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ABSTRACT

Prognostics and Health Management (PHM) of photovoltaic
(PV) systems requires integrated approaches that link temper-
ature forecasting with physical degradation modeling under
thermal stress. This study addresses key limitations of ex-
isting PHM frameworks, such as the lack of high-resolution
climate projections and limited coupling with degradation
models, by proposing a unified PHM methodology tailored
for high-temperature scenarios. The framework consists of
three main components: (1) a formal problem definition of
PV performance loss during extreme temperature and high
cooling demand periods; (2) high-resolution spatiotemporal
forecasting of temperatures; (3) probabilistic modeling of PV
thermal degradation. The proposed approach integrates two
innovations, including a Gaussian copula–based risk assess-
ment for capturing joint distributions of environmental stres-
sors (e.g., air temperature, solar irradiance, and wind speed)
and a Spatiotemporal Graph Neural Network (ST-GNN) ar-
chitecture for accurate prediction of extreme temperature
events. Accelerated aging tests and ERA5 reanalysis data
(1974–2023) have been used to parameterize the probabilis-
tic aging models. Preliminary results from forecasting exper-
iments achieved root-mean-square errors of 5.1–5.5°C across
three representative Spanish climate zones. Future work will
focus on enhancing the expressiveness of spatial dependen-
cies through dynamic graph structures with learnable edge
weights, as well as propagating predictive uncertainty from
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temperature forecasts into degradation models using uncer-
tainty quantification techniques.

1. INTRODUCTION AND BACKGROUND

The accelerating effects of climate change have introduced
significant global challenges, particularly evident through ex-
treme weather events that disrupt ecosystems, infrastructure,
and society. Among these challenges, the energy sector faces
unprecedented risks, as extreme weather events impact both
energy demand and the reliability of energy infrastructure
(Perera, Nik, Chen, Scartezzini, & Hong, 2020). The Earth’s
climate system is a dynamic interplay of atmospheric and
oceanic forces (Wang et al., 2024). While there have al-
ways been challenges in the prediction of climate patterns,
human-induced climate change has hindered the predictions
even more with the increased frequency and intensity of ex-
treme meteorological events (Gonçalves, Costoya, Nieto, &
Liberato, 2024).

The rapid global deployment of PV systems is critical for
achieving decarbonization and reducing the cost of energy
production, yet climate change–driven heatwaves threaten
both their performance and longevity (Chang & Han, 2024).

In the context of PHM, systematic frameworks have been de-
veloped to monitor, diagnose, and predict asset degradation,
but existing PHM solutions for PV plants rarely integrate tem-
perature extremes forecasts with the physics of aging, limit-
ing proactive maintenance strategies (Chang & Han, 2024).
A unified solar energy management framework that combines
extreme temperature forecasting with PV degradation model-
ing is needed to safeguard solar energy infrastructure under

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

increasing thermal stress in the presence of extreme weather
events.

2. PROBLEM STATEMENT

Extreme temperatures have accelerated ageing processes in
PV modules, including solder joint fatigue, encapsulant
browning, and cell metallization wear. These phenomena can
lead to efficiency losses of up to 25% during periods of peak
demand, which correspond to the times of day when cooling
loads are at their highest (Aghaei et al., 2022). This, in turn,
can compromise grid reliability.

Current methodologies for extreme temperature management
in PV power plants are deficient in the sense that they lack a
unifying probabilistic framework that (1) forecasts tempera-
ture intensity, duration, and spatial extent with quantified un-
certainty and (2) directly integrates those forecasts into degra-
dation models to predict PV module lifetime under extreme
temperature conditions.

3. EXPECTED NOVEL CONTRIBUTIONS TO THE FIELD

• Integrated PHM framework for thermal degradation
in PV systems. This research will establish a unified
PHM framework that directly couples probabilistic tem-
perature forecasts with PV module degradation models.
The framework enables end-to-end prediction and man-
agement of thermal degradation in solar panels by ingest-
ing and forecasting temperature profiles rather than raw
meteorological inputs into aging models. Unlike conven-
tional approaches that treat forecasting and health mod-
eling as separate tasks, this solution ensures that uncer-
tainty in extreme temperature predictions are taken into
account in the degradation estimations.

• High resolution, uncertainty aware forecasting. In-
tegration of Graph Neural Networks (GNNs) to capture
spatial dependencies to increase the reliability of these
forecasts for forecasting and PHM decision making in
different geographic locations.

• Unified prognostic framework. Predictive risk assess-
ment framework that integrates temperature prediction
models with PV panel degradation models, allowing
quantification of the impacts of extreme heat events on
PV panels.

4. RESEARCH PLAN

4.1. Specific Objectives

• To develop a probabilistic risk assessment framework to
quantify multivariate environmental stressors and their
joint impact on renewable power plant components un-
der extreme temperature conditions.

• To design and implement a spatiotemporal forecasting
system using GNNs and ERA5 reanalysis data, that pre-

dicts extreme temperature events up to 96 hours in ad-
vance, capturing both spatial dependencies and temporal
dynamics.

• To incorporate forecast accuracy at different geographic
locations to determine the optimal aggregation level for
reliable temperature predictions in PHM applications.

• To integrate probabilistic temperature forecasts with PV
panel degradation models to quantify the effect of ex-
treme heat on module health and enable predictive main-
tenance decision-making.

4.2. Methodology

A three-phase methodology has been defined, For the devel-
opment and validation of a PHM framework for predicting
high-temperature degradation in photovoltaic systems.

Phase 1. Probabilistic degradation modeling

1. Data acquisition and preprocessing. Historical meteo-
rological records and PV performance measurements are
gathered and standardized.

2. Statistical and sensitivity analysis. Stressors and degra-
dation responses are correlated, and sensitivity metrics
are derived to inform model structure.

3. Model construction. Gaussian-copula models are de-
veloped to represent probabilistic degradation under
thermal stress.

4. Validation. Model forecasts are compared against accel-
erated aging experiment results to assess accuracy.

Phase 2. Spatiotemporal temperature forecasting

1. Feature engineering. Temporal predictors (trend, sea-
sonality) and spatial predictors (terrain, land cover) are
extracted from reanalysis datasets.

2. ST-GNN development. A Spatiotemporal Graph Neu-
ral Network is designed to predict temperature extremes
over different time horizons.

3. Uncertainty quantification. Evaluate multiple uncer-
tainty estimation techniques, including conformal pre-
diction, Bayesian neural networks, and deep ensembles,
against held-out data to identify the most accurate and
computationally efficient method. Integrate the selected
approach into the ST-GNN pipeline to produce well-
calibrated probabilistic intervals for each spatiotemporal
forecast.

4. Validation. To ensure practical applicability and assess
performance under different environmental conditions,
the forecast skill and reliability are evaluated using multi-
ple regional case studies. These case studies are strategi-
cally selected to represent a range of climatic zones, pro-
viding a comprehensive assessment of the framework’s
capabilities in diverse operational settings relevant to so-
lar power plant deployments.

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Phase 3. Integrated PHM framework

1. Model coupling. Forecast outputs (temperature) are
linked to degradation models to estimate PV health prog-
nostics.

2. Uncertainty propagation. Forecast uncertainty is prop-
agated to yield predictions with confidence intervals.

3. Case study validation. The integrated framework is
subjected to rigorous testing through multiple regional
installations and is benchmarked against observed per-
formance declines.

5. PRELIMINARY WORK AND RESULTS

5.1. Probabilistic degradation modeling

This research phase implements a probabilistic aging frame-
work for crystalline silicon PV panels, including monocrys-
talline and polycrystalline types, in which environmental
stressors, ambient temperature, irradiance, and humidity
drive degradation rates. The model employs Gaussian-copula
representations of joint extreme-event distributions to simu-
late realistic thermal-stress scenarios and computes an aging-
acceleration factor that feeds into cumulative loss-of-life cal-
culations. To date, the following tasks have been completed:

• Characterized PV degradation mechanisms under ther-
mal stress, adopting the SANDIA temperature model to
estimate module operating temperatures from ambient
conditions, irradiance, and wind speed (King, Boyson,
& Kratochvil, 2004).

• Implemented an empirical lifetime model in which an
aging acceleration factor, dependent on maximum mod-
ule temperature, daily temperature swings, irradiation,
and humidity, are used to compute cumulative loss-of-
life over time.

• Calibrated and benchmarked the Kaaya thermal-cycling
degradation model (Kaaya, Koehl, Mehilli, de Car-
dona Mariano, & Weiss, 2019) and the Subramaniyan
environmental-stress degradation model (Subramaniyan,
Pan, Kuitche, & TamizhMani, 2018) against site-specific
performance data, revealing conflicting severity assess-
ments that underscore the need for a unified Gaussian-
copula–based probabilistic risk framework.

• Fitted Gaussian copulas to the joint distribution of daily
extreme ambient temperature, humidity, and irradiance
for two large U.S. solar farms (Copper Mountain and
Mount Signal II). Fig. 1 shows the joint cumulative prob-
ability distribution functions plotted in bivariate plots.
This visualization highlights the extreme values (A and
B) identified by the cumulative distribution function
(CDF) thresholds, which are highlighted in red. The
modeled copulas closely match observed cumulative
probabilities and pass Anderson–Darling goodness-of-fit
tests (Kitani, Ma, & Murakami, 2024).

• Conducted site-specific analyses revealing that wildfire-
driven extremes, simultaneous peaks of 972 W/m² irra-
diance, 41 °C ambient temperature, and 69% relative hu-
midity during the Aspen Fire on July 23, 2013, induced
the most severe instantaneous module aging at Mount
Signal II (7.52 h of life lost).

• Developed a PV risk index by combining multivari-
ate extreme-event probabilities (via Gaussian copulas
of temperature and irradiance) with instantaneous aging
rates. The index identifies wildfire-related extremes as
the primary drivers of accelerated PV degradation and
supports data-driven prioritization of maintenance and
resilience planning.

5.2. Spatiotemporal temperature forecasting

Time-Series Modeling. Hourly ERA5 reanalysis data
(1974 – 2023) were processed into high-resolution grids of
pressure-level and surface temperature variables (Hersbach
et al., 2023). Key temporal features (trend, seasonality,
autocorrelation) were extracted and used to train three
forecasting models Autoregressive Integrated Moving Av-
erage (ARIMA), Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN)–LSTM via region-
specific pipelines in Seville, Badajoz, and Alonsotegi (Spain).
Bayesian optimization tuned hyperparameters. Performance
metrics (Root-Mean-Square Error (RMSE), Mean Absolute
Error (MAE)) showed that:

• CNN–LSTM attained the lowest RMSE in Seville (5.2
°C) and Badajoz (5.5 °C).

• LSTM was no optimize in Alonsotegi (RMSE = 5.1 °C),
reflecting its complex oceanic climate.

Spatio-Temporal Graph Neural Network (ST-GNN). An
Attention-enhanced Temporal Graph Convolutional Network
was evaluated for 12 h, 24 h, and 36 h temperature forecasts
over a fully connected ten-node graph (Iskandaryan, Ramos,
& Trilles, 2023). The model is trained exclusively on the
two-metre air temperature variable, without incorporation of
additional meteorological features such as humidity or irra-
diance. The 12- and 36-hour ahead predictions achieved an
MSE of 0.054 and 0.059, and a MAE of 0.187 and 0.189, re-
spectively, but failed to capture the overall trends; in contrast,
the 24-hour ahead horizon offered better results with an MSE
of 0.06 and a MAE of 0.198, demonstrating the most accu-
rate alignment with the observed temperature profiles shown
in Fig.2.

5.3. Insights and next steps

The preliminary results confirm that the Gaussian cop-
ula–based probabilistic aging model and the ST-GNN
temperature-forecasting approaches can be seamlessly in-
tegrated into a cohesive PHM framework. The limited impact
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Figure 1. Joint probability distribution hourly for PVs in (a) Copper Mountain and (b) Mount Signal.

Figure 2. True vs. predicted temperature for a 24-hour ahead
forecasting horizon using the ST-GNN model.

of basic spatial encodings underscores the need for richer
spatial representations.

Next steps:

• Introduce dynamic graph architectures with learnable
edge weights to more accurately model spatial interac-
tions among weather stations.

• Compare and evaluate uncertainty-quantification tech-
niques against held-out data to identify the most accu-
rate and computationally efficient approach, then inte-
grate the selected method into the aging model to gener-
ate well-calibrated degradation intervals.

• Validate the coupled forecasting–degradation framework
on multiple field datasets, assess predictive and prognos-
tic performance metrics, and iteratively refine the system

to support adaptive maintenance scheduling informed by
probabilistic health forecasts.
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