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ABSTRACT

The failure of a lithium-ion battery (LiB), which is used as
an energy storage system (ESS) in the mobility industry, such
as electric vehicles and aircraft, can lead to substantial loss of
life and property, thereby causing significant problems.
Therefore, it is essential to monitor the capacity degradation
of the mobility battery and accurately predict the remaining
useful life (RUL) from the early cycle stage. Particularly,
RUL prediction is the main objective of the Battery
Management System (BMS) and is important for
guaranteeing the safety of the mobility system (Wu et al.,
2016). This research introduces a hybrid deep learning model
for RUL prediction, using LSTM-attention and Multi-Layer
Perceptron (MLP) methodologies. The proposed model uses
statistical degradation features and domain knowledge-based
features as input data acquired from the early 100 cycles of
charge/discharge data of a lithium-ion battery. The model's
performance evaluation was divided into two phases: primary
and secondary, providing root mean square errors of 158.4
and 168.67, respectively. This study's results aim to
contribute to the advancement of Prognostic and Health
Management  (PHM)  technology, Condition-Based
Maintenance (CBM) strategies, and BMS-based life
prediction technology for mobility battery systems.

1. INTRODUCTION

Batteries are principally used in mobility systems to store
electricity and provide power to motors and driving devices.
Lithium-ion batteries are used as a conventional energy
source in E-mobility devices due to their long lifespan,
efficiency, and high energy density. Nonetheless, despite
these advantages, if the battery's available capacity drops
below 80% of its initial capacity at the end of its lifespan, it
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could lead to severe safety incidents, including explosions
and fires. Therefore, predicting the end-of-life point of the
battery during the early cycle is an important technical
challenge that is directly related to improving the safety of
mobility systems.

The lithium-ion battery shows a slow degradation rate
during the early cycle due to its longevity, making it
challenging to assess its lifespan over a short period of time.
For this reason, an approach for predicting the battery’s RUL
by analyzing degradation-related variables from early
charging and discharging cycle data is being researched.

(Severson et al., 2019) pioneered data-driven cycle life
prediction for lithium-ion batteries, introducing an elastic
network-based learning approach that leverages a subset of
variance (Elastic-V), discharged (Elastic-D), and full
(Elastic-F) variables. (Yu et al., 2025) proposed a hybrid
RUL prediction model that combines Transformer-CNN and
MLP, integrating domain knowledge-based and statistical
features into Intra-cycle Features and Inter-cycle Features to
achieve superior predictive performance.

In this study, we advance the methodology of (Yu et al.,
2025) by introducing a hybrid input structure that integrates
domain knowledge-based features with clear physical
significance, including Coulombic Efficiency and Charge—
discharge Voltage Difference, alongside statistical features
such as discharge capacity, incremental capacity (dQ/dV),
temperature, and internal resistance (IR). These features are
categorized into Intra-cycle Features and Inter-cycle Features,
serving as input data for LSTM-Attention and MLP models,
respectively, to perform RUL prediction. This research offers
a deep learning neural network methodology based on battery
degradation characteristics, which offers the following
contributions:

- We quantitatively characterize the changes in energy
efficiency during charge—discharge processes and the
increase in overpotential associated with cycle degradation
through Coulombic Efficiency and Charge—discharge
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Voltage Difference, thereby enhancing the physical
interpretability and improving the reliability of the prediction
results.

- We apply a physics-guided feature engineering approach to
organically integrate the physicochemical behavior of the
battery with the data-driven learning model, thereby
improving the generalizability of the model.

2. DATASET DESCRIPTION

2.1. MIT-Stanford dataset
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Figure 1. Battery charge/discharge protocol

110 [

095

Discharge capacity [Ah]
S

0.90

\

J \ i\ A

0 500 1000 1500 2000
Cycles

Figure 2. Battery capacity degradation

In this study, we used the open-access, MIT-Stanford battery
dataset(Severson et al., 2019). This dataset contains LiFePOa
(LFP) battery cycle data as experimental. The tested cells are
APR18650M1A commercial cells produced by Al123
Systems, with a nominal capacity of 1.1Ah, a nominal
voltage of 3.3V, and a LFP/graphite electrode configuration.
The C1(Q1)-C2 fast charging strategy was used for the
battery, with C1 and C2 representing constant current values
in steps 1 and 2, respectively, and the average charging rate
ranging from 3.6C to 6C. After fast charging, the battery was
fully charged in CC (Constant Current) mode of 1C and CV
(Constant Voltage) mode. All cells were discharged in CC

mode of 4 C, with a lower cut-off voltage of 2.0 V. The
dataset includes data from 124 battery cells, displaying an
extensive variety of lifespans. Figure 1 shows the
charge/discharge protocol of an arbitrary battery, and Figure
2 shows the discharge capacity degradation curve included in
the dataset.

3. METHODOLOGY

3.1. Degradation feature generation

The statistical features related to battery degradation,
extracted with reference to the feature extraction method
proposed by (Severson et al., 2019), together with the domain
knowledge-based features, Coulombic Efficiency and
Charge—discharge Voltage Difference, are used to generate
features.

3.2. Inter-feature extraction

The inter-feature set consists of the statistical
characteristics of the discharge capacity difference between
the 100th and 10th cycles, as well as the mean value of the
Coulombic Efficiency difference between the 100th and 50th
cycles. Detailed information on the feature transformation
process is provided in Table 1.

Table 1. Inter feature transformation function.

Descriptions
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3.3. Intra-feature extraction

The intra-feature set was constructed by utilizing the cycle-
wise statistical characteristics of discharge capacity,
incremental capacity, and temperature to form time-series
data capturing the degradation behavior of each battery. In
addition, the incorporation of cycle-wise Coulombic
Efficiency, Charge—discharge Voltage Difference, and IR
values further enhanced the explanatory power of the
degradation characteristics. Detailed information on the
Charge—discharge Voltage Difference transformation
function is provided in Table 2.

Table 2. Charge—discharge Voltage Difference function.

Descriptions Feature formulations (Log scale)
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3.4. Correlation analysis

The inter-feature set was analyzed for its correlation with
the battery’s RUL cycle. Figure 3 illustrates the correlation
coefficients between the four inter-features and the RUL
cycle on a log scale.
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Figure 3. Correlation between Discharge Capacity
Difference, Coulombic Efficiency, and RUL

3.5. LSTM-Attention & MLP model

The proposed early cycle RUL prediction model employs
a hybrid architecture combining a sequence LSTM-attention
branch with a static-feature MLP branch. Time-series inputs
are processed by a 3-layer bidirectional LSTM (hidden
layer=32), followed by an attention mechanism that assigns
weights to salient time steps, and the weighted context is
projected to 16 dimensions.

Static inputs containing features such as Coulombic
Efficiency and Charge—discharge Voltage Difference are fed
into an MLP (4, 16, 32, 64, 32, 16) where Sigmoid and SiLU
activations are alternately applied to enhance nonlinearity.
The resulting 16-dimensional embedding is concatenated
with the LSTM branch embedding and passed to a prediction
head MLP (32, 64, 32, 1) to produce the RUL prediction.

4. RESULTS AND DISCUSSION

In this study, we evaluated the regression-based RUL
prediction model performance on both the Primary and
Secondary test datasets using RMSE and MAPE metrics, as
shown in Table 3. Compared to (Severson et al., 2019)’s
results, the RMSE for the Primary test was 74.07% worse,
whereas the Secondary test showed a 2.5% improvement.
Figure 4 qualitatively illustrates the prediction results for
both datasets, providing visual insight into the model’s
performance.

The reduced performance in the Primary test is attributed
to larger prediction errors for long-lifetime battery cells. The
Secondary test exhibited a similar trend, with reduced
accuracy for long-lifetime cells, consistent with the patterns
observed in (Severson et al., 2019)’s results. This suggests
that the data-driven prediction model, which maps the
relationship between degradation history and RUL, tends to
be biased toward cells with rapid degradation under high-rate
cycling conditions. Such data imbalance led to limited
extrapolation capability for long-lifetime cells. Nevertheless,

the comparable performance across both test datasets
demonstrates the consistency of the model, which can be
interpreted as a positive indicator that reduces the likelihood
of overfitting.

Future work will focus on improving prediction accuracy
for long-lifetime battery cells by incorporating data
imbalance mitigation techniques and enhancing extrapolation
performance. The goal is to develop a generalized prediction
model applicable to cells with diverse lifetime characteristics.

Table 3. Prediction performance metrics.

RMSE (cycles) MAPE (%)
Primary 158.40 11.18
Secondary 168.67 11.96
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Figure 4. Early cycle prediction results

5. CONCLUSION

This study proposed a method for predicting the RUL of
mobility batteries and validated its performance through two
stages of testing. The proposed model demonstrated
consistent prediction trends across both test datasets,
indicating stable performance. However, for a subset of long-
lifetime battery cells, the prediction accuracy was reduced,
likely due to insufficient consideration of slow degradation
characteristics. Future work will focus on incorporating novel
domain knowledge—based feature extraction techniques
tailored to slow degradation to enhance prediction accuracy
for long-lifetime cells.
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