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ABSTRACT

This work introduces a mission profile clustering pipeline
aimed at supporting usage-based health modeling of elec-
tro hydraulic flight control actuators employed in a fleet of
Advanced Jet Trainer (AJT) aircraft. The study is part of a
broader, high-level, modular Prognostics and Health Manage-
ment (PHM) framework developed to predict Unscheduled
Removals (URs) of the AJT horizontal tail flight control ac-
tuators. Operating in an industrial setting, this PHM effort
specifically addresses the challenge of extracting prognostic
information from a legacy fleet already in service, leveraging
existing operational data to improve asset availability. The
overall project leverages an extensive real-world dataset that
spans over ten years and more than 25000 flight hours accu-
mulated by a fleet of as many as 20 aircraft. This paper specif-
ically focuses on the Flight Clustering Module within the
Data Processing layer of the PHM framework, which serves
as a critical enabler for future feature projections. Through an
in-depth analysis of the underlying principles and a detailed
overview of the main system interfaces, this work proposes
a practical solution for categorizing and classifying mission
profiles while highlighting the challenges of working with
real operational data. After a pre-processing pipeline, de-
veloped to standardize and align time-series flight data, the
clean trends are then clustered via a Self-Organizing Map
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(SOM). In this work, a systematic SOM hyperparameter tun-
ing pipeline is also introduced. The tuning routine employs
a grid search strategy to optimize the SOM hyperparameters
by jointly evaluating the topographic error, the quantization
error, and the percentage of grid utilization. The result of the
application of the trained SOM on the dataset is a set of Clus-
tered Mission Types (CMTs), each linked to specific statis-
tical distributions of actuator usage increments. These clus-
ters are integrated into the broader PHM framework to sim-
ulate future aircraft behavior and estimate component degra-
dation. Placed in an operational industrial environment, this
methodology effectively connects mission-specific usage pat-
terns with predictive health modeling, improving the model-
ing ability of PHM systems, and laying the foundation for
smarter usage-based maintenance planning in aviation opera-
tions.

1. INTRODUCTION

Prognostic and Health Management (PHM) strategies have
been offering the possibility of monitoring equipment health
status since their first introduction in the context of Joint
Strike Fighter (JSF) development in the early 2000s (Smith,
Schroeder, Navarro, & Haldeman, 1997; Hess & Fila, 2002).
Since then, these methodologies have evolved from theo-
retical concepts to practical enablers of smarter and more
efficient maintenance approaches in aerospace systems
(Kordestani, Orchard, Khorasani, & Saif, 2023). By al-
lowing a shift from reactive to predictive maintenance, PHM
is actively contributing to extending component life, enhanc-
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ing safety, and improving mission availability across a wide
range of diversified platforms. A PHM strategy is composed
of a set of interconnected functional layers that integrate
the functions of diagnosis, prognosis, and health manage-
ment. If the diagnosis focuses on the analysis of the current
time step, from a theoretical point of view, the prognosis
projects a number of features in the future and compares
their evolution with a deterministic or probabilistic threshold
(Vachtsevanos, 2006; Acuna-Ureta, Orchard, & Wheeler,
2021; Kordestani, Saif, Orchard, Razavi-Far, & Khorasani,
2021). Finally, the health management function uses the
information obtained in an operational perspective. A key
distinction in implementation is whether the equipment is
still in development or is already operational. When PHM is
integrated during the design phase, there is full control over
sensor selection, data acquisition, and system integration.
Conversely, applying PHM to legacy systems often involves
working with fixed hardware and pre-existing data protocols.
In these cases, a significant challenge lies in utilizing histori-
cal data, commonly gathered for purposes such as Structural
Health Monitoring (SHM), control, or diagnostics, to obtain
meaningful insights, despite the data not being specifically
structured for PHM (Piatti, Walker, Figueroa, & Underwood,
2021; Leao, Fitzgibbon, Puttini, & De Melo, 2008; Esperon-
Miguez, Jennions, & John, 2015). This is a quite common
scenario for an industry that wants to digitize its assets to
include them in a PHM perspective, and, as such, represents
a common problem which deserves attention. It is within this
context that the Advanced Jet Trainer (AJT), shown in Figure
1, manufactured by Leonardo S.p.A., has been selected as a
candidate platform for the development of a comprehensive
PHM architecture, which is presented in Section 2 and ex-
plained in details in (Baldo, De Martin, Terner, Jacazio, &
Sorli, 2025). As a starting point, the focus has been placed
on the all-moving horizontal tail Electro Hydraulic Actuator
(EHA), identified as a representative and critical component.

The aerospace industry has historically been the foundational
sector for the development of PHM strategies and, as a result,
a wide range of systems have been analyzed in a PHM per-
spective. In the context of the Flight Control System (FCS),
some studies have approached the diagnosis and prognosis
of flight control actuators focusing on specific damage mod-
eling based on physics-based formulations. In current air-
craft configurations, the state-of-the-art flight control actua-
tors are represented by EHAs, which are hydraulically pow-
ered (Maré, 2017). Despite their ruggedness and resistance
to disturbance, EHAs are subject to fatigue and wear that de-
pend on the specific way an aircraft is flown. Static mainte-
nance schedules fail to account for this variability, treating all
flight hours as equal. This simplification may lead to either
over-conservative replacements or unexpected flight No-Gos.

Several works have focused on actuator health modeling
(Baldo, De Martin, Jacazio, & Sorli, 2025). Physics-based

Figure 1. Photo of the AJT considered for the PHM frame-
work development.

models provide a detailed understanding of failure mecha-
nisms, but are often difficult to scale or calibrate on large
fleets (De Martin, Jacazio, & Sorli, 2022; Shahkar & Kho-
rasani, 2022). On the other hand, data-driven approaches rely
on patterns learned from operational data (Lu, Yuan, & Ma,
2018). These methods can be highly effective, provided that
the data is properly structured and the variability in usage is
adequately represented. Unfortunately, most studies in the
literature address constrained scenarios in which data is ob-
tained through simulation models or test benches, thus omit-
ting the upstream challenges linked to data availability and
representativeness in the first place (Schoenmakers, 2020).

This paper presents the details of one of the most important
modules within the AJT PHM framework, the Flight Cluster-
ing Module (FCM), which is responsible for the clustering of
flight profiles in order to provide a set of propagation param-
eters to enable feature propagation in the future.

2. THE PHM FRAMEWORK

As already stated in Section 1, one of the most critical dif-
ferences that affects how PHM strategies are implemented is
whether the equipment is still in the design phase or is an al-
ready operational asset. This fundamental difference has pro-
found implications on how PHM can be effectively integrated
and the strategies that can be used (Rodrigues, Yoneyama, &
Nascimento Jr, 2012). For already operational equipment,
PHM solutions must be developed around existing datasets,
many of which were not originally intended for health mon-
itoring but were collected for other purposes. A key chal-
lenge in these cases lies in the ability to infer, extract, and
reinterpret operational insights from data streams that were
never structured with PHM in mind (Lukens, Rousis, Baer,
Lujan, & Smith, 2022). Against this background, the devel-
oped PHM system is distinguished by several key properties:
data-driven, scalable, robust, grounded, and transferable.
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Figure 2. Flowchart of the PHM framework. Each color rep-
resents a functional layer: blue represents Layer 1 (Data Man-
agement, ETL & Pre-processing), yellow Layer 2 (Data Pro-
cessing, Features & Prognosis), and red Layer 3 (Health Man-
agement, Strategies & Support). The location of the Flight
Clustering Module is highlighted by thick edges. Green iden-
tifies data sources (internal or external), while purple high-
lights the framework output.

Furthermore, it utilizes aircraft-level data and is designed to
be “as simple as possible and as complex as necessary”. The
goal has been to design and validate a Minimum Viable Prod-
uct (MVP) around a case study that can serve as a scalable
foundation for extending PHM capabilities to additional sys-
tems and subsystems across the aircraft. The case study, se-
lected both for the consistent literature research gap and as
a result of internal criticality analysis, is the AJT horizon-
tal tail EHA, essential for the aircraft control (Baldo, 2024).
Figure 2 reports the modular framework with a color code
that highlights the functional layers of the framework. The
key challenges of the project are related to the availability of
data, which drastically limited the approaches that could have
been followed. The AJT uses a Health Usage Management

System (HUMS) that was designed for SHM and, as a result,
logs aircraft-level data in an exceedance event-trigger fash-
ion (Kwakye, Jennions, & Ezhilarasu, 2024; Kappas & Frith,
2017). The result is a set of timeseries which do not include
actuator control data and which are saved with a variable fre-
quency. These challenges led to the choice of a more tradi-
tional strategy that employs the first four Statistical Moments
(SM) (i.e., mean, variance, skewness, and kurtosis) (Zhenya,
Lu, Ma, Yuan, & Chen, 2015; Soualhi et al., 2018; Baghli,
Delpha, Diallo, & Hallouche, 2018). This more traditional
approach enhances the explainability and scalability qualities
of the proposed framework. Further details on the overall
framework can be found in (Baldo, De Martin, et al., 2025).

After raw data are acquired by the Data Acquisition Module,
each data source is pre-processed according to data-specific
procedures. The acquired data consists of flight data time se-
ries, flight hours, Unscheduled Removals (URs) information,
and equipment registers. The Data Pre-processing Module
leads to two different outputs: fleet data is sent to the Fea-
ture Engineering Module, while clustering data (which are
univariate time series data) are the input for the Flight Clus-
tering Module, where they are first treated with a customized
additional pre-process pipeline, as explained later in Section
3.

In the Feature Engineering Module, the four SM lump each
flight behavior into a compact set of parameters, enabling
consistent performance monitoring even under low-quality or
sparse data conditions. Over time, the moments accumulate
into condition indexes (CIs), which represent the usage of the
system (Wylomanska & Zimroz, 2014). These CIs are ranked
on the basis of their correlation with URs by analyzing the
distribution of their magnitude increases between UR events.
This ranking identifies the most relevant and informative Cu-
mulative Features (CFs) and defines hazard Probability Dis-
tribution Functions (PDFs) for the later calculation of Prob-
ability of Failure (PoF) and risk assessment. Further details
on the Feature Engineering Module can be found in (Baldo,
De Martin, Terner, & Sorli, 2024). The FCM, which will be
explained in detail in Section 3, includes three core functions:
(i) processing altitude trends and applying a dedicated clus-
tering algorithm to group flights with similar mission charac-
teristics into Clustering Mission Types (CMTs), using flight
path profiles as the discriminating feature. This classification
serves as a foundation for both usage modeling and scenario
forecasting. (ii) the module generates sequences of plausi-
ble future CMTs, either sampled from historical distributions
or derived from mission-specific plans, enabling forward-
looking simulations. (iii) it assigns characteristic feature in-
crements (through a PDF) to each CMT, representing the ex-
pected contribution of that mission type to cumulative system
degradation. All outputs from this module (future CMT se-
quences and associated feature increments) are passed to the
Probabilistic Health Prediction Module, where they are com-
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bined with features extracted from the Feature Engineering
stage. This module employs Monte-Carlo simulations to fore-
cast the evolution of key features over the predicted flight se-
quence. The resulting probabilistic CF future trends are then
compared against pre-established hazard PDFs to estimate the
PoF and generate actionable risk trends (Montoya, Valder-
rama, Quintero, Pérez, & Orchard, 2020). The third layer is
responsible for integrating risk trends into an existing indus-
trial logistics and maintenance framework. The integration of
risk-based outputs into operational planning remains subject
to the specific needs and procedures of the end user and is
still under definition. However, the ability to predict compo-
nent health opens the door to both short-term and long-term
decision support strategies (see Figure 5). In the short-term,
predefined sequences of CMTs can be used to simulate the
evolution of UR risk, providing insight into how specific mis-
sion sets impact the health of a given EHA installed on a par-
ticular aircraft. This enables mission-specific risk evaluation
and supports data-driven fleet allocation strategies, where air-
craft selection can be optimized to minimize the probability
of UR for upcoming operations. From a long-term planning
perspective, CMT sequences can be generated in an open-
loop fashion by sampling historical mission distributions or
applying Markov chain algorithms. This statistical approach
enables the estimation of health degradation trends over ex-
tended horizons, supporting higher-level logistical processes
such as supply chain optimization, maintenance planning,
and spare parts provisioning. Together, these capabilities re-
inforce the strategic value of PHM systems by aligning health
insights with real-world operational and logistical decisions.

3. THE FLIGHT CLUSTERING MODULE

To link actuator prognostics with aircraft use, it is impor-
tant to accurately describe and quantify mission profiles
(Kannemans & Jentink, 2002). An effective approach is to
group similar flights into clusters and associate each cluster
with a defined probabilistic pattern of expected actuator us-
age. Once this classification is available, it becomes possi-
ble to simulate damage evolution by assembling sequences of
missions, whether for short-term planning or long-term pro-
jections. As a result, the clustering process becomes a cen-
tral part of the broader PHM system, providing a connection
between operational data and component-level health estima-
tion. A breakdown of the FCM is reported in Figure 3, while a
detailed view of the Custom Pre-processing block is reported
in Figure 4.

As soon as the Clustering Data is inherited from the Pre-
processing module, it is sent to the Custom Pre-processing
block which performs additional pre-processing, specifically
for clusterization, to the data. First, since clustering is per-
formed on a carefully selected subset of the available dataset,
comprising more than 3,000 flights from four aircraft, the rel-
evant data subset is selected. This subset captures the diver-
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Figure 3. Flowchart of the FCM module. The blue circles
represent module inputs whereas the green circles represent
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Figure 4. Custom pre-processing flowchart: a detailed view
of the ”Custom Pre-processing” block of Figure 3.

sity of missions without overloading the clustering process
with redundant patterns. Altitude was chosen as the key pa-
rameter for this analysis on the basis of three main consider-
ations. First, variations in altitude closely reflect the behav-
ior of the HT on the longitudinal axis, providing meaningful
information on the dynamic performance of the aircraft. Al-
though the AJT features an all-moving HT that combines the
roles of both a stabilizer and an elevator, its effects are primar-
ily observed in longitudinal flight mechanics. For this reason,
altitude serves as a strong parameter for characterizing HT
usage in relation to the broader motion of the aircraft. Sec-
ond, altitude is a well-established way of representing mis-
sion profiles. It is commonly used in visual flight analyzes,
allowing for consistent comparisons across different opera-
tional scenarios. Third, altitude trends are intuitive and easy
to interpret, making them a practical choice for various stake-
holders, including engineers, operators, and maintenance per-
sonnel, who rely on accessible data to understand and manage
aircraft behavior.
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Figure 5. Next flight CMT sequence assembly procedure:
short- to mid-term with flight plan information and long-term
with historical sampling.

Each flight altitude time series has been initially resampled at
a uniform rate of 1 Hz using linear interpolation. The result-
ing data have then been formatted into a custom Python time
series structure. Following this, variance-based standardiza-
tion has been applied to normalize the data across the dataset.
Finally, each flight has been resampled again at a fixed length
of 1000 data points, producing a consistent input shape of 1 x
1000. This final resampling step is necessary to comply with
the input requirements of the SOM algorithm, which requires
a uniform time series length across samples. The choice of
1,000 points has been chosen considering the average flight
duration (approximately 1 hour) and represents a balance be-
tween capturing sufficient temporal detail and maintaining
computational efficiency. Once preprocessed, the altitude
time series were passed into a SOM model (whose hyper-
parameters have been previously tuned) specifically adapted
for time-series clustering to account for the visualization of
temporal misalignments. The Python package MiniSom was
employed in this project (Vettigli, 2018).

Once the map is trained, each CMT is associated with the sta-
tistical behavior of actuator usage observed in its flights. This
allows the model to predict damage increments by associating
each new flight with a CMT and retrieving the corresponding
distribution. The Simulation Horizon is taken as an input and
triggers two different paths. On the one hand, the simula-
tion can predict a specific sequence of flight based on a flight
matching procedure that compares the flight plan for the next
flights with the set of CMTs identifying the most similar ones.
On the other hand, in the long-term prediction, the model
samples from the CMT distribution to generate future sce-
narios (see Figure 5). From a data perspective, flight data can
be categorized as a multivariate time series dataset whose al-
titude trend represents a univariate time series. From the task
point of view, given the lack of labels identifying the mission
performed during flights, unsupervised clustering remains the

only viable option. The review of time series clustering meth-
ods reveals a limited range of options currently available
in the literature (Aghabozorgi, Seyed Shirkhorshidi, & Ying
Wah, 2015). Among the most frequently used methods are
time series k-means (Huang et al., 2016; Tang, Gu, Shen,
& Chen, 2015), k-shape (Paparrizos & Gravano, 2015a),
and Self-Organizing Maps (SOMs) (Javed, Rizzo, Lee, &
Gramling, 2024). Additionally deep self-supervised encoders
learn task-agnostic embeddings that can be clustered down-
stream. In the context of the presented PHM setting, which
involves univariate, unlabeled data prioritizing interpretabil-
ity, efficiency, and deployability, a SOM offers an optimal so-
lution. SOM learns a topology-preserving two-dimensional
grid, transforming the latent space into an interpretable map
of operational clusters. Clusters naturally form as coherent
regions in the U-matrix with physically meaningful proto-
types that can be examined by engineers. This approach re-
quires no extensive time alignment and, unlike deep learning
architectures that often involve complex hyperparameter tun-
ing and data augmentation, SOMs are computationally effi-
cient, scale effectively to large datasets, and can be trained
rapidly on standard hardware. Additionally, SOMs support
incremental updates when new data become available, mak-
ing them particularly suitable for fleet monitoring applica-
tions. Let us now consider n as the number of time series
(~ 3000), m as the length of each series (1000), k as the
number of clusters (if known), G the number of SOM proto-
types and E the number of training epochs. From a compu-
tational standpoint, k-Shape requires per-iteration complex-
ity O(max{nkmlogm, nm?, km?}) (Paparrizos & Gra-
vano, 2015b). Soft-DTW k-means incurs quadratic cost in
the sequence length m, yielding O(nkm?) per iteration plus
barycenter updates (Cuturi & Blondel, 2017). In contrast, a
SOM compares each series with G prototypes and updates
neighbors, training in O(nGmE) and inferring in O(Gm)
per series, without building full n x n distance matrices. For
instance, when tested over a small subset (250) of the flight
databases, the SOM run in 0.24 % of the k-shape running
time and comparable time (around 4s) with respect to K-
means. The execution of the full dataset or other benchmark-
ing methodologies was not feasible, as the code run extended
over several days, without converging. In the next section the
development of the SOM model is analyzed in depth.

4. SOM DEVELOPMENT

SOMs are relatively simple neural networks made up of two
main layers: an input layer and an output layer composed
of interconnected units (Kohonen, 1982). The output layer
is usually arranged in a two-dimensional grid (rectangular or
hexagonal), enabling an intuitive visualization of the results.
In practice, each input (in this case, a flight) is assigned to
the grid position that best matches its features, known as the
Best Matching Unit (BMU). Once the SOM hyperparameters
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are set, the network is trained using the selected subset of
altitude trends from the flight dataset. Due to its architecture,
the SOM establishes a direct correspondence between each
map cell and a specific cluster.

As with all Machine Learning (ML) methods, SOM models
are directly influenced by a set of hyperparameters that af-
fect model performance. Despite the popularity of applica-
tion leveraging SOM high dimensionality reduction capabil-
ities, the applications involving time series analysis are defi-
nitely scarcer. As a result, a hyperparameter tuning pipeline
had to be designed. The first part of the tuning focused
primarily on two key parameters: the total number of clus-
ters and the aspect ratio of the SOM grid. Although com-
mon heuristics suggest estimating the number of clusters as
5 - v/ NumberofInputs, this formulation produced an im-
practical high number for operational use (216). We set the
number of clusters to 100 after trial-and-error tuning to bal-
ance interpretability and resolution, incorporating feedback
from operations personnel. The map aspect ratio, defined
as the proportion between the number of neurons along the
horizontal and vertical dimensions, was optimized by eval-
uating the topographic product, a metric designed to assess
the preservation of topological relationships during mapping.
This metric has been adopted in various SOM optimization
studies to guide the selection of a suitable grid geometry
(Forest, Lebbah, Azzag, & Lacaille, 2020).

Figure 6 reports the topographic product trend with varying
aspect ratio, highlighting the best aspect ratio of 1 (square
map of 100x100 neurons). To ensure statistical consistency
and mitigate the effects of random initialization, each SOM
configuration with a fixed aspect ratio was independently
trained 10 times. The next step has involved the selection of
the two main hyperparameters: sigma and the learning rate.
In particular, an end-to-end hyperparameter tuning pipeline
based on grid search is proposed as reported in the pseudo
code 1, exploring a total of 504 parameter combinations. The
scoring S is defined in Eq. 1. After the selection of these last
parameters, the network topology is fixed and the SOM ar-
chitecture is ready to be trained and employed in the FCM. In
fact, as already stated, SOMs operate in two distinct phases:
training and mapping. In the training phase, the input dataset
is used to build a lower-dimensional representation.

S:QE+TE+2'(1_Urate) (1)

where QF is the quantization error, T'F is the topographical
error, and U,,¢e represents the utilization rate (i.e., the per-
centage of neurons that are the BMU for at least one flight).
The tuning operation has been performed with a fixed seed
to safeguard reproducibility. The solution space is reported
in the tridimensional graph in Figure 7: the final values of
sigma and learning rate are 1.3 and 0.4, respectively.

Algorithm 1 Enhanced SOM Hyperparameter Optimization

Require: Dataset X, patience p, threshold 7
Ensure: Optimal SOM parameters 0*, trained SOM M*
1: Split X — (Xiain, Xval)
2: Initialize parameter grid G
30 8* 0
4: for (0,,T) € G do
5 Create SOM M with parameters (o, o)
6: (Tactual, conv) < TRAINSOM (M, Xypoin, T, p, T)
7: Compute errors: QE,,;, TEyy
8 Compute utilization rate: Uy
9: S QEval + TEya + 2(1 - Z/{rate)
10: if S < &* then

11: 0" < (0, a, Tyerual, CONV)
12: S S, M~ M

13: end if

14: end for

15: return 0*, M*

16: function TRAINSOM(M, X, Tihax, P> T)

17: QE ey = 00, ¢+ 0

18: fort =1to T, do

19: Train M for 1 iteration

20: if ¢ mod 50 = 0 then

21: QE,,; < quantization error of M
22: if |QE, e, — QEy,| < 7 then

23: c+—c+1

24: if ¢ > p then return (¢, True)
25: end if

26: else

27: c+0

28: end if

29: QEprev <« QEqy

30: end if

31 end for

32: return (7)., False)

33: end function

During this phase, the SOM learns to organize the input data
by adjusting the weights of its neurons based on their sim-
ilarity to the input vectors. Each input is compared to all
neurons on the map, and the one with the closest BMU, is
identified. The BMU and its neighboring neurons are then
updated to more closely resemble the input, gradually shap-
ing the map to reflect the underlying structure of the dataset,
in a procedure called competitive training. Throughout train-
ing, various classical SOM metrics are used to evaluate the
quality of the clustering and guide the tuning process. The
training lasts 100 epochs as already after 50 the errors sta-
bilize and further epochs do not increase the accuracy of the
model. Once training is complete, the mapping phase begins.
In this phase, new input data can be projected onto the trained
map. Each new input is assigned to its BMU, effectively
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classifying it based on the structure learned during training.
This process enables intuitive visualization and interpretation
of complex, high-dimensional data by preserving topological
relationships, data points that are similar in the input space
remain close together in the map space.

5. RESULTS

The main advantage that made SOM popular is the extremely
high explainability of the SOM grid, which places the iden-
tified similar neurons close to each other (Figure 8). A com-
monly used visualization method involves applying a color
scale to the U-matrix. The U-matrix (Unified Distance Ma-
trix) illustrates the Euclidean distances between neighboring
neurons within the weight space and is reported in Figure 9.
This approach effectively highlights cluster boundaries and
topological relationships in the trained SOM by representing
inter-neuron distances as a color-coded landscape. Darker
areas indicate clusters of similar neurons, while lighter re-
gions delineate the boundaries between clusters. This creates
a landscape-like visualization in which valleys correspond to
clusters of similar data points, and ridges or peaks indicate
boundaries between different clusters. As a lead-in fighter
training platform, the AJT operates within a structured syl-
labus of recurring mission types, yet individual flights ex-
hibit substantial variability even within identical mission cat-
egories. A comprehensive analysis should incorporate both
Figure 8 and Figure 9, as the information they present is in-
terrelated. For instance, the U-matrix highlights a mega clus-
ter of similar CMTs in the center of the grid; this indication
is backed up by Figure 9 which tells us that that mega cluster
represents common cruise flights. Other mega clusters can be
identified: sustained high-altitude segments may indicate ei-
ther basic navigation training, while descending altitude pro-
files typically correspond to instrument approach and land-
ing practice. Conversely, low-altitude flight segments often
represent air-to-ground training or tactical maneuvering ex-
ercises. Flights characterized by multiple altitude transitions
generally reflect formation flying or complex tactical scenar-
ios involving integrated mission elements or air-to-air combat
scenarios. Modern pilot training emphasizes mission inte-
gration, where individual sorties frequently incorporate mul-
tiple training objectives, creating hybrid profiles that resist
simple categorical classification. Finally, the similarities ob-
served among certain CMTs should not be considered an er-
ror. Rather, they suggest that, when utilizing the 10-by-10 op-
timized network topology, these profiles are frequently occur-
ring and involve multiple CMTs with only slight variations.
SOMs offer intuitive and interpretable results, but assessing
their performance is challenging, especially without labeled
data for direct validation. To address this, various evaluation
metrics are used for hyperparameter tuning and clustering as-
sessment. These metrics are classified as internal, which use
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Figure 8. CMT clusters with associated altitude trends. The
gray lines represent the combined trends within each CMT,
while the red line indicates the designated trend for that spe-
cific CMT.
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only data characteristics, and external, which require label in-
formation.
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Figure 9. U-matrix for the trained SOM: dark regions indi-
cate similar clusters while lighter regions indicate non-similar
clusters. The average number of flights per cluster is 32.5.

Common internal metrics include topographic error (0.033)
(Kiviluoto, 1996), quantization error (11.827), combined er-
ror (Kaski & Lagus, 1996), silhouette index (0.047), Davies-

Bouldin index (2.390593), and topographic product (0.1023)
(Bauer & Pawelzik, 1992). A quick implementation of these
metrics is provided in a Python package developed by (Forest
et al.,, 2020). The excellent topographic error and product
indicate strong topology preservation, demonstrating that the
SOM effectively maintains neighborhood relationships from
the original high-dimensional space to the two-dimensional
map. Conversely, the low silhouette and Davies-Bouldin in-
dices suggest room for improvement, highlighting the chal-
lenges in identifying well-separated, compact clusters due to
the complexity of the data.

6. CONCLUSIONS AND FURTHER DEVELOPMENTS

This study introduces a mission-aware approach to flight clus-
tering for PHM applications. By analyzing and grouping alti-
tude profiles from a subset of more than 3000 flights, a set
of CMT that represents the most common operational be-
haviors in a fleet of AJTs was obtained. The use of SOMs
allowed us to build an interpretable structure that connects
real flight data to actuator usage. Each CMT has been as-
sociated with a distribution of actuator damage increments,
enabling the modeling of health evolution over time. These
results are integrated into an existing PHM framework, where
they are used to simulate both short-term and long-term ac-
tuator degradation. The method supports various operational
scenarios, from forecasting the impact of known future mis-
sions to generating random mission sequences for planning
purposes. Moreover, new flights can be classified into ex-
isting CMTs, keeping the system responsive and up to date.
The main limitations of the proposed approach are the need
for a large amount of flight data and the assumption of re-
curring mission profiles, which may not always hold; how-
ever, Advanced Jet Trainers represent a peculiar case where
recurring training missions make the framework applicable.
The current research establishes a foundation for future anal-
yses. For example, integrating multiple signals could poten-
tially improve CMT identification accuracy: for instance the
G-Force trend could provide additional stress information.
However, the introduction of multivariate time series would
necessitate the use of multidimensional SOMs or alternative
machine learning architectures. In this context, the applica-
tion of Graph Neural Networks (GNNs) for time series anal-
ysis has demonstrated promising results in existing literature
and may further enhance the detection of distinctive patterns.
Additionally, acquiring a labeled dataset of flight missions
would facilitate the application of supervised machine learn-
ing techniques for classification purposes, thereby increasing
the robustness and accuracy of the analysis.
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