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ABSTRACT

Over the past decade, advances in sensing and information
technologies have enabled industries to collect large amounts
of data. Yet, decision-making often remains driven by the in-
tuition of domain experts who rely on simplistic analyses and
short-term considerations. This frequently leads to suboptimal
decisions that fail to account for long-term effects, particu-
larly in complex, interconnected systems. Current data-driven
strategies typically focus on immediate objectives, overlook-
ing relational structures and longer-term impacts. There is a
growing need for more transparent, generalizable models that
can simulate system behavior, reason about alternative future
scenarios, and extrapolate to unseen conditions—capabilities
that are essential for decision-making in Prognostics and
Health Management (PHM). This research aims to advance
reasoning and decision support in PHM through three novel
contributions: (1) a physics-informed surrogate model for
simulating rigid body interactions, enabling the exploration
of ”what-if” scenarios, (2) an object-centric visual reasoning
model for dynamics prediction in sensor-limited environments,
supporting visual inspection tasks, and (3) a neuro-symbolic
framework for interpretable root-cause analysis in time series,
improving diagnostic transparency and providing actionable
insights.

1. MOTIVATION AND PROBLEM STATEMENT

Advances in information technology have enabled industrial
systems—such as wind farms, manufacturing lines, and trans-
poration networks—to collect large amounts of multimodal
data from sensors, cameras, and operational logs (Bousdekis,
Lepenioti, Apostolou, & Mentzas, 2021). Yet, decision-
making in PHM still heavily depends on expert intuition and
rule-based systems, often leading to suboptimal decisions
focused on short-term objectives (Ma, Ren, Xiang, & Turk,
2020). For example, immediate aircraft maintenance may
resolve a fault but cause future disruptions in logistics (Xu,
Adler, Wandelt, & Sun, 2024).
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Traditional decision-making approaches struggle with com-
plex, interconnected systems, particularly under unseen or
evolving conditions. Expert reasoning is biased by prior expe-
rience, and synthesizing diverse data streams remains difficult
(Sarker, 2021). Furthermore, formalizing expert knowledge
into intepretable reusable rules has proven challenging, limit-
ing scalability and transparency (Idé, 2016).

While recent data-driven methods aim to optimize decisions,
they often neglect long-term implications and fail to model al-
ternative futures. For example, predictive maintenance models
may determine the optimal intervention time but cannot simu-
late how degradation will progress under different scenarios
(Pinciroli, Baraldi, & Zio, 2023). The difficulty to extrapolate
and the lack of relational modeling both limit decision support
in PHM.

To address these challenges, there is a need for generalizable,
interpretable models that can simulate system behavior, reason
about hypothetical scenarios, and support robust decisions.
These capabilities lie at the core of counterfactual reasoning
(Verma, Dickerson, & Hines, 2020), which enables answering
“What if?” questions such as “What if we delay maintenance?”
or “What if we adjust operating conditions?”. By combin-
ing simulation, forecasting, and explainability, counterfactual
reasoning offers a path toward more strategic, future-proof
PHM.

To address these needs, this thesis explores three comple-
mentary aspects of counterfactual reasoning in PHM. First, it
introduces a physics-informed surrogate model for simulat-
ing rigid body interactions, supporting “what-if” analyses in
applications such as robotic manipulation and asset handling,
where accurate long-term dynamics are critical. Second, it
proposes an object-centric visual reasoning framework that
predicts object trajectories directly from raw video, enabling
anticipatory decisions in sensor-limited environments like mo-
bile inspection or autonomous navigation. Third, it presents a
neuro-symbolic approach for interpretable root-cause analysis
in time series data, improving transparency in diagnostics and
supporting decision-making in complex, multi-sensor systems
such as wind farms or energy networks.
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2. EXPECTED CONTRIBUTIONS

2.1. Physics-Informed Surrogate Model

The first contribution of this research is the development of a
physics-informed surrogate model for simulating rigid body
dynamics in interacting environments. This model enables
accurate long-horizon predictions of physical interactions such
as collisions and group-level motion—capabilities especially
valuable for PHM tasks involving robotic manipulation and
simulation-based planning.

Traditional physics engines can produce accurate predictions
when all environmental parameters are fully specified. How-
ever, in real-world scenarios, many factors—such as wind con-
ditions, surface texture, or material damping—are unknown
or too complex to model explicitly (Parmar, Halm, & Posa,
2021). These limitations highlight the need for data-driven
surrogate models that can learn from observed behavior and
generalize to unseen conditions.

Recent learning-based approaches (Sanchez-Gonzalez et al.,
2020; Pfaff, Fortunato, Sanchez-Gonzalez, & Battaglia, 2021;
Allen et al., 2023) have addressed this by using Graph Neural
Networks (GNNs) to model interactions. Yet, these methods
are limited in scalability and physical realism as they rely on
simple node-to-node message passing (Battaglia et al., 2018),
which struggles to capture higher-level dynamics such as mo-
mentum exchange or energy transfer.

To overcome these limitations, we propose a through a surro-
gate model based on higher-order topological representations.
Rather than limiting interactions to pairs of nodes, we encode
object surfaces and structural groupings using combinatorial
complexes (Bodnar, 2022; Hajij et al., 2022), which preserve
object cohesion and enable modeling of group-level dynam-
ics. This structure also allows environmental modifications,
making it well-suited for simulating counterfactual scenarios.

Building on this representation, we introduce a physics-
informed message-passing framework that enforces Newto-
nian principles. By structuring message flows to reflect energy
and momentum transfer between the physical hierarchies (e.g.,
from local surface-level contacts to whole-object dynamics),
the model achieves both long-horizon predictive accuracy and
physical consistency. These inductive biases also improve
learning efficiency and generalization to out-of-distribution
scenarios.

The resulting model, named HOPNet, outperforms state-of-
the-art methods in simulating object motion under collisions.
It enables ”what-if” simulations by modifying object count,
properties, or trajectories—supporting decision-making for
PHM tasks in robotic asset handling. Beyond rigid body
dynamics, our proposed method also offers a foundation for
modeling high-level interactions in other domains, such as
sensor networks or interconnected systems.

2.2. Unsupervised Vision-based Reasoning

The second contribution of this research focuses on improv-
ing predictive reasoning in vision-based systems. Many
autonomous agents—such as mobile robots or inspection
drones—rely on visual data, yet lack access to precise 3D
geometry or physical parameters. In these settings, learning
directly from video is essential to support predictive mainte-
nance, degradation tracking, or failure anticipation.

Recent methods for unsupervised object-centric scene decom-
position use attention-based autoencoders to segment scenes
into discrete object ”slots” (Kipf et al., 2022; Singh, Wu, &
Ahn, 2022; Wu, Dvornik, Greff, Kipf, & Garg, 2023; Zada-
ianchuk, Seitzer, & Martius, 2023; Majellaro, Collu, Plaat, &
Moerland, 2025). While promising, these approaches often
fail to distinguish visually similar objects, particularly under
grayscale imagery, occlusion, or non-planar motion. The re-
sulting segmentations are unstable, leading to inaccurate or in-
valid dynamics predictions. Furthermore, current architectures
lack inductive biases needed to respect physical principles,
causing performance to degrade in realistic PHM scenarios
with clutter, collisions, and long-horizon forecasting.

To address these limitations, we propose a visual reasoning
framework that improves both object decomposition and pre-
dictive modeling. First, we propose to use equivariant convolu-
tional filters (T. Cohen & Welling, 2016; T. S. Cohen, Geiger,
Köhler, & Welling, 2018) to disentangle spatial location from
appearance, improving object consistency and robustness to
viewpoint changes. We also investigate regularization tech-
niques, such as Kullback-Leibler divergence and feature-space
separation, to encourage distinct object embeddings—even in
visually ambiguous settings.

Second, we extend the model to capture temporal dynam-
ics by integrating scene history across video frames. This
enables consistent tracking of partially or fully occluded ob-
jects—critical for reasoning about collisions, interaction se-
quences, and downstream effects. By explicitly extracting
geometric trajectories through improved decomposition, the
model supports accurate prediction of rigid body evolution
over time, even in unseen environments.

The resulting model enables counterfactual visual simulation,
answering questions such as “What if this object were re-
moved?” or “What if its initial position was different?”, and
serves as a surrogate for dynamics forecasting in visually
monitored systems. We will benchmark our approach against
state-of-the-art models on datasets ranging from planar motion
to 3D collisions, evaluating prediction accuracy, generaliza-
tion, and robustness. This contribution supports PHM tasks
such as visual degradation tracking, remote inspection, and
video-based anomaly forecasting in complex scenes.
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2.3. Neuro-Symbolic Reasoning for Root Cause Analysis

The third contribution of this research addresses the need
for interpretable diagnostics in complex industrial systems
through a neuro-symbolic framework for time series analysis.
While deep learning models such as transformers (Ansari et
al., 2024; Gu & Dao, 2023) offer state-of-the-art performance
for forecasting and classification, their predictions remain
opaque, hindering trust and deployment in safety-critical PHM
applications. Post-hoc explainability methods provide limited
insight in time series settings, where temporal and multivariate
dependencies make decisions difficult to trace.

To overcome these challenges, we propose a neuro-symbolic
approach that extracts human-understandable concepts from
raw time series and composes them into interpretable logical
rules. Inspired by advances in concept-based reasoning (Mao,
Gan, Kohli, Tenenbaum, & Wu, 2020; Koh et al., 2020), we
aim to identify high-level temporal patterns—such as “time
above threshold,” “oscillation frequency,” or “exponential de-
cay”—and combine them using logic operators (e.g., conjunc-
tion ∧, negation ¬) to explain anomalies or trends. These rules
can support root cause analysis, condition monitoring, and
transparent fault detection in PHM systems.

This framework will be implemented as an end-to-end differen-
tiable architecture, capable of unsupervised concept discovery
from multivariate inputs. To evaluate its performance, we
will benchmark against existing fault detection methods using
real-world datasets from wind farms and hydropower plants.
Since these datasets are often sparsely labeled and heavily
imbalanced, we will also consider developing synthetic, fault-
annotated datasets using realistic simulators to validate rule
extraction and generalization.

By linking predictive power with symbolic reasoning, our
model will enable transparent, causal explanations—a critical
requirement for actionable decision support in PHM. In addi-
tion, the symbolic rules generated by the model can be reused
across systems or scenarios, facilitating knowledge transfer.
Ultimately, this contribution bridges the gap between black-
box learning and human-interpretable diagnostics, enabling
more robust and trustworthy PHM solutions.

3. PROPOSED RESEARCH PLAN

3.1. Timeline

This PhD research began in January 2024. As of August
2025, the first contribution is complete and has been published
in Nature Communications 16 (DOI: 10.1038/s41467-025-
62250-7). Work on the second is underway, with the final
contribution scheduled to begin later this year, in line with a
three-year timeline (Fig. 1).

5 Proposed Timeline for the Thesis

The proposed research plan is primarily aimed at submitting a cumulative doctoral thesis. It is
intended to publish this research in either flagship computer science conferences or engineering
journals. In order to provide an overview of the progress made so far and the timeline for each
work package, Fig. 6 illustrates the current schedule for the research.

Year
2024 2025 2026 2027

Literature review
Physics-Informed Surrogate

Publication 1
Vision-based Object-centric Reasoning

Publication 2
Neuro-symbolic Learning on Time Series

Publication 3
Thesis writing

Right now: Focusing on WP2

Figure 6: Proposed timeline for the research plan
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Figure 1. Research timeline

3.2. Current Progress

We now present core results from the first contribution: a
physics-informed surrogate model for simulating rigid body
dynamics in interacting systems. The model, HOPNet, com-
bines topological representations with physics-aware message
passing to support long-horizon, counterfactual simulations.

We introduce a physics-informed topological representation
of rigid bodies using Combinatorial Complexes (CCs). Unlike
standard mesh-based graphs that model only node connections,
CCs allow us to define hierarchical cell types—nodes, edges,
triangles, contacts, and objects—to preserve both surface con-
sistency and object cohesion. Each cell carries features at
its level (e.g., velocity for nodes, mass for objects), enabling
structured, physically grounded modeling. The system evolves
as a sequence of spatiotemporal complexes X t, with future
states X̂ t+1 predicted autoregressively from previous ones.
This representation allows accurate, long-horizon simulation
of rigid body interactions, supporting counterfactual reasoning
in complex PHM scenarios.

(a)

(b)

Embedding Learnable message Learnable projection

Step 1

Shape matching

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Backpropagation

Part A
Enhance mesh faces with

intra-object data

Part B
Process inter-objects

collisions

Part C
Update individual objects

and nodes

Part D
Predict accelerations

and next pose

Nodes

Edges

Faces

Collisions

Objects

Figure 2. Overview of our method (a) Autoregressive roll-
out approach; (b) Physics-informed message-passing strategy.
Our sequential message-passing is inspired by Newtonian laws
and tailored to process collisions.

Operating on these novel representations, we introduce a
physics-informed message-passing framework that encodes
Newtonian laws directly into the model (Fig. 2). Within the
combinatorial complex, messages flow hierarchically between
nodes, surfaces, and objects, guided by physical structure. The
framework distinguishes between independent and colliding
objects: in collisions, energy and momentum changes are com-
puted at contact cells and propagated to update object states
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(steps 1-4). Features are aggregated across levels to enrich
representations, enabling accurate prediction of per-node and
per-object accelerations (steps 5-6). These are integrated using
a second-order Euler method to simulate future states. This
structured approach improves physical consistency, learning
efficiency, and long-horizon rollout accuracy.
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Figure 3. Autoregressive rollout performance on bench-
mark datasets. (a) Translation and (b) orientation errors after
a rollout horizon of T = 50 on all dynamic objects in the
scene. Error bars indicate the mean and standard deviation
across three independent random seeds.

We evaluate our framework on three benchmark datasets
(MoVi-spheres, MoVi-A, MoVi-B) involving rigid body
interactions under various physical conditions (Fig. 3). Our
model significantly outperforms state-of-the-art baselines
MeshGraphNet (Pfaff et al., 2021) and FIGNet (Allen et al.,
2023) in long-horizon prediction accuracy, achieving up to
50% longer rollouts before reaching comparable errors. This
improvement enables more reliable and physically consistent
simulations of dynamic systems.

Importantly, our topological representation—allowing full con-
trol over scene parameters—combined with long-term predic-
tive accuracy enables counterfactual simulation of alternative
scenarios. This makes our approach well-suited for PHM tasks
such as predictive planning and decision-making in systems
with multiple interacting components.

ACKNOWLEDGEMENTS

This work is supported by the Swiss National Science Founda-
tion (SNSF) Grant Number 200021 200461.

REFERENCES

Allen, K. R., Rubanova, Y., Lopez-Guevara, T., Whitney,
W., Sanchez-Gonzalez, A., Battaglia, P. W., & Pfaff,
T. (2023). Learning rigid dynamics with face interac-
tion graph networks. In International conference on
learning representations.

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,
P., Shen, H., . . . Wang, Y. (2024). Chronos: Learning
the language of time series. Transactions on Machine
Learning Research.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez,
A., Zambaldi, V., Malinowski, M., . . . Pascanu, R.
(2018). Relational inductive biases, deep learning, and

graph networks.
Bodnar, C. (2022). Topological deep learning: Graphs, com-

plexes, sheaves (Doctoral dissertation, Apollo - Uni-
versity of Cambridge Repository). doi: 10.17863/
CAM.97212

Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G.
(2021). A review of data-driven decision-making meth-
ods for industry 4.0 maintenance applications. Electron-
ics, 10(7), 828.

Cohen, T., & Welling, M. (2016). Group equivariant convolu-
tional networks. In International conference on machine
learning.
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