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ABSTRACT

In the modern industrial context, Prognostics and Health
Management (PHM) systems based on data-driven
approaches have been widely and effectively developed to
reduce maintenance costs. However, continuous data requires
large memory capacity and high costs. Therefore, in recent
years, the use of event-based data for PHM models has
become prominent and increasingly attracts attention due to
its cost-efficiency and effectiveness. This surge in data
availability has opened new avenues for developing data-
driven methods that leverage event patterns to enhance
diagnostic, prognostic, and predictive maintenance
capabilities. Building meaningful and interpretable patterns
from raw event data is crucial for understanding system
behavior, detecting faults early, forecasting future failures,
and accurately estimating the Remaining Useful Life (RUL)
of critical components. This review paper systematically
surveys the state-of-the-art methodologies and frameworks
for extracting, modeling, and utilizing event-based patterns
in the context of diagnostic and prognostic applications.
Furthermore, we analyze challenges related to event data
heterogeneity, scalability, and interpretability, as well as the
need for robust pattern extraction methods that can adapt to
dynamic operating environments. The review further
explores how these event-based patterns contribute to
building reliable diagnostic models, enabling early fault
detection, and supporting maintenance decision-making
through precise prognostics. Finally, this paper identifies key
research gaps and outlines future directions, emphasizing the
need for explainable, adaptive, and scalable pattern mining
approaches that effectively translate raw event data into
actionable maintenance intelligence. To tackle these
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challenges, we propose a unified pattern construction
framework general event pattern for diagnostic, prognostic,
and RUL prediction tasks, designed to be adaptable across
diverse industrial systems. This comprehensive survey aims
to serve as a foundational reference for researchers and
practitioners committed to leveraging event data for
enhanced system reliability and the development of
optimized, intelligent maintenance strategies.

1. INTRODUCTION

Industrial systems are increasingly complex, and their
reliable operation is vital to ensure safety, minimize
downtime, and reduce maintenance costs. In recent years,
Prognostics and Health Management (PHM) has emerged as
a transformative approach that leverages data analytics and
machine learning to assess system health, early detect faults,
and predict the Remaining Useful Life (RUL) of critical
components (Lee et al., 2014). PHM plays a central role in
enabling predictive maintenance, helping organizations shift
from reactive and time-based maintenance to proactive
strategies that reduce unexpected failures and optimize
maintenance schedules (Jardine, Lin, & Banjevic, 20006).

Traditional PHM systems have predominantly relied on
continuous time-series data gathered from sensors
monitoring physical parameters such as temperature,
pressure, vibration, and flow rate (Si, Wang, Hu, & Zhou,
2011). While effective, such data acquisition entails
significant costs in terms of data storage, processing power,
and sensor infrastructure, especially when scaled to large
industrial facilities. Furthermore, continuous monitoring
generates massive volumes of data, much of which may be
redundant or uninformative for early fault detection (Nor,
Pedapati, Muhammad, & Leiva, 2021).
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To address these challenges, recent research has turned
toward event-based data, which captures system behavior
through discrete events such as alarms, status changes,
operational triggers, offer valuable insights for understanding
equipment behavior and predicting future failures without the
overhead of handling full continuous streams. These sparse
and meaningful representations not only reduce data volume
but also offer cost-effective and scalable alternatives for
PHM modeling (Saxena, Celaya, Saha, Saha, & Goebel,
2010). Event-based PHM has shown promise in enhancing
both diagnostic and prognostic tasks by focusing on patterns
in event sequences rather than raw time-series streams
(Fronza, Sillitti, Succi, & Vlasenko, 2011). However, despite
their potential, challenges remain in effectively extracting,
modeling, and applying event patterns across diverse
industrial systems. Current literature lacks a comprehensive
review addressing these issues, including pattern
construction, heterogeneity, and scalability.

Despite the growing interest, research on event-based PHM
remains scattered, and few review studies comprehensively
assess its methodologies, challenges, and applications.
Existing reviews on PHM primarily emphasize condition
monitoring, fault diagnosis, and deep learning models based
on continuous signals (Fink et al., 2020; Zhang et al., 2019;
Zhao et al., 2019). For instance, (Jia, Huang, Feng, Cai, &
Lee, 2018) surveyed data-driven PHM using deep learning
but did not focus on event-level representations. Similarly,
major reviews by (Tsui, Chen, Zhou, Hai, & Wang, 2015)
and (Atamuradov, Medjaher, Dersin, Lamoureux, &
Zerhouni, 2017) concentrate on condition monitoring, fault
diagnosis, and RUL estimation from sensor-based continuous
signals without addressing the potential of event-driven
techniques. This lack of focused analysis motivates the need
for a systematic review consolidating developments in event-
based pattern mining and modeling for PHM.

This paper presents a comprehensive systematic review of
event-based PHM methods, aiming to (i)-highlight the
evolution of diagnostic and prognostic approaches using
event sequences, (ii)-evaluate the scalability, interpretability,
and robustness of existing models, (iii)-identify open
challenges in real-world deployments, and (iv) explore the
design of a generalizable event-pattern framework applicable
to multiple PHM tasks and diverse industrial contexts. The
review also considers hybrid frameworks that combine expert
knowledge models with data-driven insights, and emphasizes
the need for explainable and adaptive algorithms capable of
operating in dynamic environments.

maintenance actions, and threshold violations. Event-based
data, which reflect transitions in system states or specific.

Current literature lacks a comprehensive review addressing
these issues, including pattern construction, heterogeneity,
and scalability. This review aims to fill this gap by
systematically analyzing the latest developments in event-
based PHM methodologies. We focus on three key research
questions: RQ1: What are the main event data types and
pattern extraction techniques used in PHM? RQ2: How do
event patterns contribute to PHM applications? RQ3: What
are the existing challenges and solutions for applying event-
based methods in industrial PHM? RQ4: How can a single,
flexible framework for pattern construction be designed to
support multiple PHM tasks and adapt to diverse industrial
systems?

The remainder of this paper is organized as follows: Section
2 describes the review methodology, including search
strategy, inclusion criteria, and research questions Section 3
summarizes key methods in event-based PHM, highlighting
diverse pattern mining techniques and their applications in
diagnostics, prognostics, and monitoring. It emphasizes the
strengths and limitations of models and provides a framework
to address the remaining limitations. Section 4 concludes the
paper with final observations and recommendations.

2. METHODOLOGY OF SYSTEMATIC REVIEW
2.1. Literature Search Strategy

This review employs a systematic literature review
methodology (Tranfield, Denyer, & Smart, 2003) to ensure a
rigorous and unbiased synthesis of research on event-based
PHM approaches. The key steps of this methodology are as
follows: (i)-defining research scope and objectives which
were established to guide the review with a focus on event
data types, pattern extraction techniques, and the challenges
of applying event-based PHM; (ii)-conducting a database
search; (iii)-screening and selecting relevant studies; and (iv)
extracting and synthesizing the data.

To conduct a comprehensive and systematic literature
review, an initial combination of keywords was constructed
using logical operators (AND, OR) to accurately capture
relevant studies on predictive maintenance within event-
driven data applications in PHM. Following extensive
screening, the finalized keyword set (Figure 1) guided
concurrent searches on Web of Science, Springer Link and
IEEE xplore databases to ensure completeness and accuracy.



Topic

Data

"prognostics and health management " OR
"fault diagnosis" OR

"prognosis" OR

"remaining useful life " OR

"early detection" OR

AND

"event-based" OR Area

"event log" OR AND
"event data" OR

"pattern events" OR

"discrete events" OR

Figure 1 Keyword search strategy for literature selection for Event-Based PHM

2.2. Study Selection and Screening Process

The study selection process for this systematic review was
carefully structured to ensure that only relevant and high-
quality studies on event-based PHM were included. An initial
search across scientific databases yielded 414 records. The
screening process began with the title screening of 414
records, which led to the exclusion of 250 articles due to
irrelevance or duplication.

Subsequent stages involved abstract screening, where 164
abstracts were reviewed in detail. This step resulted in the
exclusion of 112 records for failing to meet the inclusion
criteria, which specified that papers must focus on diagnostic
or prognostic models using event-based data or
methodologies that extract or model event patterns for health
assessment or maintenance planning. Studies that did not
contribute methodology (e.g., editorial notes, opinion pieces)
or were biomedical PHM or focused on power transmission
diagnostics were excluded. The eligibility phase consisted of
full-text assessment for 52 publications, with 10 excluded for
reasons such as inappropriate research questions (n=12) or
unavailability of the full text (n=4).

Ultimately, 36 publications were included in the qualitative
synthesis, including 5 identified through an expert network.
Therefore, 41 publications related to discrete event data were
selected for study. This comprehensive and transparent
process is illustrated in the accompanying PRISMA
flowchart (Figure 2), which clearly outlines the stages of the
study selection process.

2.3. Keyword Co-occurrence Analysis

Figure 3 illustrates the annual distribution of publications on
event-based Prognostics and Health Management (PHM)
from 2013 to 2025. The data show a relatively low number of
publications in the early years, followed by a significant
increase starting around 2018, indicating growing research
interest in event-driven PHM methods. Before 2013, event-
based PHM approaches were either absent or rarely
documented in academic literature, with most research
focusing on continuous sensor data or physics-based
modeling. Most of the publications from 2013 onward are
sourced from major academic platforms such as Web of
Science, IEEE Xplore, and SpringerLink, with a variety of
other publishers contributing smaller shares. This reflects a
broad and multidisciplinary dissemination of research in the
event-based PHM domain.
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Figure 2. PRISMA flow diagram for literature selection
process.
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Figure 3. Number of Event-Based PHM papers published by year

The keyword co-occurrence analysis was conducted using
VOSviewer software (Figure 4), and the resulting network
graph is presented in the figure. Central to the network is
“discrete-event systems,” which is strongly linked with
“diagnosability,” “failure diagnosis,” and “verification,”
emphasizing the importance of fault detection, system
monitoring, and diagnostic verification in complex event-
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driven environments. This cluster highlights efforts to ensure
that faults are not only identified but also verified in a timely
and reliable manner.

Another significant cluster connects “fault diagnosis” with
“design,” “optimization,” and “prognostics,” indicating a
focus on developing optimized diagnostic strategies and
predictive models to anticipate failures. These associations
underscore the growing emphasis on early detection of
anomalies and degradations, which is crucial for minimizing
downtime and preventing cascading failures.Modeling terms
like “petri nets” indicate the use of formal models in
diagnostic processes.

Overall, this analysis reveals a close interplay between
system modeling, fault diagnosis, and verification. It also
highlights the increasing role of predictive and early fault
detection mechanisms in enhancing system reliability,
enabling proactive maintenance, and supporting decision-
making in discrete-event systems.

optimization

degign
fault-g'ggnosis

verifigation

petriinets

systgms framework

diagrwbility

failure@iagnosis

. discrete-w systems

madel
S, VOSviewer .

Figure 4. Keyword Co-Occurrence network for Event-Based
PHM literature.

3. RESULTS DISCUSSION

3.1. Event Data and Pattern Mining Approaches in
PHM

In recent years, the use of event-based data has gained
increasing attention in the PHM domain due to its high
interpretability, lower data acquisition costs, and ability to
directly represent system transitions. Event data typically
consist of discrete occurrences such as alarm activations,
operational mode changes, maintenance logs, and threshold
violations that mark observable changes in system
behavior(Ariamuthu Venkidasalapathy & Kravaris, 2021;
Benatia, Louis, & Baudry, 2020; Bezerra et al., 2019; Del
Moral, Nowaczyk, & Pashami, 2022; Guillaume, Vrain, &
Wael, 2020; Gutschi, Furian, Suschnigg, Neubacher, &
Voessner, 2019; Petsinis, Naskos, & Gounaris, 2021). Unlike
continuous sensor streams, event logs provide a sparse yet
semantically meaningful abstraction of system dynamics,
which can reduce data redundancy and facilitate more

interpretable pattern discovery for degradation analysis (He
et al., 2021; Liu et al., 2018). Event data are collected from
multiple sources, including programmable logic controllers
(PLCs), maintenance logs, and sensor-driven threshold alerts.
Table 1 presents the major types of event data utilized in
PHM. Despite their advantages, the heterogeneity of
industrial systems poses challenges to the effective use of
event data in PHM.

Variability in data formats, semantic interpretations, sensor
granularity, and logging policies complicates the direct
application  of generalized modeling techniques.
Consequently, there is a growing need for scalable, robust,
and domain-adaptive pattern extraction methods capable of
handling irregular, noisy, and non-uniform event sequences
(Wuest, Weimer, Irgens, & Thoben, 2016). To address these
issues, numerous pattern mining approaches have been
developed to uncover diagnostic and prognostic insights from
event logs. Initial efforts focused on classical data mining
methods such as frequent item set mining and sequential
pattern discovery, which aim to identify recurring event
combinations or fault-related subsequences (Liu et al.,
2018),(Ifraz, Ersdz, Aktepe, & Cetinyokus, 2024),
(Kawabata, Matsubara, & Sakurai, 2019; Yan, Cao, Madden,
& Rundensteiner, 2018).

Table 1 Classification of Event Data Types and Sources

Event Data Typical References
Sources
(Ariamuthu
Alarm System alarms, Venkidgsalap athy &
Events sensor alerts Kravaris, 2021), (Bezerra et
al., 2019), (Benatia et al.,
2020)
(Gutschi et al, 2019),
Operational (Guillaume et al., 2020),
Status logs PLC (Marin-Castro &  Tello-
Changes statu’s Leal, 2021), (Dakic,
Stefanovic, Vuckovic,
Zizakov, & Stevanov, 2023)
(Atamuradov et al., 2017),
. (Del Moral et al., 2022),
. Maintenance ;
Maintenance logs work (Inyang, Petrunin, &
Actions ’ Jennions, 2023), (Rakesh,
order databases . f
Shruti, Thippeswamy,
Nithya, & Dheeraj, 2024)
(Petsinis et al.,, 2021),
Sensor  alerts ((jriannpqlidis, Gounaris,
Threshold .. > | Nikolaidis, = Naskos, &
Violations | Tl orne Caljouw, 2022), (Trilla,
systems Mijatovic, &  Vilasis-
Cardona, 2023)

These approaches are computationally efficient and easy to
interpret but often fail to capture complex temporal
dependencies or rare but critical failure patterns. To
overcome these limitations, more advanced models such as
Hidden Markov Models (HMMs) and Bayesian networks
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were introduced to model stochastic event transitions while
accounting for temporal uncertainty and incomplete data
(Cartella, Lemeire, Dimiccoli, & Sahli, 2015). Tree-based
classifiers like decision trees and ensemble learning methods
have also proven effective in balancing predictive accuracy
with model interpretability in real-world industrial settings
(Wuest et al., 2016). With the rise of deep learning, recent
developments have introduced neural network-based
approaches such as recurrent neural networks (RNNs) and
convolutional neural networks (CNNs)—that can
automatically learn nonlinear temporal features and long-
range dependencies from event sequences. These models
have achieved impressive predictive performance, especially
in complex systems, but often require large volumes of
labeled data and lack transparency (Guillaume et al.,
2020),(Yuan, Zhou, Sievenpiper, Mannar, & Zheng, 2011),
(Trilla et al., 2023), (Zhou et al., 2023). The progression of
these techniques highlights an important trade-off between
model complexity and interpretability. While -classical
pattern mining techniques remain valuable for their
transparency and simplicity, modern deep learning methods
excel in capturing intricate patterns at the cost of
explainability and scalability. Table 2 provides a comparative
summary of these pattern mining approaches, evaluating their
strengths, limitations, scalability, interpretability, robustness,
and representative studies.

Table 2 Pattern Extraction Techniques: Strengths and

Limitations

Technique Strengths Limitations References
(He et al.,
2021; Liu et
Frequent Simple, May miss rare ?Il;;)n 20 gg’
Pattern interpretable but  critical Congg7 ’
Mining patterns event patterns Dinh.Duc,
&  Ngoc,

2024),
(ifraz et al.,

. 2024),

. High . (Kawabata
Sequential Captures computational tal. 2019
Pattern event order | complexity stal, ’

.. .. Yan et al.,
Mining and timing for long 2018)
sequences (Bora}71 &
Nath)
(Cartella et
al., 2015),
Requires (Ariamuthu

S Handles Venkidasal
Probabilistic uncertaint careful aath &
Models Hny parameter pathy

and noisy data tuning Kravaris,
2021),
(Trilla et
al., 2023)

(Guillaume
et al.,

Learns Less 2020),
Deep complex . I (Yuan et
Learning temporal 1nterpreta‘lb © al.,, 2011),
(RNN/CNN) | dependencies gzte:s arege (Trilla et
automatically al.,, 2023),
(Zhou et al.,

2023),

3.2. Contributions of Event-Based Patterns in PHM

Event-based pattern analysis plays a pivotal role in enhancing
the diagnostic and prognostic capabilities of modern PHM
systems. By abstracting system behavior into discrete and
semantically meaningful events, such as fault activations or
operational state changes, these patterns enable more focused
and interpretable reasoning than raw sensor data. Rather than
processing continuous, noisy signals, PHM models can
leverage structured event sequences to detect anomalies,
characterize degradation, and estimate component health
trajectories (Zhou et al., 2023),(Trilla et al., 2023).

In diagnostic tasks, event patterns support the early
identification of incipient faults by capturing structured
relationships among abnormal behaviors. Classical methods
such as association rule mining and sequential pattern mining
are commonly employed to discover frequently co-occurring
or temporally dependent events from historical logs (Liu et
al., 2018), (ifraz et al., 2024). These approaches are both
interpretable and computationally efficient, making them
suitable for rule-based fault identification frameworks. In
more complex industrial environments, decision trees and
ensemble learning methods have demonstrated strong
performance in learning discriminative features from event
logs while preserving model transparency (Guillaume et al.,
2020). For example, recent studies have applied these
techniques to monitor rotating machinery, production lines,
and energy systems achieving accurate fault classification
and facilitating operator understanding without relying on
black-box models (Inyang et al., 2023).

For prognostics and Remaining Useful Life (RUL)
estimation, event sequences serve as temporal abstractions
that reflect the system’s health evolution. Unlike continuous
signal trends, they can capture latent degradation stages
through symbolic transitions. Survival analysis methods,
particularly Cox proportional hazards models, have been
employed to estimate failure probabilities from timestamped
events, improving robustness in the face of censored or
incomplete data (Fronza et al., 2011), (Yuan et al., 2011).
Some approaches further enhance prediction by
incorporating event-sequence features and domain
knowledge into hybrid survival frameworks. Probabilistic
models such as HMMs have also been applied to model
transitions between hidden health states under uncertainty
(Ariamuthu Venkidasalapathy & Kravaris, 2021). More
recently, deep learning models like RNNs and LSTM
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networks have shown strong capability in learning long-
range dependencies and degradation patterns directly from
event logs (Zhou et al., 2023). In practice, these methods are
often combined with statistical or physical models to form
hybrid frameworks, improving both generalization and
interpretability in RUL estimation.

In condition monitoring, event patterns are used to
continuously track system status and identify early signs of
abnormal behavior. These patterns are often structured into
Petri Net models to represent causal relationships and fault
propagation paths, enabling transparent monitoring in
complex systems (Blancke et al., 2018). Beyond Petri Nets,
other models such as finite state machines (FSMs), temporal
Bayesian networks are also employed to capture sequential
dependencies and system dynamics under uncertainty
(Arroyo-Figueroa & Sucar, 2013). In recent studies, graph-
based approaches, including dynamic dependency graphs and
temporal event networks, have shown promise in modeling
interactions across components in distributed systems
(Narapureddy). To support real-time and scalable
monitoring, especially in high-throughput industrial settings,
researchers have proposed streaming pattern mining,
incremental learning, and online graph updates, allowing the
system to evolve adaptively with new event inputs (Patnaik,
Ramakrishnan, Laxman, & Chandramouli, 2012), (Decker,
Leite, Giommi, & Bonacorsi, 2020). These techniques reduce
the need for full retraining, improve responsiveness, and are
increasingly integrated into modern PHM pipelines for
condition-aware maintenance decision-making.

Overall, event-based patterns offer a powerful and flexible
foundation for PHM systems by enabling modular,
interpretable, and scalable analysis across diagnostic,
prognostic, and monitoring tasks. Table 3 summarizes typical
methods used in each application area, highlighting the
diversity and adaptability of event-based approaches for
predictive maintenance

Table 3 Typical Event-Based Pattern Mining Methods Used

Aprilrcez;tlon Typical Methods References
Association  rule | (Liu et al., 2018), (ifraz
Diagnostics mining, sequential | et al., 2024), (Guillaume
pattern mining, | et al., 2020), (Inyang et
decision trees al., 2023)
Survival analysis, | (Fronza et al., 2011),
Prognostics HMMs, RNNs | (Yuan et al.,
(RUL) (LSTM),  hybrid | 2011),(Zhou et al.,
statistical models 2023),(Ureta, 2022)
(Arroyo-Figueroa &
.. Petri Nets, adaptive | Sucar, 2013),
Condition . :
Monitoring graphs, .st‘reamlng (Narapureddy), (Patnaik
pattern mining et al., 2012), (Decker et
al., 2020)

3.3. Challenges and Limitations in Event-Based PHM

Despite the growing interest in event-based approaches for
PHM, several technical and practical challenges hinder their
full deployment in real-world industrial settings. These
challenges span from data-related limitations to model
scalability, adaptability, and explainability, calling for both
methodological advancements and practical innovations.

Industrial event logs often suffer from heterogeneity in
structure, semantics, and granularity across vendors,
hindering data integration and cross-system generalization
(Marin-Castro & Tello-Leal, 2021). Additionally, data
quality issues such as noise, missing events, and
inconsistencies from sensor faults challenge reliable pattern
extraction (Marin-Castro & Tello-Leal, 2021),(Dakic et al.,
2023). The lack of publicly available, labeled event datasets
also restricts reproducibility and benchmarking, slowing
progress in developing and validating robust PHM models
(Su & Lee, 2023).

From a modeling perspective, most existing pattern mining
techniques emphasize frequent patterns, potentially
neglecting rare but critical event sequences that precede
major  failures (Long et al, 2024),(Shyalika,
Wickramarachchi, & Sheth, 2024). These rare events are vital
for early fault detection but are difficult to discover without
tailored algorithms or domain feedback. In addition,
capturing complex temporal dependencies in long and noisy
event streams demands sophisticated, efficient pattern
mining techniques that can scale computationally (Kawabata
etal., 2019; Yan et al., 2018).

Model transparency and explainability also remain key
limitations. Complex models, particularly deep learning-
based architectures like RNNs or hybrid neural-statistical
systems, often operate as black boxes. This lack of
interpretability hinders trust and adoption by practitioners
(Kundu & Hoque, 2023),(Nor et al., 2021). Incorporating
Explainable Al (XAI) tools such as attention visualization or
surrogate models can help elucidate model behavior and
build user confidence (Rakesh et al., 2024).Despite their
potential, event-based PHM systems face several key
challenges. Integrating event data with continuous sensor
signals remains limited, and hybrid models that fuse
symbolic and numerical data are still under development
(Tsallis, Papageorgas, Piromalis, & Munteanu, 2025).

Real-time applicability is another concern, as many
algorithms struggle with high-frequency, large-scale event
streams and lack online inference capabilities (Patnaik et al.,
2012),(Mayer, Mayer, & Abdo, 2017). Although streaming
pattern mining and online learning show promise (Patnaik et
al., 2012) their scalability in dynamic environments requires
improvement. Most models lack generalizability and cannot
adapt well to new systems or changing conditions. While
techniques like adaptive Petri Nets and transfer learning show
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potential, they remain immature and are not yet widely
applicable (Chiachio, Chiachio, Prescott, & Andrews, 2018).

Finally, human-in-the-loop integration is essential to ensure
interpretability, trust, and continuous model refinement
through expert feedback.

3.4. Toward a Generalizable Pattern Framework

Despite significant advancements in event-based PHM
research, current methods continue to face key challenges
that limit their practical applicability. As outlined in Section
3.3 and summarized in Table 4, these challenges do not
always occur together in every scenario but represent
recurring issues commonly encountered when extracting
meaningful patterns from industrial event logs. To address
these challenges, we propose a generalizable framework for
event-pattern construction, with the ultimate goal of
supporting downstream applications such as fault detection,
diagnostics, and RUL prediction. The patterns extracted
serve as compact, interpretable, and transferable
representations of system behavior, enabling effective use of
event data for predictive early faults. It also serves as a
foundation for predictive maintenance and decision-making
models.

The full process is illustrated in Figure 5, which provides an
end-to-end overview of the pipeline: from raw symbolic logs
to multi-source fusion, pattern discovery, and explainable
outputs. The architecture is modular and adaptable, allowing
it to scale across systems and data conditions.

Table 4 Typical Event-Based Pattern Mining Methods Used

Gap Description References
Data is not standardized, (Marin-Castro &
Gap 1 . . . Tello-Leal,
making generalization difficult 2021)
Gap 2 Lack of labels and context, (Dakic et al.,
P event meaning is unclear 2023)
Pattern mining often overlooks (Su & Lee,
Gap 3 important events 2023),
P (Borah & Nath)
Simple patterns fail to capture (Kawabata et
Gap 4 relational or temporal al., 2019),
dependencies (Borah & Nath)
. (Kawabata et
Gaps | Tt ATt 0401 |3 515 Vo
Y al., 2018)
. > (Patnaik et al.,
Gap 6 ]S)t;f:f;gg t(()ializndle real-time or 2012),(Mayer et
& al., 2017)
Patterns are hard to interpret, (Iﬁu;l?e&
Gap 7 impractical to use, and lack que,
explain abilit 2023),(Nor et
P Y al., 2021)
Lack of integrated multi-source
Gap 8 modeling: combining | (Tsallis et al.,
P continuous and discrete data is 2025)
difficult

The process begins with raw symbolic event logs, which
often vary widely in format, terminology, and semantic
granularity. To address this heterogeneity (Gap 1), event
tokens are first mapped to a unified ontology or taxonomy.
This standardization is guided by expert knowledge, which
helps clarify the meaning of domain-specific terms and align
them across different datasets or systems. By combining
automated parsing with expert-driven mapping, the
framework ensures semantic consistency and facilitates
downstream processing. Subsequently, semantic embedding
techniques such as Word2Vec or Event2Vec etc are applied
to encode symbolic sequences into continuous vector
representations. These sequences are segmented into time
windows or sessions, preserving temporal locality and system
context.

Since many datasets lack annotated fault data (Gap 2), the
framework adopts unsupervised learning methods—such as
clustering (e.g., KMeans, DBSCAN), LSTM autoencoders,
or isolation forests—to identify structural anomalies in event
sequences. These anomalies are assigned pseudo-labels,
enabling the creation of surrogate target variables for
downstream supervised tasks. To further mitigate data
imbalance caused by rare faults (Gap 4), data augmentation
techniques, including SMOTE and Generative Adversarial
Networks (GANSs), are employed. However, when datasets
are already balanced, this step can be omitted.

In the next stage, the framework performs pattern mining to
identify high-utility sub-patterns within the labeled
sequences. Methods such as n-gram mining, PrefixSpan, and
SPADE, along with attention mechanisms in Transformer or
LSTM architectures, are utilized to extract patterns that
reveal meaningful temporal dependencies. This process helps
capture long-range interactions and complex transitions (Gap
3), which are often overlooked in simple rule-based systems.

To improve cross-system generalization (Gap 5), learned
embeddings and sub-patterns are used in transfer learning
schemes. These embeddings serve as shared representations
that can be fine-tuned or reused across different machines,
product lines, or operational environments. The framework
thus supports flexible adaptation with minimal retraining
effort.

To handle real-time or streaming scenarios (Gap 6), the
framework incorporates online anomaly detection through a
sliding-window approach. Incoming event logs are
continuously segmented into short time-based windows,
which are encoded using pre-trained embeddings enriched
with temporal features (e.g., delta time). These segments are
then passed through lightweight models such as LSTM
Autoencoders or online classifiers that estimate
reconstruction errors on the fly. If the anomaly score exceeds
a threshold, a warning is triggered in real time. Additionally,
online learning tools (e.g., Incremental Isolation Forest) are
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integrated to support adaptive behavior and enable fast
response to system drift without full retraining. This allows
the framework to operate effectively in dynamic industrial
environments where timely fault detection is critical.

To address the limited semantic interpretability of discovered
event patterns (Gap 7), the framework incorporates a
dedicated explanation layer that combines Explainable Al
techniques with expert knowledge. This module goes beyond
structural analysis and focuses on interpreting the meaning of
each pattern specifically, whether it represents a normal

Although both data sources are often available, they are
typically analyzed separately, limiting their combined
potential for predictive maintenance. By synchronizing event
sequences with sensor measurements via timestamps, the
framework creates a unified representation that captures both

behavior, a sign of system degradation, or an actual fault.
While domain experts contribute contextual knowledge to
label and validate these behaviors. This human-in-the-loop
process enables the translation of abstract sequences into
semantically meaningful insights, enhancing trust,
facilitating corrective actions, and aligning pattern-based
predictions with real-world operational understanding.

To address the lack of integration between existing event logs
and continuous sensor signals in industrial systems (Gap 8),
the framework introduces a multi-modal fusion module.

discrete system transitions and continuous physical
dynamics. This integration enhances model performance by
providing richer context for state estimation, anomaly
detection, and fault diagnosis.

Mapping event \4‘ Expert knowledge
Event Taxonomy Clustering:
ontol standard :
L . KMeans, DBSCAN
Raw event Embedding S n-gram mining, Sequential Pattern
techniques ]
log data q Autoencoder Mining: PrefixSpan, SPADE,
Word2Vec  Event2Vec Attention in Transformer
s 2
General feature learning &\ -~
Segment event sequences transfer learning Data Augmentation
into time windows or session Learn generic embedding for event .
logs that can be applied across J SMOTE: Generative
Normalize and represent event multiple systems "connect” adjacent Adversarial
L \ log data anomalous patterns  Network
Applications
for PHM |« |

v

Multi-modal data fusion
Synchronize event logs with sensor data via
timestamp, using multi-modal deep learning

architecture

Explain and visualize

explainable Al (XAl): attention visualization,
rule extraction, surrogate models.

Figure 5 Proposing a generalized Event Pattern building framework for PHM

4. CONCLUSION

This paper presented a systematic review of event-based
approaches in Prognostics and Health Management (PHM),
emphasizing their potential to improve diagnostics,
prognostics, and condition monitoring through interpretable
and cost-efficient event patterns. We categorized event data
types, compared various pattern extraction techniques, and
analyzed their application domains. Despite notable progress,
challenges remain regarding data heterogeneity, limited
labels, pattern generalizability, and real-time implementation
in dynamic environments. To bridge these gaps, we proposed

a generalizable event-pattern framework that integrates
unsupervised learning, anomaly detection, temporal
modeling, expert feedback, and multi-source data fusion.
This framework supports scalable PHM solutions and
encourages reuse across diverse industrial systems. Future
work should focus on benchmarking with real-world datasets,
validating hybrid approaches, and developing practical tools
that enable seamless integration into existing maintenance
workflows. The proposed framework lays the foundation for
a more intelligent, transparent, and sustainable maintenance
ecosystem.
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NOMENCLATURE

PHM  Prognostics and Health Management
RUL  Remaining Useful Life
XAI Explainable Al

CNN  Convolutional Neural Network
LSTM Long Short-Term Memory
RNN  Recurrent Neural Network

GAN  Generative Adversarial Network
AE Autoencoder

HMM  Hidden Markov Models
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