via:

B
{27)
go=e \u-orn 3)

At early stages (¢ small, s high), the denominator (1 — s)1/p
becomes small, amplifying the exponent and resulting in ex-
tremely small g5 values. This leads to overestimated time-
to-failure and thus poor RUL predictions. Incorporating un-
certainty quantification is expected to mitigate this effect. In
fact, even median-based (q; = 0.5) predictions achieve MAE
around 9.

RIDL-AAE, with a fixed p, is more stable in early predictions
but less adaptive closer to failure. This contrast suggests that
RIDL-AE’s latent space representation of the health index al-
lows more nuanced extraction of degradation patterns, com-
pared to the fixed parameterization in RIDL-AAE, offering a
promising direction for further improvement.
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5. CONCLUSION

Integrating reliability theory into deep learning, this research
improves the transparency and accuracy of predictive main-
tenance RUL predictions. By embedding domain-informed
priors and modeling the health index analytically, it addresses
key challenges such as sparse failure data and varying opera-
tional conditions.

Notably, RIDL-AE demonstrates strong performance at later
degradation stages, while RIDL-AAE provides stable early-
stage predictions through structured priors. This highlights
the value of combining inductive and learning biases.

Ongoing work aims on enhancing early-cycle predictions
through uncertainty modeling and extending the framework
to real-world datasets from commercial aircraft. The mod-
ularity of the RIDL architecture supports future extensions
for failure mode classification and deployment in operational
decision-support tools, advancing reliable, interpretable prog-
nostics for safety-critical domains.
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