
An Evaluation Framework for Fault Diagnosis Using Technical
Manuals in Retrieval-Augmented LLMs

Sarah Lukens1, Matthew Bishof1, Nadir Siddiqui1, Destiny West1,

1 LMI, Tysons, VA, 22102, USA
sarah.lukens@LMIsolutions.com, mbishof@LMIsolutions.com, nadir.siddiqui@LMIsolutions.com, destiny.west@LMIsolutions.com

ABSTRACT

Fault diagnosis is a time-intensive maintenance task often re-
liant on the expertise of senior technicians. As this workforce
ages and demand grows for digital tools, there is a growing
need to capture and automate this knowledge while maintain-
ing the precision required for technical applications. This
study introduces an evaluation-driven framework for fault
code recommendation, applied to a ground vehicle diagno-
sis system. Two tasks were designed to reflect potential sys-
tem configurations: (1) a chat-style task simulating large lan-
guage model (LLM) interaction, and (2) a label-constrained
task using structured fault codes from technical manuals.
Multiple retrieval-augmented generation (RAG) configura-
tions were compared against LLM-only and retrieval-only
baselines. Results showed that retrieval-based methods out-
performed LLM-based ones for label-matching tasks, while
the chat task showed challenges in linking observations to
fault codes from the manual. These results highlight the im-
portance of aligning task design with evaluation goals and
considering retrieval-first approaches as viable alternatives to
LLMs in technical language processing (TLP) applications.
Beyond experimental findings, we outline industrial lessons
learned: the importance of aligning system design to use case
goals, adopting evaluation-first validation, and the need to
pilot LLM-based systems under realistic conditions. These
lessons provide practical guidance for developing effective
diagnostic support systems in industrial contexts.

1. INTRODUCTION

Troubleshooting is often the most time-consuming and skill-
dependent phase of the maintenance process, requiring per-
sonnel to diagnose interrelated faults across complex sys-
tems (Shin, Tien, & Prabhu, 2019), (Schaafstal, Schraagen,
& Van Berl, 2000). Much of this process depends on use
of lengthy technical manuals, where operators and maintain-
ers must manually cross-reference observed symptoms with

Lukens Sarah et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

fault codes and procedures. The challenge is compounded
by an aging workforce, where much of the expertise is tacit
and acquired through years of hands-on practice. As experi-
enced personnel retire, organizations face the dual pressures
of preserving institutional knowledge and equipping a new
generation of maintainers who expect modern, digitally as-
sisted tools.

Advances in artificial intelligence (AI), and particularly large
language models (LLMs), create new opportunities to design
more intuitive and responsive diagnostic support systems.
Retrieval-based methods for fault diagnosis are effective at
surfacing relevant technical content and provide an auditable,
established baseline. However, they can be limited for com-
plex cases or enabling interactive dialogue between humans
and structured procedures. LLMs, by contrast, offer the flex-
ibility to synthesize information across disparate sources, in-
terpret unstructured natural-language input, and generate in-
teractive outputs that adapt to user prompts. Early demonstra-
tions show that LLMs can produce plausible fault codes, but
an open challenge is in designing and validating such systems
in ways that build trust and deliver measurable value in field
settings.

In a previous study, we developed a workflow and self-
evaluation framework for prognostics and health management
(PHM) that automated maintenance recommendations trig-
gered by PHM alerts (Lukens, McCabe, Gen, & Ali, 2024).
A significant finding from that study was that validation by
subject matter expert was prohibitively time and resource in-
tensive. Challenges in efficiently measuring performance im-
peded our ability to conduct deeper explorations, such as in-
tegrating technical manuals into a retrieval-augmented gener-
ation (RAG) system design to inform a troubleshooting rec-
ommender agent. From this, we identified performance eval-
uation in the design loop as a critical design requirement for
the design-phase of such as system.

In this study, we extend the previous work by developing an
evaluation-first approach towards integrating technical man-
uals into fault diagnosis workflows. More broadly, we con-
sider the process of how to design and validate diagnostic

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

support systems in ways that are trustworthy and effective
in field settings. Using this approach, we show how struc-
tured evaluation can inform system design and reveal trade-
offs between retrieval-based and generative methods. To il-
lustrate this, we use a narrowly scoped dataset synthesized
from technical manuals. While the data itself is synthetic, the
approach is transferable to proprietary or classified datasets,
making the findings relevant for real-world solution devel-
opment. Beyond the dataset, we also consider the practical
challenges of handling technical manuals, which often con-
tain complex elements such as diagrams, nested tables, and
extensive cross-referencing which can complicate the extrac-
tion and organization of information that LLMs can interpret
reliably.

Our main contributions are as follows:

• We introduce an evaluation-driven fault code recommen-
dation system that integrates structured technical man-
ual content into both retrieval-based and large language
model (LLM) configurations.

• Through two constrasting tasks (chat-style versus label-
constrained), we demonstrate how task framing and eval-
uation choices affect observed performance, and when
retrieval may outperform LLMs.

• Industrial lessons learned. Experimental findings are
translated into practical guidance for industrial system
design for using LLMs.

The remainder of this work is organized as follows. Section 2
covers background and related work, covering an overview of
the evolution of intelligent fault diagnosis systems, emerging
LLM concepts, related work using LLMs in fault diagnosis
and troubleshooting systems and performance evaluation. In
Section 3, we describe the methodology and case study for
the fault recommender system. In Section 4, we introduce
the first task with quantitative and quantitative performance
insights. The lessons learned segue to Section 5, where we
introduce the second task with its performance insights. A
discussion of the results along with limitations and industrial
lessons learned are covered in Section 6.

2. BACKGROUND AND RELATED WORK

Troubleshooting is a central task in maintenance, where an
operator or technician begins with an observed symptom and
must narrow down the possible faults that could explain it.
For example, an operator may observe and report “engine
shaking a lot while driving”, prompting the need to iden-
tify candidate faults and locate corresponding troubleshoot-
ing procedures in the manual.

In the broader health monitoring context, a complete PHM
system includes the following components: (1) data collec-
tion; (2) condition assessment or health modeling capabil-
ities; (3) decision-making logic for initiating actions based

on system state; and (4) feedback mechanisms to validate or
refine predictions. Fault recommendation links condition as-
sessment to decision support by mapping condition indicators
or operator observations to plausible faults, guiding the appli-
cation of troubleshooting procedures and corrective actions.
These activities are often time-sensitive and rely heavily on
technician expertise and access to accurate documentation.

Fault diagnosis involves detecting, isolating and identify-
ing impending or incipient failure conditions (Vachtsevanos,
Lewis, Roemer, Hess, & Wu, 2006). Intelligent fault diag-
nosis refers to using computational tools, such as machine
learning algorithms, to aid in these tasks. Fault recommenda-
tion, as a subset, generates candidate faults and their associ-
ated procedures in response to observations, which can be a
component of an intelligent fault diagnosis system that offers
interactive, recommendation, and multi-turn chat capabilities.

2.1. Intelligent Fault Diagnosis Systems

Early approaches to automated fault diagnosis were largely
based on Rule-based and Case-based Reasoning (CBR).
Rule-based systems rely on logic trees or predefined sets
of instructions to guide users through fault isolation proce-
dures. CBR extends these ideas by leveraging historical fault
and repair data, generating recommendations based on prior
cases. Both Rule-based and CBR methods are transparent
to audit, which makes their evaluation relatively straightfor-
ward. However, Rule-based systems often lack flexibility in
handling complex faults or edge cases, while CBR systems
can struggle to generalize beyond the scenarios represented
in their databases.

Data-driven and AI-based methods for fault diagnosis can
be broadly categorized into Retrieval-based and Generative
approaches. Retrieval-based systems return relevant docu-
ments or responses from a fixed knowledge base, often using
keyword matching or similarity measures such as TF-IDF or
BM25. These methods are efficient, predictable, and easy to
evaluate using standard metrics such as precision and recall
on ranked outputs. Their main limitation, however, is that
they are constrained to the information already encoded in
the system (Xie, Tang, Gu, & Cui, 2025).

Generative methods, particularly those enabled by LLMs, in-
troduce a dialogue layer capable of synthesizing information
across multiple sources. Generative models show promise for
handling edge cases and enabling interactive troubleshooting,
but also raise challenges around hallucination, inconsistency,
and the difficulty of measuring and controlling performance
(Azevedo et al., 2023). Evaluating generative models is chal-
lenging because correctness is not always the lexical overall
but rather the relevance of the generated content to the sce-
nario.

While retrieval-based systems are auditable and predictable,

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

LLM-based generative systems offer flexibility and interac-
tional capabilities in addressing complex fault scenarios. Re-
cent studies and controlled experiments have highlighted the
costs and complexities involved in assessing the performance
of these systems, especially in multi-turn dialogue scenar-
ios (Löwhagen, Schwendener, & Netland, 2025)(Alghamdi,
Halvey, & Nicol, 2024).

2.2. Integration of Structured Knowledge

Structured knowledge representation is central to making
technical content usable by diagnostic systems. KGs and
ontologies provide an organized way to encode information
such as maintenance data, fault codes, and troubleshooting
procedures into machine-readable formats that support rea-
soning and retrieval. There has been considerable work in
industry focused on developing ontologies for the mainte-
nance domain, design for interoperability and standardized,
reusable resources that others can adopt (Rajpathak, 2013;
Karray, Ameri, Hodkiewicz, & Louge, 2019; Hodkiewicz,
Klüwer, Woods, Smoker, & Low, 2021).

Several recent studies have explored using LLMs as tools to
assist in building and populating domain-specific ontologies.
Examples include ontologies for maintenance actions derived
from historical records using Technical Language Processing
(TLP) and LLM-based extraction of procedures from man-
uals (Woods, Selway, Bikaun, Stumptner, & Hodkiewicz,
2023; Woods, French, Hodkiewicz, & Bikaun, 2023). LLMs
have also been applied to transform unstructured manuals
into structured troubleshooting workflows, linking assets to
symptoms, causes, and repair steps (Vidyaratne et al., 2024).
KG construction has likewise been demonstrated in indus-
trial contexts, including aircraft fault diagnosis (Tang et al.,
2023) and equipment fault graph methodologies (Xie et al.,
2025). Specific applications in aviation have shown that KG-
based approaches can improve diagnostic accuracy and inter-
pretability (Peng & Yang, 2024; Meng et al., 2023).

These structured frameworks provide a foundation for inte-
grating LLM-augmented generative reasoning into fault di-
agnosis systems, typically drawing on technical manuals, his-
torical data, and other contextual sources. Technical manuals,
however, are often distributed as PDFs that capture informa-
tion in unstructured or semi-structured forms. Their inconsis-
tent formatting, such as mixing text, images, and structured
layouts, often leads to parsing erros, information loss, and de-
graded input quality that can propagate into downstream ap-
plications. Recent evidence shows that extraction strategies
materially affect retrieval and LLM performance: for exam-
ple, (Adhikari & Agarwal, 2024) compared PDF parsing tools
across document types and tasks, demonstrating the impor-
tance of selecting appropriate parsing methods. Ultimately,
the reliability of knowledge graphs in fault diagnosis systems

depends not only on their construction, but also on how ef-
fectively they can be integrated into end-user workflows.

2.3. Emerging LLM-augmented approaches

Recent advancements in adapting LLMs for technical ap-
plications incorporate approaches such as RAG, fine-tuning,
domain-specific data augmentation, multimodal integration,
and hybrid designs. RAG enhances LLMs with external
knowledge sources to improve the accuracy and relevance
of generated text (Gao et al., 2023; Lewis et al., 2020).
Classic RAG approaches typically store unstructured text in
vector databases, but challenges such as the “context killer”
problem, where important information is fragmented across
chunks, can lead to incomplete or incorrect answers. Ap-
proaches like GraphRAG address this by incorporating graph-
structured knowledge to support reasoning over complex
technical relationships (Edge et al., 2024).

Fine-tuning and data augmentation offer complementary
strategies for domain adaptation. Fine-tuning improves per-
formance by training LLMs on specialized vocabularies for
tasks such as fault diagnosis and maintenance troubleshoot-
ing (Lu, Luu, & Buehler, 2025), but fine-tuned models do
not generalize well across domains or applications and are
computationally intensive. Domain-specific data augmenta-
tion expands training sets through synthetic generation, adap-
tation of related-domain data, or transformation of existing
data to better reflect operational scenarios (Jadon, Patil, &
Kumar, 2025). This introduces additional complexity in or-
chestrating evaluation across modules.

Beyond text-based strategies, agent-based systems augment
LLMs with specialized agents that provide decision support
in response to specific triggers, while multimodal models
extend capabilities by integrating text with other modalities
such as diagrams, tables, or images, enabling use of the full
range of technical documentation formats (Liang et al., 2024).
Hybrid approaches aim to combine the strengths of these
methods. For example, HybridRAG stores unstructured data
in a vector database while representing digital manual con-
tent in knowledge graphs, creating retrieval-based fault diag-
nosis systems (Xie et al., 2025). Challenges remain in how
to evaluate performance when dialogue layers introduce in-
teractional variables, making user trials essential beyond the
design phase. For instance, (Löwhagen et al., 2025) demon-
strated benefits of AI assistants in supporting less experienced
technicians.

These approaches are increasingly realized in application
contexts. Several studies focus on root cause recommen-
dation tasks that rely on text data. Troubleshooting sys-
tems employ LLMs to infer root causes from unstructured
reports (Trilla, Yiboe, Mijatovic, & Vitri à, 2024), Fault-
Explainer generates diagnostics and root cause analysis for
chemical processing operators (Khan, Nahar, Chen, Flores,

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

& Li, 2025), and pre-trained LLMs have been benchmarked
across data and feature variations for fault diagnosis (Zheng,
Pan, Liu, & Chen, 2024). Customized fine-tuned models have
been developed for maintenance Q&A applications (Chen,
Tian, Zhang, Li, & Zhang, 2025), while systems like De-
fectTwin integrate LLMs with digital twins for visual inspec-
tion of railway defects (Ferdousi, Hossain, Yang, & Saddik,
2024).

Extending beyond text, LLMs are being adapted to numer-
ical or multimodal inputs. Methods for labeling data using
Technical Language Supervision fuse textual and sensor data
(Löwenmark, 2025; Löwenmark, Taal, Schnabel, Liwicki, &
Sandin, 2021), while reasoning agents have been applied to
reduce false alarms in condition monitoring systems (Löwen-
mark, Strömbergsson, Liu, Liwicki, & Sandin, 2025). Deep
Root Cause Analysis integrates time-series data with multi-
LLM debate strategies (Huang, Shah, Karigiannis, & Evans,
2024), and MaintAGT combines signal-to-text models with
physical knowledge for fault diagnosis (He et al., 2024). In
safety-critical contexts, LLMs integrated with anomaly de-
tection models enable explainable fault diagnosis in nuclear
power plants (Dave, Nguyen, & Vilim, 2024), while other
work applies multimodal methods to vibration-based diagno-
sis (Qaid, Zhang, Li, Ng, & Li, 2024), bearing fault detection
(Tao et al., 2025), and turbomachinery root cause analysis
(Vitale et al., 2024).

2.4. Performance Evaluation

Performance evaluation is essential for developing reliable
AI-augmented diagnostic systems. In industrial settings, trust
must be established before deployment. Waiting until roll out
to assess accuracy or usability risks system failures and can
lose operator trust which can impede a tool’s adoption. Con-
ducting evaluation during the design phase enables iterative
improvement, shape system choices and ensuring robustness.
Rather than relying on visually appealing demonstrations of
toy prototypes, an evaluation-first approach integrates rigor-
ous performance measurement into the development process,
using structured tests and feedback loops to advance from
early prototypes to reliable production systems.

Prior work has emphasized the importance of user-facing as-
sessments, such as controlled experiments with AI assistants
in dialogue settings that capture cognitive and interactional
variables (Löwhagen et al., 2025). Our focus is earlier in
the lifecycle: building structured, repeatable methods to de-
termine whether a design is on track before large-scale user
trials. For LLM- and RAG-based diagnostic systems, design-
phase evaluation approaches can be grouped into three main
categories: retrieval evaluation, generation evaluation, and
LLM-as-judge/hybrid evaluation.

For retrieval evaluation, metrics such as Hit Rate, Precision,
Recall, and Mean Reciprocal Rank quantify how effectively

relevant documents are surfaced. Retrieval evaluation of-
ten relies on established algorithms like TF-IDF and BM25,
which use term frequency and inverse document frequency or
probabilistic weighting to rank documents based on query rel-
evance. These classic methods are interpretable and provide a
robust baseline for comparison against more advanced LLM-
augmented retrieval systems. However, while these metrics
and algorithms are well-understood, they may not capture
“partial credit” scenarios where multiple related fault codes
are valid, limiting their ability to fully reflect a system’s prac-
tical usefulness.

For generation evaluation, metrics like BLEU, ROUGE, and
F1-based scores compare generated outputs against reference
labels (Doris et al., 2024). They offer repeatable overlap mea-
sures but often fail to capture adequacy, completeness, or con-
textual accuracy (Zhu et al., 2024). For example, a generated
response may achieve high n-gram overlap yet still lack the
logical coherence expected by human evaluators.

For LLM-as-judge and hybrid evaluation, using LLMs to
grade outputs provides scalable ways to capture semantic cor-
rectness beyond lexical overlap and can support tasks such as
error checking or annotation. However, risks include bias and
omission of critical content if systems are left unchecked. In
practice, hybrid approaches that combine automated scoring
with human review balance the scalability of machine evalu-
ation with the domain expertise required for reliable assess-
ment.

3. METHODOLOGY

3.1. Fault Recommender System

The LLM-Augmented Fault Recommender System used in
this study is illustrated in Figure 1. It consists of two main
modules: the Maintenance Troubleshooting Module and the
Knowledge Processing Module. The Maintenance Trou-
bleshooting module is returns a recommended list of possible
faults in response to the input of an operator observation. The
Knowledge Processing Module contains structured represen-
tations of technical information extracted from manuals and
other knowledge sources, such as maintenance history data.

3.2. Case Study

The case study focuses on exploring LLM systems to aug-
ment how operators interact with equipment manuals to iden-
tify and resolve observed issues. Operators may encounter
faults either during routine preventative checks or while op-
erating the equipment. In practice, mapping these observed
behaviors to fault codes in a manual can be challenging. A
single symptom may correspond to multiple potential faults,
and the manuals themselves are often lengthy and complex,
sometimes spanning hundreds of pages. As a result, the cur-
rent process typically requires operators to search through

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Figure 1. Cartoon of the full Fault Recommender System in this study which consists of two modules. The Maintenance Trou-
bleshooting module returns recommended list of possible faults in response to an input operator observation. The Knowledge
Processing module contains digitized content such as from technical manuals the Maintenance Troubleshooting module can
use for context.

large amounts of documentation to locate the appropriate
troubleshooting procedure for a given symptom.

The case study is based on a non-classified manual from 1998
for light medium tactical vehicles (LMTV), which is available
online (U.S. Department of the Army, 1998). Although this
manual is outdated and unauthorized, its standardized struc-
ture allows us to adapt the approaches developed around it to
other, more current and sensitive manuals, particularly those
concerning ground systems. MIL-STD-3031, a military stan-
dard on Army business rules for technical manuals, outlines
various components, including fault codes (malfunctions) and
troubleshooting procedures for operators (U.S. Department of
the Army, 2008). This adherence to standardized formats like
MIL-STD-3031 demonstrates the potential for generalizing
techniques across different manuals within the Army.

We specifically use the “9-2320-365-10” manual, which is
an operator’s manual for LMTVs. The manual contains a
malfunction list of 224 malfunctions within 22 systems along
with the operator troubleshooting procedures for each mal-
function.

Observation data. The data used in the case study is syn-
thetically generated using an LLM to emulate a collection of
historical observations by operators with the actual fault code.
The data is generated by randomly sampling fault codes with
replacement, providing the LLM with text from the manual
as context, and instructing the LLM to generate synthetic un-

structured potential operator observations with rationale. A
sample of a few generated observations and their rationales
along with the fault code are shown in Table 1.

Although in this setup an observation is generated from a se-
lected fault code, it is noted that in industrial systems an ob-
served fault can have multiple potential causes or malfunc-
tions. This means that multiple fault codes may be possible
from one observation. For this reason, the recommendation
system produces multiple possible codes, but we assume that
for performance the true fault should be included among its
suggestions.

There are documented risks associated with using LLMs to
generate synthetic data. These include the “ceiling effect”,
where future systems may be constrained by the limitations
of the generating model and the potential risk of undermin-
ing future system evaluation when such systems surpass the
generating model capabilities (Soboroff, 2025). To mitigate
these risks in the case study, a more advanced LLM was used
to generate the data than the one used in the troubleshooting
system. 300 observations were synthetically generated using
OpenAI’s gpt-4.1 endpoint, while the implementation of the
Recommender and Evaluation agents relies on OpenAI’s gpt-
3.5-turbo-0125 endpoint (Achiam et al., 2023). We note that
the modular framework allows for alternative models.

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 1. Sample of 3 synthetically generated historical obser-
vations with “true” observed fault code. The middle column
provides a rationale by the LLM for the observation to help
validate the observation.

Observed by
Operator

Rationale (True) Fault
Code

truck feels
sluggish and
struggles to
accelerate even
when pressing
the gas pedal

A noticeable lack of accel-
eration and sluggish per-
formance is consistent with
’LOW ENGINE POWER,’
which could be caused
by fuel contamination, re-
stricted air filters, low en-
gine oil, or air intake is-
sues as outlined in the trou-
bleshooting procedures.

LOW ENGINE
POWER.

fuel gauge does
not light up
when dash-
board lights are
turned on

If the fuel gauge fails to il-
luminate when the operator
turns on the panel lights,
it may indicate a burned-
out bulb, faulty wiring,
or switch position issue
as covered in the trou-
bleshooting procedure.

FUEL GAUGE
DOES NOT
ILLUMI-
NATE.

a lot of wa-
ter comes out
when draining
air tanks

If the operator notices an
unusually large amount of
water being expelled dur-
ing the draining of the air
reservoirs, it indicates ex-
cessive moisture buildup
within the compressed air
system.

LARGE
QUAN-
TITY OF
MOISTURE
EXPELLED
FROM AIR
RESER-
VOIRS.

3.3. Implementation

In implementation, the agents are LLMs which are induced to
return structured recommendation or evaluation objects using
function-calling (Eleti & Kilpatrick, 2023). For this study, the
system scope is limited to the Recommender Agent, which is
responsible for generating a list of fault codes that plausibly
explain a given operator observation. For each observation,
the Recommender Agent is given the following prompt:

You are an operator of LMTV trucks in the Army, and
you have observed the following issue(s): [observed],
pertaining to the asset [asset]. Write a list of [step num-
ber] possible fault codes or malfunctions which may con-
tribute to the observed behavior. Your answer should
contain only the fault codes and nothing else.

The Evaluator Agent then compares each recommended fault
code against historical ground-truth data, assigning a Boolean
label of True if the recommendation is correct, or False oth-
erwise. The Evaluator Agent is given the following prompt:

You are an operator of LMTV trucks in the Army, and
you have observed the following issues(s): [observed],
pertaining to the asset [asset]. This prompted a thorough
manual investigation, revealing the following fault: [fail-
ure mode]. Without knowing the true fault, the follow-
ing list of possible malfunctions were proposed: [plan].
For each suggested fault in the list, assess whether or
not this fault matches the actual fault. If the suggested
fault does not match the actual fault, represent that cause
with False. If it does match the true fault, represent it
with a True. For example, for an observation of ‘the
truck does not slow down when pressing the brake pedal’
with actual fault of ‘rear brakes do not apply’ and rec-
ommended faults of {fault 1:’front breaks do not apply’,
fault 2:’rear brakes do not apply’}, you should represent
it as {fault 1:False, fault 2:True}

In all RAG experiments, the PDF extraction package used is
PyMuPDF (Rauber & Inc., 2024). Records (chunks or struc-
tured content by fault code) are represented by fixed-length
vectors in the all-MiniLM-L6-v2’s learned latent space. A
chunk size of 1000 characters is used. The technical con-
tent is organized in a local txtai vector database (Mezzetti,
2020) using the pre-trained all-MiniLM-L6-v2 encoder model
(Sentence Transformers, 2021), a down-sized implementa-
tion of MiniLM (Wang et al., 2020).

The next sections explore how observation data is used with
the Fault Recommender System as a validation exercise for
system prototyping, using both quantitative and qualitative
assessment approaches. The outcomes of these experiments
provide feedback which is used to inform system design
tweaks. This case study will walk through two iterations of
the process.

4. CHAT-BASED RECOMMENDER TASK

The first task for our system was designed to mimic a
troubleshooting scenario using an out-of-the-box RAG-based
chat application. Technical manuals were stored in a vector
database for system retrieval, with users entering values via a
chat interface. The system generated a list of potential faults
from the observation.

The Recommender agent was configured in three RAG vari-
ations, compared against an unaugmented baseline (“LLM-
only”). These variations explored different database stor-
age models. The first used an out-of-the-box PDF extrac-
tion package to chunk text from the manual (“Rag 1: Raw &
Chunked”). The second cleaned the data post-extraction be-
fore chunking (“Rag 2: Cleaned & Chunked”). The third uti-
lized a structured schema with cleaned troubleshooting tasks
indexed by fault code in a tabular format (“Rag 3: Struc-
tured”).

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 2. Results comparing the Chat-based Recommender Task across the different experiments.

Metric LLM
Only

RAG 1: Raw &
Chunked

RAG 2: Cleaned &
Chunked

RAG 3:
Structured

Mean f1BOW 0.25 0.34 0.36 0.35
Median f1BOW 0.24 0.31 0.31 0.32
Mean BLEU 0.18 0.23 0.24 0.25
Median BLEU 0.17 0.20 0.20 0.22
Mean ROUGE 0.22 0.27 0.28 0.28
Median ROUGE 0.20 0.25 0.25 0.25

Hallucination Rate 94.4% 78.6% 78.3% 77.3%

Evaluator Hit Rate 99.7% 99.0% 99.0% 98.0%
Evaluator Highest Score
Agreement

60.6% 61.8% 62.1% 63.5%

Latency (Per 100 Observations) 260 sec 290 sec 269 sec 257 sec

4.1. Quantitative Performance

The Chat task produced unstructured text. F1 BOW, BLEU,
and ROUGE metrics compared recommendations against
ground truth, with higher values indicating greater similar-
ity. Table 2 and Figure 2 present the mean and median values,
alongside the distribution of these highest values per observa-
tion. Generally, RAG configurations yielded closer matches
compared to the “LLM-only” baseline.

Hallucination rate measures how many suggestions were
present in the technical manual, which we calculated using
the list of fault codes. Python’s difflib.get close matches()
function identified the closest corresponding manual entries
by applying a cutoff threshold of 0.6. Suggestions match-
ing this criterion were considered potential matches. The
percentage of such suggestions determined the hallucination
rate, which was notably high in this task due to matching re-
sponses only to a set of labels which were not supplied explic-
itly to the LLM. For this reason, we expect the hallucination
rate to be very high in the “LLM-only” baseline as it had no
manual or codes to infer off of, which they were with a value
of 94%. Latency was calculated as the total time in seconds
to run for 100 observations.

To look at how the Evaluator Agent scored the systems, we
calculated the “Evaluator hit rate”. Hit Rate is a metric for
evaluating unranked responses from a recommendation sys-
tem, measuring the fraction of observations where the true la-
bel is included in the suggested set. The Evaluator hit rate
indicated a high number of observations with at least one
“True” suggestion, which is more an indicator that the Eval-
uator nearly always picked one response as the most likely to
match the ground truth, indicating need to calibrate the Eval-
uator Agent in this system. We also compared the Evaluator’s
scoring to the “Best Match” score, which was determined
by summing the BLEU, ROUGE and F1 BOW metrics and
selecting the highest combined score for each observation.
Evaluator Highest Score Agreement is calculated as the per-

Table 3. Example of recommended possible faults for the
Chat-based Recommender task. The top shows the input ob-
servation with the True Fault Code. Two experiments are
shown: LLM-only on the left and RAG 3: Structured on the
right.

Observed by
Operator

a lot of water comes out when draining air
tanks

(True) Fault
Code

LARGE QUANTITY OF MOISTURE
EXPELLED FROM AIR RESERVOIRS

LLM-Only Recom-
mended Possible Faults

RAG 3: Structure Rec-
ommended Possible
Faults

1 Faulty or worn-out air tank
drain valves

Large quantity of moisture
expelled from air reser-
voirs

2 Excessive moisture
buildup in the air tanks

Air system pressure builds
up more than 120 PSI (827
KPA) (Compressor fails to
unload)

3 Leaking air tank seals or
connections

Air system loses pressure
during operation/slow, no,
or incorrect air pressure
buildup

4 Clogged air tank drain
lines

Air dryer purges continu-
ally

5 Malfunctioning air com-
pressor

Excessive condensation in
fuel

centage of recommendations where the scores agree. These
numbers are consistently around two thirds of the time for all
four experiments.

4.2. Qualitative Performance

Qualitative performance evaluation is important for under-
standing and interpreting model behavior. While looking at
individual responses provides insight on model behaviors,
it can also bias interpretation toward only the first few ex-
amples. To address this, we applied an error analysis ap-

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Figure 2. Boxplot comparing F1 BOW (left), BLEU (middle), and ROUGE (right) scores for the “Chat task” which compare
the ground truth fault to the Recommender Agent suggestions. The highest scored suggestion for each observation is used.
Values tend to be higher for the RAG experiments.

proach where we systematically reviewed model outputs and
grouped them into categories of mistakes.

Early inspection revealed a recurring pattern: model re-
sponses often described a root cause rather than a fault code.
Fault codes in the manual are defined in terms of operator-
observable conditions (“as observed by operator”), while
causes reflect underlying mechanisms of failure. An exam-
ple is shown in Table 3. The “LLM-only” baseline generated
recommendations such as “faulty or worn out air tank valves,”
which are possible causes of the observed fault, while the
“RAG 3: Structured” case produced recommendations more
resembling as operator observations, aligning more closely
with the troubleshooting steps in the manual.

To systematically measure this behavior, we randomly sam-
pled 20 observations from the 300 test cases and labeled each
recommended fault as either “Operator Observation” or “Pos-
sible Cause.” While the illustrative example highlights a case
where RAG 3: Structured aligned with operator observations,
in most cases recommendations across systems leaned toward
possible causes. The distribution of these labels is summa-
rized in Table 4.

This experiment could iterate in a few directions. One di-
rection could be by setting the dataset to grab the initial trou-
bleshooting step (or all steps) associated with the ground truth
fault code and asking the system to return either the first
step or a recommended ordered set of troubleshooting steps.
Based on the observation that the system tended to suggest
possible causes, we could alternatively modify the system to
suggest possible causes for the observed fault and compare
against root cause descriptions in the ground truth.

Another direction could be by providing the system with la-
bels to select from. We chose this direction to explore next for
a few reasons: first, the fault code was available and accessi-

Table 4. Qualitative Error Analysis. Percentage of 20 ran-
domly sampled observations which were Operator Observa-
tions (as opposed to Possible Causes)

Case Operator
Observation

%

LLM Only 0 0%

RAG 1: Raw &
Chunked

4 20%

RAG 2: Cleaned &
Chunked

1 5%

RAG 3: Structured 4 20%

ble and not being used. Second, it would enforce the level of
information (operator observed fault code) in the generated
recommendations. Third, scoring and evaluation should dif-
fer when systems have labels to select from, so we wanted to
explore how that would change when the nature of the task
changes.

5. LABEL-CONSTRAINED FAULT CLASSIFICATION
TASK

The Label-Constrained Fault Classification Task builds di-
rectly on the limitations observed in the Chat-based Rec-
ommender. Instead of free-form fault descriptions, we con-
strained outputs to a structured list of fault codes and required
predictions to come from that list. This change alters the task
from open-ended recommendations to label-matching classi-
fication, aligning outputs with the operator-observable fault
codes already defined in the manuals.

Because recommendations now draw from a fixed label set,
text-similarity metrics such as BLEU, ROUGE, and F1 BOW
are less meaningful. Instead, performance is measured by

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

whether the system includes the ground truth code among its
recommendations (“hit rate”) and by the agreement between
the ground truth and the Evaluator Agent’s judgments.

We repeated the same four experimental conditions from the
chat-based task, with one addition: a “Retrieval-only” base-
line that directly returns fault codes from the manual without
using an LLM. This baseline mirrors a simple retrieval-based
fault detection approach and provides a useful reference point
for comparing the added value of LLM integration.

5.1. Quantitative Performance

The results revealed that across all metrics, the Retrieval-only
baseline outperformed every LLM-based approach, achiev-
ing an 86% hit rate compared to 70% for “LLM-only” and
57–64% for RAG variants (Table 5). The Evaluator Agent
had lower hit rates than in the chat-based task, likely reflect-
ing the added constraint of mapping outputs to specific la-
bels. Still, Evaluator–ground truth agreement was roughly
two-thirds across experiments (except “Retrieval-only”), sim-
ilar to the chat-based setting.

One challenge is the large label space: 224 possible fault
codes, many of which are very similar. The codes are orga-
nized into a two-level hierarchy of 22 systems (e.g. Electrical,
Engine, Suspension and Air Cooling). When recommenda-
tions were evaluated at the system level, System Level Hit
Rates rose dramatically, ranging from 87% (RAG 3: Struc-
tured) to 96% (Retrieval-only). This suggests that while mod-
els may struggle to pinpoint the exact fault code, they are
more reliable at narrowing down to the right subsystem, a
level of granularity that may be sufficient for guiding an op-
erator toward the correct troubleshooting path.

5.2. Qualitative Performance

Although this task reduces to outputs to labels, contrasting er-
ror modes highlights where different approaches succeed or
fail. Manual review suggested that Retrieval-only methods
performed best when operator observations closely matched
fault code phrasing (such as “cab does not raise” mapping to
“Cab Will Not Raise”), reflecting strong surface-level simi-
larity matching.

By contrast, we observed LLM-based systems occasionally
succeeded where retrieval did not, particularly when abstrac-
tion or paraphrasing was required. For example (shown in
Table 7), the observation “temperature gauge rises into the
red zone during operation” corresponds to the code “Engine
Overheats.” Here, the LLM-based cases produced the cor-
rect label, while Retrieval-only suggested codes emphasizing
“temperature” but missed the intended meaning.

To formalize these observations, we grouped cases into cate-
gories based on which systems were correct (Table 8). About
45% of cases were correct or mostly correct across the five

experimental conditions, so error analysis should focus on
the remaining 55% of cases. Notably, in roughly 17% of
cases both Retrieval and LLMs succeeded while two or more
RAG variants failed (labeled as “RAG adds noise” in the ta-
ble), illustrating how retrieval augmentation can sometimes
introduce noise. Viewed this way, the LLM-only approach
can be interpreted as acting like a semantic similarity ap-
proach which matches the input description against the list of
fault codes. From this perspective, LLM-only is functionally
closer to retrieval than to open-ended generation.

From here, further analysis could examine how cases are dis-
tributed across these categories, both to explain the quanti-
tative metrics and to support interpretability of the system.
Manual review could identify linguistic or semantic patterns
that drive groupings, while statistical methods such as feature
importance or predictors of category membership could high-
light systematic factors influencing success or failure, which
could help guide modeling choices and refinements.

6. DISCUSSION

This study aimed to prototype fault recommendation systems
using LLMs and retrieval, and to use evaluation results to in-
form design requirements. Through two case study tasks, we
demonstrated evaluation approaches for both an open-ended
chat task and a label-constrained task, showing how quanti-
tative and qualitative methods can be combined to guide sys-
tem development. Three lessons emerged: (1) while LLMs
provide flexible reasoning and abstraction, their outputs must
be calibrated against expected results aligned with use-case
goals; (2) retrieval methods may be more effective for direct
label-matching tasks; and (3) evaluation-first design exposes
strengths and weaknesses early, enabling a process for re-
quirement setting and refinement during system prototyping.

The findings are subject to several limitations. The syn-
thetic dataset was narrow in scope and generated using LLMs,
which can limit retrieval performance (Soboroff, 2025).
Moreover, the open-source manual likely appeared in LLM
training data, whereas proprietary manuals may produce dif-
ferent results. Integration of additional sources, such as his-
torical maintenance data, may further enhance performance
by prioritizing common faults and incorporating case-based
reasoning. Refining the prompt, such as by providing exam-
ples to the Recommender Agent or incorporating a prompt-
optimizer tool in the system, may also impact performance.

Evaluation methods were also limited. For recommender
systems, metrics beyond unranked matching would provide
a more complete view of performance. Ranked measures
(e.g., HitRate@N) and human-in-the-loop evaluations could
yield more realistic assessments. In addition, our Evaluator
Agent was often overly permissive, reducing its descrimina-
tory power. Improved Evaluator Agents should be calibrated
and provide justifications such as rationales or certainty.

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 5. Results comparing experiments for the Label-Constrained Fault Classification Task.

Metric LLM Only RAG 1: Raw &
Chunked

RAG 2: Clean &
Chunked

RAG 3:
Structured

Retrieval Only

Hit Rate Ground Truth 69.6% 64.3% 62.3% 57.3% 86.3%
Hit Rate According to the
Evaluator Agent

86.3% 88.7% 89.3% 84.7% 97.3%

Evaluator Ground Truth
Agreement

69.2% 64.0% 62.0% 56.7% 86.0%

Accuracy 96.2% 93.6% 93.2% 93.2% 96.7%
Precision 79.3% 66.9% 65.0% 63.2% 84.0%
Recall 99.5% 99.5% 99.5% 98.8% 99.6%
f1 Score 88.3% 80.0% 78.6% 77.1% 91.2%

Hallucination Rate 0.14% 0.94% 1.41% 0.54% 0.00%

Latency (Per 100 Observations) 301 sec 323 sec 334 sec 334 sec 117 sec

Table 6. Hit rate comparison at the system level, which is a higher level than fault codes on the fault hierarchy.

Metric LLM Only RAG 1: Raw &
Chunked

RAG 2: Clean &
Chunked

RAG 3:
Structured

Retrieval Only

System Level Hit Rate 87.0% 87.3% 91.3% 90.7% 95.7%
Evaluator System Level
Hit Rate

93.6% 92.3% 90.7% 87.7% 99.0%

From the performance of a Fault Recommender system per-
spective, there is a balance between retrieval- and LLM-based
approaches. Retrieval is effective for surface-similar obser-
vations, while LLMs may add value in more abstract or com-
plex cases. Structured storage, such as knowledge graphs,
may further improve retrieval, and hybrid approaches are a
promising direction. For example, the HybridRAG approach
combines traditional information retrieval, RAG, and knowl-
edge graph retrieval for improved recommendations (Xie et
al., 2025). However, hybrid designs must incorporate eval-
uation from the outset and account for trade-offs in latency,
complexity, and resource usage.

6.1. Industrial Lessons Learned

The strengths of LLMs are their abilities for flexible rea-
soning (such as handling complex fault modes) and conver-
sational interaction. Based on the lessons from this study,
we recommend the following practices for developing LLM-
based recommendation systems in industrial contexts:

Pick the tool to match the goals of the use case. When
setting up the system, requirements should be clearly spec-
ified, including inputs, outputs, users, and success criteria.
These requirements guide design choices, such as evaluation
framing, data preparation, tools to use (such as LLMs), and
computational constraints. For instance, in high-stakes appli-
cations that require efficient interaction with large volumes
of technical content, retrieval-based approaches may be more
suitable than LLM-based ones.

Adopt evaluation-first design, not demo-driven valida-
tion. Many AI-first systems are validated through polished

demo dialogues that may provide convincing illustrations but
not representative of overall system behavior. An evaluation-
first approach resists such “demo-driven validation” in favor
of systematic scoring. Evaluation-first design uncovers weak-
nesses early, enabling designers to refine the system based on
observed behavior across a wide range of inputs. This process
also helps build user trust and supports safety and compliance
requirements.

Pilot and trial LLM systems under realistic conditions.
If LLM-based approaches are deemed feasible and adopted,
evaluation of the LLM-based system must account for flex-
ibility, interactivity, and be capable of handling around an
LLM’s ability to synthesize complex information in dialogue.
The dialogue layer introduces interactional and cognitive fac-
tors, is inherently open-ended, often lacking a single correct
answer. Therefore, pilot studies are essential. Pilot stud-
ies, such as those described in (Löwhagen et al., 2025), are
needed to evaluate LLM-based troubleshooting systems un-
der realistic conditions.

The key industrial lesson is not that LLMs are always bene-
ficial (in fact, our results show cases where they are not), but
that evaluation-first design exposes potential issues upfront,
supporting safer and more effective system development. Our
direct takeaways are: (1) clearer guidance for prototyping as
we digitize technical content to support maintenance recom-
mender systems; (2) justification to begin defining require-
ments for a user trial pilot; and (3) as evidence for stakehold-
ers eager to adopt LLMs, demonstrating that depending on
requirements, other approaches may be the better path.

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Table 7. Example of recommended possible faults for the
Label-Constrained Fault Classification task for two experi-
ments. The top shows the input observation with the True
Fault Code.

Observed by
Operator

temperature gauge rises into the red zone during
operation

(True) Fault
Code

ENGINE OVERHEATS

LLM-Only
Recommended Possible
Faults

Retrieval-only
Recommended Possible
Faults

1 ENGINE OVERHEATS HIGH ENGINE
TEMPERATURE
INDICATOR
ILLUMINATES

2 OIL IN COOLING
SYSTEM

WATER TEMP GAGE
DOES NOT OPERATE
OR IS INACCURATE.

3 LOSS OF COOLANT HIGH ENGINE
TEMPERATURE
INDICATOR DOES NOT
ILLUMINATE.

4 WATER TEMP GAGE
DOES NOT ILLUMINATE

LOSS OF COOLANT

5 MASTER STOP
INDICATOR DOES NOT
ILLUMINATE

TRANSMISSION
TEMPERATURE
INDICATOR DOES NOT
ILLUMINATE

ACKNOWLEDGMENT

This work was financially supported by LMI Applied Re-
search and Partnerships.

NOMENCLATURE

LLM Large Language Model
RAG Retrieval-Augmentation Generation
TLP Technical Language Processing
AI Artificial Intelligence
PHM Prognostics and Health Management
CBR Case-Based Reasoning
KG Knowledge Graph
LMTV Light Medium Tactical Vehicles
BOW Bag of Words

REFERENCES

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., . . . others (2023). GPT-4 technical
report. arXiv preprint arXiv:2303.08774.

Adhikari, N. S., & Agarwal, S. (2024). A comparative
study of pdf parsing tools across diverse document cat-
egories. arXiv preprint arXiv:2410.09871.

Alghamdi, E., Halvey, M., & Nicol, E. (2024). System and
user strategies to repair conversational breakdowns of

Table 8. Summary of qualitative analysis for label-
constrained fault classification task. Grouping observations
can help in analysis of system behavior across the full dataset.

Case Observations
Percentage

Mostly Correct (Either All Correct, or Retrieval
Correct & LLM-only Correct with 2 RAG Correct)

45.0%

Retrieval preferred (Retrieval Correct, Mix of
RAG Correct or Incorrect, LLM-only Incorrect)

24.7%

RAG adds noise (Retrieval Correct, Most RAG In-
correct, LLM-only Correct)

16.7%

LLM potentially preferred (Retrieval Incorrect,
Mixed Results)

10.0%

All Incorrect 3.7%

spoken dialogue systems: a scoping review. In Pro-
ceedings of the 6th ACM Conference on Conversational
User Interfaces (pp. 1–13).

Azevedo, N., Aquino, G., Nascimento, L., Camelo, L.,
Figueira, T., Oliveira, J., . . . Figueiredo, C. (2023).
A novel methodology for developing troubleshooting
chatbots applied to atm technical maintenance support.
Applied Sciences, 13(11), 6777.

Chen, A., Tian, Y., Zhang, J., Li, C., & Zhang, H. (2025).
LLM-based intelligent Q&A system for railway lo-
comotive maintenance standardization. Scientific Re-
ports, 15(1), 12953.

Dave, A. J., Nguyen, T. N., & Vilim, R. B. (2024). Inte-
grating llms for explainable fault diagnosis in complex
systems. arXiv preprint arXiv:2402.06695.

Doris, A. C., Grandi, D., Tomich, R., Alam, M. F., Cheong,
H., & Ahmed, F. (2024). DesignQA: A Multimodal
Benchmark for Evaluating Large Language Models’
Understanding of Engineering Documentation. arXiv
preprint arXiv:2404.07917.

Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody,
A., . . . Larson, J. (2024). From Local to Global: A
Graph RAG Approach to Query- Focused Summariza-
tion. arXiv preprint arXiv:2404.16130.

Eleti, H. J., Atty, & Kilpatrick, L. (2023, June).
Function Calling and Other API Updates.
https://openai.com/index/function
-calling-and-other-api-updates/. (Ac-
cessed: 2024-06-25)

Ferdousi, R., Hossain, M. A., Yang, C., & Saddik,
A. E. (2024). Defecttwin: When llm meets digi-
tal twin for railway defect inspection. arXiv preprint
arXiv:2409.06725.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., . . .
Wang, H. (2023). Retrieval-augmented generation
for large language models: A survey. arXiv preprint
arXiv:2312.10997.

11



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

He, H., Huang, J., Li, Q., Wang, X., Zhang, F., Yang, K., . . .
Chu, F. (2024). Maintagt: Sim2real-guided multimodal
large model for intelligent maintenance with chain-of-
thought reasoning. arXiv preprint arXiv:2412.00481.

Hodkiewicz, M., Klüwer, J. W., Woods, C., Smoker,
T., & Low, E. (2021). An ontology for rea-
soning over engineering textual data stored in
fmea spreadsheet tables. Computers in Indus-
try, 131, 103496. Retrieved from https://
www.sciencedirect.com/science/
article/pii/S0166361521001032 doi:
https://doi.org/10.1016/j.compind.2021.103496

Huang, H., Shah, T., Karigiannis, J., & Evans, S. (2024).
Physics and data collaborative root cause analysis: In-
tegrating pretrained large language models and data-
driven ai for trustworthy asset health management. In
Annual Conference of the PHM Society (Vol. 16).

Jadon, A., Patil, A., & Kumar, S. (2025). Enhancing
domain-specific retrieval-augmented generation: Syn-
thetic data generation and evaluation using reasoning
models. arXiv preprint arXiv:2502.15854.

Karray, M. H., Ameri, F., Hodkiewicz, M., & Louge, T.
(2019). ROMAIN: Towards a BFO compliant refer-
ence ontology for industrial maintenance. Applied On-
tology, 14(2), 155–177.

Khan, A., Nahar, R., Chen, H., Flores, G. E. C., & Li,
C. (2025). Faultexplainer: Leveraging large language
models for interpretable fault detection and diagnosis.
Computers & Chemical Engineering, 109152.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., . . . others (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. Ad-
vances in Neural Information Processing Systems, 33,
9459–9474.

Liang, Z., Xu, Y., Hong, Y., Shang, P., Wang, Q., Fu, Q., &
Liu, K. (2024). A survey of multimodel large language
models. In Proceedings of the 3rd International Con-
ference on Computer, Artificial Intelligence and Con-
trol Engineering (pp. 405–409).

Löwenmark, K. (2025). Technical Language Supervision
and Agentic AI for Condition Monitoring (Unpublished
doctoral dissertation). Luleå University of Technology.

Löwenmark, K., Strömbergsson, D., Liu, C., Liwicki,
M., & Sandin, F. (2025). Agent-based condi-
tion monitoring assistance with multimodal indus-
trial database retrieval augmented generation. arXiv
preprint arXiv:2506.09247.

Löwenmark, K., Taal, C., Schnabel, S., Liwicki, M., &
Sandin, F. (2021). Technical language supervision for
intelligent fault diagnosis in process industry. arXiv
preprint arXiv:2112.07356.

Löwhagen, N., Schwendener, P., & Netland, T. (2025). Can a
troubleshooting ai assistant improve task performance
in industrial contexts? International Journal of Pro-

duction Research, 1–22.
Lu, W., Luu, R. K., & Buehler, M. J. (2025). Fine-tuning

large language models for domain adaptation: Explo-
ration of training strategies, scaling, model merging
and synergistic capabilities. npj Computational Ma-
terials, 11(1), 84.

Lukens, S., McCabe, L. H., Gen, J., & Ali, A. (2024). Large
Language Model agents as prognostics and health man-
agement copilots. In Proceedings of the Annual Con-
ference of the PHM Society (Vol. 15).

Meng, X., Jing, B., Wang, S., Pan, J., Huang, Y., & Jiao, X.
(2023). Fault knowledge graph construction and plat-
form development for aircraft PHM. Sensors, 24(1),
231.

Mezzetti, D. (2020). txtai: the all-in-one embeddings
database. Retrieved from https://github.com/
neuml/txtai

Peng, H., & Yang, W. (2024). Knowledge graph construction
method for commercial aircraft fault diagnosis based
on logic diagram model. Aerospace, 11(9), 773.

Qaid, H. A., Zhang, B., Li, D., Ng, S.-K., & Li, W. (2024).
Fd-llm: Large language model for fault diagnosis of
machines. arXiv preprint arXiv:2412.01218.

Rajpathak, D. G. (2013). An ontology based text mining
system for knowledge discovery from the diagnosis
data in the automotive domain. Computers in Indus-
try, 64(5), 565-580. Retrieved from https://
www.sciencedirect.com/science/
article/pii/S0166361513000456 doi:
https://doi.org/10.1016/j.compind.2013.03.001

Rauber, J. X., & Inc., A. S. (2024). PyMuPDF -
Python bindings for MuPDF. https://pymupdf
.readthedocs.io/. (Version 1.23.25)

Schaafstal, A., Schraagen, J. M., & Van Berl, M. (2000).
Cognitive task analysis and innovation of training: The
case of structured troubleshooting. Human factors,
42(1), 75–86.

Sentence Transformers. (2021). all-MiniLM-L6-v2: Sentence
transformers model. https://huggingface
.co/sentence-transformers/all-MiniLM
-L6-v2.

Shin, H., Tien, K.-W., & Prabhu, V. (2019). Modeling
the maintenance time considering the experience of the
technicians. In IFIP International Conference on Ad-
vances in Production Management Systems (pp. 716–
721).

Soboroff, I. (2025). Don’t use LLMs to make relevance judg-
ments. Information retrieval research journal, 1(1),
10–54195.

Tang, X., Chi, G., Cui, L., Ip, A. W., Yung, K. L., & Xie,
X. (2023). Exploring research on the construction and
application of knowledge graphs for aircraft fault diag-
nosis. Sensors, 23(11), 5295.

Tao, L., Liu, H., Ning, G., Cao, W., Huang, B., & Lu, C.

12



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

(2025). Llm-based framework for bearing fault diag-
nosis. Mechanical Systems and Signal Processing, 224,
112127.

Trilla, A., Yiboe, O., Mijatovic, N., & Vitri à, J. (2024).
Industrial-grade smart troubleshooting through causal
technical language processing: a proof of concept.
arXiv preprint arXiv:2407.20700.

U.S. Department of the Army. (1998, June). Tech-
nical Manual TM 9-2320-365-10: M1078 Series
Operators Manual [Computer software man-
ual]. Retrieved 2025-06-21, from https://
www.steelsoldiers.com/upload/M1078/
m1078 TM%209-2320-365-10.pdf (Accessed
via SteelSoldiers.com)

U.S. Department of the Army. (2008, July). MIL-STD-
3031: Preparation of Digital Technical Information for
Equipment Maintenance. https://quicksearch
.dla.mil/. (Military Standard, Department of De-
fense, United States)

Vachtsevanos, G. J., Lewis, F., Roemer, M., Hess, A., & Wu,
B. (2006). Intelligent fault diagnosis and prognosis for
engineering systems (Vol. 456). Wiley Online Library.

Vidyaratne, L., Lee, X. Y., Kumar, A., Watanabe, T., Fara-
hat, A., & Gupta, C. (2024). Generating troubleshoot-
ing trees for industrial equipment using large language
models (llm). In 2024 ieee international conference on
prognostics and health management (icphm) (pp. 116–
125).

Vitale, M., Youssef, A., Mishra, P., Shetty, S., Sharma,
M., Vanzo, G., . . . Bettini, A. (2024). Harness-
ing generative ai for interactive system failure di-
agnostics: A user-centric approach to streamlined
problem solving and maintenance. In Abu Dhabi
International Petroleum Exhibition and Conference
(p. D011S020R006).

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., & Zhou,
M. (2020). MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Trans-
formers. Advances in Neural Information Processing
Systems, 33, 5776–5788.

Woods, C., French, T., Hodkiewicz, M., & Bikaun, T. (2023).
An ontology for maintenance procedure documenta-
tion. Applied Ontology, 1–38.

Woods, C., Selway, M., Bikaun, T., Stumptner, M., & Hod-
kiewicz, M. (2023). An ontology for maintenance ac-
tivities and its application to data quality. Applied On-
tology, 1–34. doi: 10.3233/SW-233299

Xie, X., Tang, X., Gu, S., & Cui, L. (2025). An intelli-
gent guided troubleshooting method for aircraft based

on hybirdrag. Scientific Reports, 15(1), 17752.
Zheng, S., Pan, K., Liu, J., & Chen, Y. (2024). Empirical

study on fine-tuning pre-trained large language mod-
els for fault diagnosis of complex systems. Reliability
Engineering & System Safety, 252, 110382.

Zhu, K., Luo, Y., Xu, D., Yan, Y., Liu, Z., Yu, S., . . . oth-
ers (2024). RAGEval: Scenario specific rag eval-
uation dataset generation framework. arXiv preprint
arXiv:2408.01262.

BIOGRAPHIES

Sarah Lukens is a Data Science Fellow at LMI. Her inter-
ests are focused on data-driven modeling for reliability appli-
cations by combining modern data science techniques with
current industry performance data. This work involves an-
alyzing asset maintenance data and creating statistical mod-
els that support asset performance management (APM) work
processes using components from natural language process-
ing, machine learning, and reliability engineering. Sarah
completed her Ph.D. in mathematics in 2010 from Tulane
University with focus on scientific computing and numerical
analysis. Sarah is a Fellow of the PHM Society and a Certi-
fied Maintenance and Reliability Professional (CMRP).

Matthew Bishof is a Senior Consultant in Logistics Engi-
neering at LMI. His work has primarily focused on digital
engineering and the modernization and utilization of manu-
facturing and sustainment data. Recently, he has been the
product lead for maintenance solutions leveraging artificial
intelligence and legacy technical documentation. Matthew re-
ceived a Bachelors of Science in Industrial and Systems Engi-
neering in 2020 from Virginia Polytechnic Institute and State
University.

Nadir Siddiqui is a Senior Analyst in AI and Machine Learn-
ing at LMI. His focus is on deploying AI solutions in govern-
ment environments, identifying opportunities where applied
AI can improve efficiency and support responsible decision-
making. Nadir holds a Masters of Science in Data Science
from the University of Virginia.

Destiny West is a Project, Program, and Operations Manage-
ment Professional at LMI. With 21 years of military experi-
ence in the aerospace and defense industry, Destiny special-
izes in maintenance operations and fleet health management
for advanced aircraft systems such as the F-15, F-16, HH-
60, F-22, F-35, and U-2. She has led cross-functional teams
in high-pressure environments, overseeing aircraft sustain-
ment, developing maintenance schedules, and managing per-
formance metrics. Her roles have involved providing strategic
guidance on maintenance plans, ensuring compliance with di-
rectives, and enhancing mission readiness through detailed
oversight. Destiny holds a Bachelor’s degree in Business Ad-
ministration and Management from Saint Leo University and
has advanced expertise in maintenance production manage-
ment from the Community College of the Air Force.

13


