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ABSTRACT

Quality control is a key task in smart manufacturing, since
it ensures that processes consistently meet rigorous perfor-
mance standards. The effective implementation of these
mechanisms is crucial to ensuring both reliability and ef-
ficiency in modern manufacturing environments, where au-
tomation is increasingly integrated. Traditional anomaly
detection algorithms typically rely on single-view data for
each manufacturing product, overlooking relevant and com-
plementary information available from multiple perspec-
tives. Furthermore, cross-entropy-based loss functions are
frequently adopted in the literature to train detection models;
however, these approaches often struggle with imbalanced
datasets or when detecting rare and subtle anomalies. In
this work, a contrastive learning architecture for multi-view
anomaly detection in industrial settings is proposed. The
method performs a mid-level fusion to generate a structured
representation of the input instances, thereby enhancing de-
tection capabilities. The architecture was evaluated on the
Real-IAD dataset, where it demonstrated better performance
than traditional techniques. These findings highlight the po-
tential of contrastive learning to improve anomaly detection
performance, thus contributing to the construction of more
reliable quality control systems in smart manufacturing envi-
ronments.

1. INTRODUCTION

In the context of Industry 4.0, modern manufacturing systems
are becoming increasingly reliant on real-time data acquisi-
tion and processing. As a result, the ability to automatically
detect deviations from expected behavior is critical for ensur-
ing product quality and optimizing process efficiency. The
effective identification of faults, errors, and abnormal condi-
tions plays a key role in maintaining system reliability and ro-
bustness. Consequently, anomaly detection represents a fun-
damental task in industrial environments. Given the increas-
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ing complexity of modern industrial systems, it becomes es-
sential to collect sufficient data to support accurate decision-
making. For instance, when detecting defects in a manufac-
tured product, capturing images from a single viewpoint will
not reveal all possible anomalies if the defect is located on a
different perspective. This encourages the value of the multi-
view approach, which consists of the utilization of data col-
lected from multiple perspectives of the same instance. Multi-
view data provides a more comprehensive representation of
the object being monitored, allowing for more complete and
consistent analysis. For these reasons, multi-view data is be-
coming increasingly common in industrial applications, bet-
ter reflecting real-world conditions.

Multi-view problems have typically been addressed through
different approaches (S. Wang et al., 2022), aiming to ex-
ploit the complementary information present across differ-
ent views to enhance learning performance. Among these,
fusion-based methods have proven particularly effective,
achieving strong results by integrating multiple representa-
tions into a unified embedding. In particular, such methods
have been successfully employed in conjunction with Convo-
lutional Neural Network (CNN) architectures (Khan, Shahid,
Raza, Dar, & Alquhayz, 2019) and attention mechanisms (He,
Zhang, Tian, Wang, & Xie, 2024). Despite their efficiency,
multi-view fusion-based methods pose several challenges (Yu
et al., 2025), including inconsistent and often imbalanced in-
formation across views. For instance, some views may in-
clude irrelevant information or even be redundant with others.
Additionally, effectively combining different views into a sin-
gle and meaningful joint representation increases the overall
complexity, both in terms of structure and scalability.

When working with visual data, such as images or videos,
structuring the representation space effectively due to the
high dimensionality of the input data becomes critical. To
address this, contrastive learning has emerged as a power-
ful Machine Learning (ML) tool for learning data representa-
tions by pulling together similar (positive) pairs and pushing
apart dissimilar (negative) pairs. To do it, it employs a loss
function that minimizes the distance between positive pairs
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while maximizing the distance between negative pairs. This
approach has been widely applied to computer vision tasks
for both self-supervised and supervised learning purposes. In
(Chen, Kornblith, Norouzi, & Hinton, 2020), the proposed
SimCLR architecture uses data augmentation to construct im-
age pairs from unlabeled data. The model, which consists of
an encoder and a nonlinear projection head, outperforms pre-
vious methods by introducing the NT-Xent loss function. A
similar architecture adapted for supervised learning tasks is
used in (Khosla et al., 2020). In this case, the objective is
to reduce the distance between elements of the same class
using a contrastive loss function. This method achieves bet-
ter results than traditional cross-entropy approaches in large-
scale classification problems. Contrastive learning has also
been applied to anomaly detection. In (Kopuklu, Zheng, Xu,
& Rigoll, 2021), a contrastive learning framework is pro-
posed to identify abnormal driving behaviors. This approach
demonstrates superior performance to previous methods and
also improves model robustness.

A novel contrastive learning architecture for anomaly detec-
tion in multi-view environments is proposed in this work. Un-
like traditional approaches that process each view indepen-
dently or perform a late fusion of them, this solution employs
mid-level fusion, allowing for the effective integration of in-
formation from multiple views. The architecture also lever-
ages the properties of contrastive learning to structure the la-
tent space in a way in which normal instances are grouped
together and the defective ones are clearly separated. The
main contributions of this work are: (1) a novel architecture
based on contrastive learning to effectively handle multi-view
data; and (2) its implementation and evaluation for anomaly
detection in an industrial environment. To the best of our
knowledge, this work represents the first application of con-
trastive learning for anomaly detection on an industrial multi-
view dataset. The proposed architecture demonstrated strong
performance in industrial anomaly detection, achieving an av-
erage AUC-ROC of 0.986 and a perfect score of 1.000 in four
categories. Compared to the baseline, it outperformed in 7
out of 13 categories and showed lower performance in only
2.

The remaining of the paper is organized as follows. Section
2 introduces the multi-view approach for quality control pur-
poses, along with the contrastive learning technique. Section
3 presents the proposed architecture for anomaly detection in
multi-view datasets. Section 4 describes the selected dataset,
the experimental setup, and the results for both the baseline
and the proposed method. Finally, Section 5 summarizes the
main conclusions and outlines future directions for this work.

2. BACKGROUND

This section presents different multi-view approaches for im-
age anomaly detection and introduces contrastive learning.

2.1. Multi-View Approaches for Visual Anomaly Detec-
tion

Anomaly detection is a fundamental challenge in modern
manufacturing processes. Traditionally, this task has been ad-
dressed through the analysis of numerical data obtained from
sensors. Nevertheless, the recent advent of Deep Learning
(DL) has enabled the employment of images captured during
the manufacturing process to identify defective parts. The lit-
erature on visual anomaly detection has mainly centered on
single-view problems, where datasets consist of one image
per product. Common DL approaches to address these tasks
include embedding-based methods (Defard, Setkov, Loesch,
& Audigier, 2021), which are focused on learning a latent
representation of data; reconstruction-based methods (Park,
Lee, Ko, & Kim, 2023), which enhance the training set with
transformed or synthetic samples to improve model perfor-
mance. However, the single-view approach presents chal-
lenges, as even when an object has a visible anomaly, it might
be located on the opposite side that the camera cannot cap-
ture. Therefore, to better reflect real-world conditions, the
multi-view problem was introduced several years ago. Multi-
view datasets consist of image sets captured from different
angles of each product in order to detect all possible defects.
They provide an effective method for representing 3D objects
through 2D image collections while preserving most of the
relevant information.

As stated in (S. Wang et al., 2022), multi-view approaches
can be classified into four distinct categories. First, fusion-
based solutions, which are designed to combine the repre-
sentations from each view into a joint embedding. This uni-
fied representation can be then processed by a single-view
anomaly detection algorithm. Second, alignment-based solu-
tions, which enforce consistency among the representations
learned from different views by aligning them into the la-
tent space. That is, representations obtained from each view
are trained to be similar to each other. Third, deep anomaly
detection tailored solutions, which are focused on training a
deep anomaly detection model for data from each view and
then combining each individual output to construct the final
result. Finally, self-supervision-based approaches design pre-
text tasks, allowing the model to learn meaningful represen-
tations without external supervision. These tasks exploit the
inherent structure of multi-view data to guide training, and the
reconstruction error can serve as an anomaly score for the fi-
nal prediction. The work in (S. Wang et al., 2022) provides an
overview of representative methods across all four categories.
Fusion-based approaches have received particular attention,
as recent studies have demonstrated their strong performance
and effectiveness in integrating complementary information
from multiple views. In (Su, Maji, Kalogerakis, & Learned-
Miller, 2015) a fusion-based solution that outperforms meth-
ods operating directly on 3D shape representations is pre-
sented. The developed architecture, based on CNNs, employs
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a VGG-M model that has been pretrained on ImageNet. This
model is then fine-tuned to extract features from each view,
followed by a view-pooling layer. Then, a second CNN pro-
cesses the fused representation to perform the final classifica-
tion. In (He et al., 2024) the authors propose a multi-view
anomaly detection (MVAD) framework that uses attention
mechanisms to efficiently combine information from differ-
ent views. The framework learns a fused representation of
the different views using the Multi-View Adaptive Selection
(MVAS) algorithm, which selects and integrates the most rel-
evant local regions across views. This representation is then
used to detect anomalies from a single embedding. In (Jakob,
Madan, Schmid-Schirling, & Valada, 2021) the authors in-
troduce the Dices dataset, consisting of 2000 grayscale im-
ages of falling dice captured from multiple perspectives, with
5% of the data containing anomalies. They also propose a
Deep Support Vector Data Description (Deep SVDD) algo-
rithm, employing different fusion techniques. Additionally,
data augmentation and denoising methods are applied to en-
hance the robustness of the model in the presence of noise.
Evaluations conducted on both the Dices dataset and MNIST
demonstrate that their proposed architecture achieves better
results than single-view anomaly detection methods.

2.2. Contrastive Learning

Contrastive learning is a ML technique that constructs mod-
els to distinguish between similar and dissimilar pairs of ex-
amples, which are denoted as positive and negative pairs, re-
spectively. These models learn useful representations of data
in an embedding space by grouping positive pairs together
and separating negative ones. To achieve this, a contrastive
loss function is employed to maximize the distance between
negative pairs while minimizing the distance between posi-
tive pairs. Therefore, it is essential to correctly define what
constitutes a positive or a negative pair. Commonly, posi-
tive pairs consist of elements belonging to the same entity or
class, while negative pairs consist of elements from different
classes. It is important to note that labeled data is often not
strictly required for this approach.

Visual data usually exhibit more complex latent representa-
tions due to their high dimensionality. Consequently, con-
trastive learning represents an effective approach to structur-
ing the embedding space. One of the first applications of a
contrastive learning loss function is (Hadsell, Chopra, & Le-
Cun, 2006), which employs a siamese architecture and de-
fines positive and negative pairs based on neighborhood rela-
tionships. Experiments demonstrate that the contrastive loss
function maintains an equilibrium in the output space and
prevents the system from collapsing into a constant func-
tion. (Schroff, Kalenichenko, & Philbin, 2015) presented the
triplet loss. For each image of a specific person, denoted as
the anchor, a triplet is formed by selecting positive elements,
which are other images from the same person, and negative

elements, with images from different people. The proposal
also incorporates an α parameter to ensure a minimum sep-
aration between the components. Moreover, to improve the
process and optimize its efficiency, a triplet selection pro-
cess is implemented. This method has been demonstrated to
simplify the setup process and enhance performance. (Chen
et al., 2020) introduces SimCLR, a self-supervised learning
method that learns visual representations by contrasting pos-
itive pairs with negative pairs. Since positive pairs are con-
structed by the application of data augmentation to original
data, labeled data is not required. The architecture is com-
posed of three principal components: an encoder, a nonlinear
projection head, and the NT-Xent loss function, introduced in
the same work. The proposal outperforms previous methods
for self-supervised, semi-supervised and transfer learning,
while simplifying existing architectural approaches. (Khosla
et al., 2020) presents an extension of the contrastive learning
approach to supervised problems, leveraging label informa-
tion to improve learned representations. Thus, the idea is to
not only try to set the augmented data closer to the original,
but also setting elements from the same class closer, structur-
ing the embedding space. The architecture is similar to the
SimCLR, combining an encoder network with a projection
head. Moreover, the work compares two different versions of
the supervised contrastive loss, outperforming traditional ap-
proaches that employ cross-entropy loss on large-scale clas-
sification problems. Anomaly detection is another area where
these methods are applied. (Kopuklu et al., 2021) introduces
a novel dataset specifically for driver anomaly detection. This
work also proposes a contrastive learning approach to effec-
tively identify unusual driving behaviors by learning to dis-
tinguish between normal and anomalous patterns. It demon-
strates that this method significantly improves the accuracy
and robustness of detecting various driver anomalies in com-
parison with the cross-entropy loss.

3. ARCHITECTURE PROPOSAL

As previously stated, real-world scenarios are better ad-
dressed using multi-view approaches. Additionally, the ben-
efits of contrastive learning methods were discussed. There-
fore, the proposed architecture leverages the power of con-
trastive learning methods for anomaly detection in multi-view
settings. The method is classified in the fusion-based cate-
gory, as it performs a mid-level fusion of features extracted
from each view to finally generate a unified output. An
overview of the proposed architecture can be consulted in
Figure 1. The architectural framework is composed of two
main components:

• Base encoder, which serves as a feature extractor. It is
composed of one CNN per view. Each CNN transforms
an input image i ∈ RH×W×C , where H is the height, W
the width, and C the number of channels, into a feature
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Figure 1. Architecture proposal.

vector, v ∈ RM , where M is the output dimension of the
CNN.

• Projection head, which maps the concatenated feature
vectors to a joint representation space. This component
consists of a sequence of linear layers. The outputs of
the CNNs are v1, v2, ..., vn ∈ RM , where n is the num-
ber of views. These vectors are concatenated and passed
through the projection head to produce a single embed-
ding vector z ∈ RL, where L is the dimensionality of the
latent space.

For the training process a contrastive loss function is em-
ployed. In particular, the loss function used is the one pre-
sented in (Kopuklu et al., 2021), as it is tailored for anomaly
detection tasks. This function is designed to bring normal
instances closer together in the latent space, while pushing
defective instances away from them. Thus, positive pairs
are formed exclusively from the normal (non-defective) class,
while negative pairs consist of one element from the normal
class and one from the defective class. Each batch contains a
proportional number of elements from both classes, accord-
ing to their distribution in the dataset. Let N be the number of
normal instances in a batch, denoted as nr, r ∈ {1, 2, ..., N},
and D the number of defective instances, denoted as ds, s ∈
{1, 2, ..., D}. Therefore, there are N(N − 1) positive pairs,
and ND negative pairs in this batch. The contrastive loss
function is detailed in Eq. 2.

Li,j = − log
exp(sim(ni,nj)/τ)

exp(sim(ni,nj)/τ)+
∑K

k=1 exp(sim(ni,dk)/τ)

(1)

L = 1
N(N−1)

∑N
i=1

∑N
j=1 1i̸=jLi,j (2)

where sim(·, ·) is the cosine similarity function between two
vectors, τ is a positive temperature parameter, and 1 is the
indicator function.

4. RESULTS

This section begins by introducing the dataset and the exper-
imental setup. Thereafter, results of both the baseline and the
proposed method are discussed.

4.1. Dataset

The dataset selected to perform the architecture evaluation is
the Real-IAD dataset (C. Wang et al., 2024). The Real-IAD
dataset is a realistic, large-scale, and multi-view collection for
industrial anomaly detection, that contains 150000 images of
30 different objects. It includes high-resolution images and
various defect types, with a larger range of defect proportion.
Compared to other industrial datasets such as the MVTec AD
(Bergmann, Fauser, Sattlegger, & Steger, 2019), which has
achieved over 99% in AUC-ROC using state-of-the-art meth-
ods, Real-IAD provides a more challenging benchmark that
encourages the development of novel and more robust solu-
tions. It is the first dataset for anomaly detection that presents
a multi-view setting, with each instance captured from five
different angles. Furthermore, since approximately one-third
of the instances belong to the defective class, the dataset also
enables supervised learning tasks.

The dataset distinguishes between two types of object cate-
gories: those that are symmetrical in four of the five views,
and those that show distinct from all five views. Experiments
were performed on objects in the first category. A visual
overview of selected objects from the dataset is provided in
Figure 2.

4.2. Experimental Setup

Experiments were conducted on an Intel Xeon Silver 4310
CPU (2.10 GHz) with 32 GB of RAM. Moreover, an NVIDIA
A40 GPU with 48 GB of memory was used for accelerated
computation. The environment was configured with Python
3.9.12, PyTorch 1.13.1 and Scikit Learn 1.0.2 as the main DL
frameworks.

For the base encoder, the ResNet-18 architecture was se-
lected. Specifically, a pretrained model from TorchVision,
trained on ImageNet, was chosen to be subsequently fine-
tuned. Each CNN model produces a 512-dimensional fea-
ture representation. The projection head is composed of a se-
quence of two fully connected layers, with a ReLU activation
function applied between them. The output dimensionality of
this component is set to 32. For fair comparison, the same
pretrained ResNet-18 model was also used in the baseline.

Images were resized to 224x224 and normalized using a mean
of [0.485, 0.456, 0.406] and a standard deviation of [0.229,
0.224, 0.225] for the red, green, and blue channels, respec-
tively, following the preprocessing scheme employed in the
pretrained model. The batch size was set to 16, the learning
rate to 0.0001, and the τ parameter to 0.1. For both the base-
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Figure 2. Real-IAD dataset.

line and the proposed model training processes, the Adam op-
timization algorithm was selected and an early stopping crite-
rion with a patience of 20 was applied based on the validation
loss during 1000 epochs.

The architectures were evaluated using metrics derived from
the components of the confusion matrix. In binary classifica-
tion, they includes:

• True positive (TP). The actual and predicted values are
both positive.

• False positives (FP). The actual value is negative, while
the predicted is positive.

• False negatives (FN). The actual value is positive, while
the predicted is negative.

• True negative (TN). The actual and predicted values are
both negative.

In this work, the defective class is considered the positive one.
The selected evaluation metric is the area under the curve
ROC (AUC-ROC). In binary classification tasks, the model
outputs a probability score representing the likelihood that an
instance belongs to the positive class. A final classification
decision is then made by applying a threshold (typically set
at 0.5) to this score. The ROC curve provides a visual rep-
resentation of the performance of the model across different
threshold values. It is generated by discretizing the interval
[0,1] and evaluating the True Positive Rate (TPR) (Eq. 3) and
the False Positive Rate (FPR) (Eq. 4) at each point.

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

The ROC curve is then plotted by representing TPR against
FPR for each threshold. Finally, the AUC-ROC is obtained by
integrating the ROC curve with respect to the FPR axis.The
AUC-ROC metric represents the probability that the model
assigns a higher confidence score to a randomly selected pos-
itive instance than to a negative one. This means that:

• If AUC-ROC > 0.5, the model performs better than a
random classifier.

• If AUC-ROC ≤ 0.5, the model performs no better than a
random classifier.

AUC-ROC is an effective method for evaluating classifiers,
as it offers a threshold-independent evaluation, balances sen-
sitivity and specificity, and provides an intuitive interpretation
of model performance.
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4.3. Baseline Results

Two baselines are established to compare the proposed archi-
tecture. First, one classifier per view is trained to perform
individual classifications. During inference, each view of the
instance is passed through its corresponding classifier, gen-
erating a partial decision based on the individual probability
score with a threshold of 0.5. The individual predictions are
then combined to generate the final decision as follows:

• If any of the individual predictions is defective, the final
decision is defective.

• Otherwise, the final decision is normal.

The results obtained using this approach are presented in Ta-
ble 1. It is important to note that, since the final prediction is
made using a logical OR rule, the complete architecture does
not produce a probabilistic score that can be used to compute
the AUC-ROC metric.

Table 1. Classification test results for the first baseline archi-
tecture.

Category TP FP FN TN
Bottle Cap 103 11 1 88
Button Battery 102 4 2 93
Fire Hood 103 40 0 61
Mint 144 60 3 7
Plastic Plug 104 38 0 59
Porcelain Doll 100 9 5 88
Regulator 105 38 0 62
Tape 104 31 0 69
Toy 102 21 1 79
Toy Brick 101 45 2 55
U Block 101 20 0 80
Wooden Beads 108 32 7 55
Woodstick 101 43 0 58

The number of false positive instances is considerably high
across all categories, with the Mint category reaching a false
positive rate of 0.9. Therefore, a more realistic baseline is
introduced to better demonstrate the effectiveness of the con-
trastive loss. To this end, an architecture similar to the one
proposed in Section 3 is constructed. The main difference is
that, in this baseline, Binary Cross-Entropy is used as the loss
function. Furthermore, to ensure compatibility with this loss
function, the output dimensionality of the projection head is
modified to 1. Once again, classification is performed using
a threshold of 0.5.The corresponding results are detailed in
Table 2.

This approach has been demonstrated to achieve competitive
metrics, reducing the number of normal elements misclassi-
fied as defective. The AUC-ROC score exceeds 0.881 in all
categories, reaching 1.000 in four of them. However, the Mint
category still shows poor performance, suggesting the chal-
lenging nature of this category.

Table 2. Classification test results for the second baseline
architecture.

Category TP FP FN TN AUC-ROC
Bottle Cap 102 0 2 99 0.990
Button Battery 102 0 2 97 0.986
Fire Hood 103 0 0 101 1.000
Mint 116 10 31 57 0.881
Plastic Plug 103 1 1 96 0.992
Porcelain Doll 100 0 5 97 0.983
Regulator 104 0 1 100 0.993
Tape 104 0 0 100 1.000
Toy 102 0 1 100 0.998
Toy Brick 100 3 3 97 0.982
U Block 101 0 0 100 1.000
Wooden Beads 104 3 11 84 0.967
Woodstick 101 1 0 100 1.000

4.4. Proposal Results

Experimental results obtained using the proposed architec-
ture are discussed in this section. Since the proposed method
learns a representation of each object in a latent space, bring-
ing normal instances closer together while separating the de-
fective ones, a visual representation of the results for all cat-
egories is presented in Figure 3. This visualization uses the
t-SNE algorithm (Maaten & Hinton, 2008) to represent the
output vectors into two dimensions.

The proposed approach appears effective in achieving its ob-
jective. To enable a more direct comparison with the baseline,
a classification head is appended after the projection head.
Logistic Regression is selected as the classification method,
with the decision threshold set to 0.5. The corresponding re-
sults are presented in Table 3.

Table 3. Classification test results for the proposed architec-
ture.

Category TP FP FN TN AUC-ROC
Bottle Cap 102 0 2 99 0.995
Button Battery 102 0 2 97 0.993
Fire Hood 103 0 0 101 1.000
Mint 121 8 26 59 0.896
Plastic Plug 103 3 1 94 0.999
Porcelain Doll 100 0 5 97 0.979
Regulator 104 0 1 100 0.999
Tape 104 0 0 100 1.000
Toy 102 0 1 100 0.997
Toy Brick 100 0 3 100 0.983
U Block 101 0 0 100 1.000
Wooden Beads 103 3 12 84 0.974
Woodstick 101 0 0 101 1.000

The proposal results are also competitive. The AUC-ROC
score has a minimum value of 0.896 and reaches 1.000 in
four categories. In the Mint category, performance is slightly
improved. Since the results may appear similar to those of
the baseline, a direct comparison is presented in Table 4.

The comparison reveals a generally better performance of
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Table 4. AUC-ROC comparison between baseline and pro-
posed approach.

Category Baseline AUC-ROC Proposal AUC-ROC
Bottle Cap 0.990 0.995
Button Battery 0.986 0.993
Fire Hood 1.000 1.000
Mint 0.881 0.896
Plastic Plug 0.992 0.999
Porcelain Doll 0.983 0.979
Regulator 0.993 0.999
Tape 1.000 1.000
Toy 0.998 0.997
Toy Brick 0.982 0.983
U Block 1.000 1.000
Wooden Beads 0.967 0.974
Woodstick 1.000 1.000
Mean 0.982 0.986

the proposed architecture, as evidenced by the superior mean
value. Analyzing the categories individually, the proposed
method outperforms in 7 out of the 13 categories. Moreover,
it achieves identical results in 4 categories, with an AUC-
ROC value of 1.000, which represents the maximum possible
score. The proposed approach shows inferior performance in
only 2 categories.

5. CONCLUSIONS AND FUTURE WORK

In this work, a novel architecture combining a fusion-based
approach with a contrastive loss function was proposed. The
method has proven to be effective in visual anomaly detection
scenarios. It combines a base encoder and a projection head
to structure the latent space, effectively separating normal in-
stances from defective ones. Additionally, this approach has
demonstrated superior classification performance compared
to the traditional Binary Cross-Entropy loss function.

The proposed method achieved a minimum AUC-ROC of
0.896, reaching a perfect score of 1.000 in four categories.
It performed worse than the second baseline in only two cat-
egories, obtaining equal or better results in the remaining
eleven. Furthermore, the average value obtained using the
proposal is higher than the baseline.

The future work will focus on extending this method to the
remaining categories of the Real-IAD dataset. Additionally,
future work will include the study of the computational com-
plexity of the contrastive learning loss function and the ex-
ploration of potential modifications to reduce it. Finally, we
plan to analyze the generalization capacity of the model to un-
known defects by excluding some defective categories from
the training set. This consideration is crucial since, in prac-
tical applications, it is not feasible to obtain samples for all
possible types of defects, and the model should still provide
reliable performance under these circumstances.
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