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ABSTRACT 

The failure of a lithium-ion battery (LiB), which is used as 

an energy storage system (ESS) in the mobility industry, such 

as electric vehicles and aircraft, can lead to substantial loss of 

life and property, thereby causing significant problems. 

Therefore, it is essential to monitor the capacity degradation 

of the mobility battery and accurately predict the remaining 

useful life (RUL) from the early cycle stage. Particularly, 

RUL prediction is the main objective of the Battery 

Management System (BMS) and is important for 

guaranteeing the safety of the mobility system (Wu et al., 

2016).  This research introduces a hybrid deep learning model 

for RUL prediction, using LSTM-attention and Multi-Layer 

Perceptron (MLP) methodologies. The proposed model uses 

statistical degradation features and domain knowledge-based 

features as input data acquired from the early 100 cycles of 

charge/discharge data of a lithium-ion battery. The model's 

performance evaluation was divided into two phases: primary 

and secondary, providing root mean square errors of 158.4 

and 168.67, respectively. This study's results aim to 

contribute to the advancement of Prognostic and Health 

Management (PHM) technology, Condition-Based 

Maintenance (CBM) strategies, and BMS-based life 

prediction technology for mobility battery systems. 

1. INTRODUCTION 

Batteries are principally used in mobility systems to store 

electricity and provide power to motors and driving devices. 

Lithium-ion batteries are used as a conventional energy 

source in E-mobility devices due to their long lifespan, 

efficiency, and high energy density. Nonetheless, despite 

these advantages, if the battery's available capacity drops 

below 80% of its initial capacity at the end of its lifespan, it 

could lead to severe safety incidents, including explosions 

and fires. Therefore, predicting the end-of-life point of the 

battery during the early cycle is an important technical 

challenge that is directly related to improving the safety of 

mobility systems.  

The lithium-ion battery shows a slow degradation rate 

during the early cycle due to its longevity, making it 

challenging to assess its lifespan over a short period of time. 

For this reason, an approach for predicting the battery’s RUL 

by analyzing degradation-related variables from early 

charging and discharging cycle data is being researched. 

(Severson et al., 2019) pioneered data-driven cycle life 

prediction for lithium-ion batteries, introducing an elastic 

network-based learning approach that leverages a subset of 

variance (Elastic-V), discharged (Elastic-D), and full 

(Elastic-F) variables.  (Yu et al., 2025) proposed a hybrid 

RUL prediction model that combines Transformer-CNN and 

MLP, integrating domain knowledge-based and statistical 

features into Intra-cycle Features and Inter-cycle Features to 

achieve superior predictive performance. 

In this study, we advance the methodology of (Yu et al., 

2025) by introducing a hybrid input structure that integrates 

domain knowledge-based features with clear physical 

significance, including Coulombic Efficiency and Charge–

discharge Voltage Difference, alongside statistical features 

such as discharge capacity, incremental capacity (dQ/dV), 

temperature, and internal resistance (IR). These features are 

categorized into Intra-cycle Features and Inter-cycle Features, 

serving as input data for LSTM-Attention and MLP models, 

respectively, to perform RUL prediction. This research offers 

a deep learning neural network methodology based on battery 

degradation characteristics, which offers the following 

contributions: 

- We quantitatively characterize the changes in energy 

efficiency during charge–discharge processes and the 

increase in overpotential associated with cycle degradation 

through Coulombic Efficiency and Charge–discharge 
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Voltage Difference, thereby enhancing the physical 

interpretability and improving the reliability of the prediction 

results. 

- We apply a physics-guided feature engineering approach to 

organically integrate the physicochemical behavior of the 

battery with the data-driven learning model, thereby 

improving the generalizability of the model. 

2. DATASET DESCRIPTION 

2.1. MIT-Stanford dataset 

 
Figure 1. Battery charge/discharge protocol 

 

 

 
Figure 2. Battery capacity degradation 

 

In this study, we used the open-access, MIT-Stanford battery 

dataset(Severson et al., 2019). This dataset contains LiFePO₄ 

(LFP) battery cycle data as experimental. The tested cells are 

APR18650M1A commercial cells produced by A123 

Systems, with a nominal capacity of 1.1Ah, a nominal 

voltage of 3.3V, and a LFP/graphite electrode configuration. 

The C1(Q1)-C2 fast charging strategy was used for the 

battery, with C1 and C2 representing constant current values 

in steps 1 and 2, respectively, and the average charging rate 

ranging from 3.6C to 6C. After fast charging, the battery was 

fully charged in CC (Constant Current) mode of 1C and CV 

(Constant Voltage) mode. All cells were discharged in CC 

mode of 4 C, with a lower cut-off voltage of 2.0 V. The 

dataset includes data from 124 battery cells, displaying an 

extensive variety of lifespans. Figure 1 shows the 

charge/discharge protocol of an arbitrary battery, and Figure 

2 shows the discharge capacity degradation curve included in 

the dataset. 

3. METHODOLOGY 

3.1. Degradation feature generation 

The statistical features related to battery degradation, 

extracted with reference to the feature extraction method 

proposed by (Severson et al., 2019), together with the domain 

knowledge-based features, Coulombic Efficiency and 

Charge–discharge Voltage Difference, are used to generate 

features. 

3.2. Inter-feature extraction 

The inter-feature set consists of the statistical 

characteristics of the discharge capacity difference between 

the 100th and 10th cycles, as well as the mean value of the 

Coulombic Efficiency difference between the 100th and 50th 

cycles. Detailed information on the feature transformation 

process is provided in Table 1. 

Table 1. Inter feature transformation function. 

 

Descriptions Feature formulations (Log scale) 

𝑀𝑖𝑛_∆𝑄100−10(𝑉) 𝑙𝑜𝑔⁡(|𝑚𝑖𝑛⁡(∆𝑄(𝑉))|) 
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2
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|) 
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1

𝑝 − 1
∑ 𝜂𝐶𝐸(𝑘)

𝑝

𝑖=1
|) ; 𝜂 = ⁡𝑄𝑑𝑖𝑠

𝑚𝑎𝑥/⁡𝑄𝑑𝑖𝑠
𝑚𝑖𝑛 

3.3. Intra-feature extraction 

The intra-feature set was constructed by utilizing the cycle-

wise statistical characteristics of discharge capacity, 

incremental capacity, and temperature to form time-series 

data capturing the degradation behavior of each battery. In 

addition, the incorporation of cycle-wise Coulombic 

Efficiency, Charge–discharge Voltage Difference, and IR 

values further enhanced the explanatory power of the 

degradation characteristics. Detailed information on the 

Charge–discharge Voltage Difference transformation 

function is provided in Table 2. 

Table 2. Charge–discharge Voltage Difference function. 

 

Descriptions Feature formulations (Log scale) 
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3.4. Correlation analysis 

The inter-feature set was analyzed for its correlation with 

the battery’s RUL cycle. Figure 3 illustrates the correlation 

coefficients between the four inter-features and the RUL 

cycle on a log scale. 

 

Figure 3. Correlation between Discharge Capacity 

Difference, Coulombic Efficiency, and RUL  

3.5. LSTM-Attention & MLP model 

The proposed early cycle RUL prediction model employs 

a hybrid architecture combining a sequence LSTM–attention 

branch with a static-feature MLP branch. Time-series inputs 

are processed by a 3-layer bidirectional LSTM (hidden 

layer=32), followed by an attention mechanism that assigns 

weights to salient time steps, and the weighted context is 

projected to 16 dimensions. 

Static inputs containing features such as Coulombic 

Efficiency and Charge–discharge Voltage Difference are fed 

into an MLP (4, 16, 32, 64, 32, 16) where Sigmoid and SiLU 

activations are alternately applied to enhance nonlinearity. 

The resulting 16-dimensional embedding is concatenated 

with the LSTM branch embedding and passed to a prediction 

head MLP (32, 64, 32, 1) to produce the RUL prediction. 

4. RESULTS AND DISCUSSION 

In this study, we evaluated the regression-based RUL 

prediction model performance on both the Primary and 

Secondary test datasets using RMSE and MAPE metrics, as 

shown in Table 3. Compared to (Severson et al., 2019)’s 

results, the RMSE for the Primary test was 74.07% worse, 

whereas the Secondary test showed a 2.5% improvement. 

Figure 4 qualitatively illustrates the prediction results for 

both datasets, providing visual insight into the model’s 

performance. 

The reduced performance in the Primary test is attributed 

to larger prediction errors for long-lifetime battery cells. The 

Secondary test exhibited a similar trend, with reduced 

accuracy for long-lifetime cells, consistent with the patterns 

observed in (Severson et al., 2019)’s results. This suggests 

that the data-driven prediction model, which maps the 

relationship between degradation history and RUL, tends to 

be biased toward cells with rapid degradation under high-rate 

cycling conditions. Such data imbalance led to limited 

extrapolation capability for long-lifetime cells. Nevertheless, 

the comparable performance across both test datasets 

demonstrates the consistency of the model, which can be 

interpreted as a positive indicator that reduces the likelihood 

of overfitting. 

Future work will focus on improving prediction accuracy 

for long-lifetime battery cells by incorporating data 

imbalance mitigation techniques and enhancing extrapolation 

performance. The goal is to develop a generalized prediction 

model applicable to cells with diverse lifetime characteristics. 

Table 3. Prediction performance metrics. 

 

 RMSE (cycles) MAPE (%) 

Primary 158.40 11.18 

Secondary 168.67 11.96 

 

 

Figure 4. Early cycle prediction results 

5. CONCLUSION 

This study proposed a method for predicting the RUL of 

mobility batteries and validated its performance through two 

stages of testing. The proposed model demonstrated 

consistent prediction trends across both test datasets, 

indicating stable performance. However, for a subset of long-

lifetime battery cells, the prediction accuracy was reduced, 

likely due to insufficient consideration of slow degradation 

characteristics. Future work will focus on incorporating novel 

domain knowledge–based feature extraction techniques 

tailored to slow degradation to enhance prediction accuracy 

for long-lifetime cells. 
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