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ABSTRACT 

In the modern industrial context, Prognostics and Health 

Management (PHM) systems based on data-driven 

approaches have been widely and effectively developed to 

reduce maintenance costs. However, continuous data requires 

large memory capacity and high costs. Therefore, in recent 

years, the use of event-based data for PHM models has 

become prominent and increasingly attracts attention due to 

its cost-efficiency and effectiveness. This surge in data 

availability has opened new avenues for developing data-

driven methods that leverage event patterns to enhance 

diagnostic, prognostic, and predictive maintenance 

capabilities. Building meaningful and interpretable patterns 

from raw event data is crucial for understanding system 

behavior, detecting faults early, forecasting future failures, 

and accurately estimating the Remaining Useful Life (RUL) 

of critical components. This review paper systematically 

surveys the state-of-the-art methodologies and frameworks 

for extracting, modeling, and utilizing event-based patterns 

in the context of diagnostic and prognostic applications.  

Furthermore, we analyze challenges related to event data 

heterogeneity, scalability, and interpretability, as well as the 

need for robust pattern extraction methods that can adapt to 

dynamic operating environments. The review further 

explores how these event-based patterns contribute to 

building reliable diagnostic models, enabling early fault 

detection, and supporting maintenance decision-making 

through precise prognostics. Finally, this paper identifies key 

research gaps and outlines future directions, emphasizing the 

need for explainable, adaptive, and scalable pattern mining 

approaches that effectively translate raw event data into 

actionable maintenance intelligence. To tackle these 

challenges, we propose a unified pattern construction 

framework general event pattern for diagnostic, prognostic, 

and RUL prediction tasks, designed to be adaptable across 

diverse industrial systems. This comprehensive survey aims 

to serve as a foundational reference for researchers and 

practitioners committed to leveraging event data for 

enhanced system reliability and the development of 

optimized, intelligent maintenance strategies. 

1. INTRODUCTION 

Industrial systems are increasingly complex, and their 

reliable operation is vital to ensure safety, minimize 

downtime, and reduce maintenance costs. In recent years, 

Prognostics and Health Management (PHM) has emerged as 

a transformative approach that leverages data analytics and 

machine learning to assess system health, early detect faults, 

and predict the Remaining Useful Life (RUL) of critical 

components (Lee et al., 2014). PHM plays a central role in 

enabling predictive maintenance, helping organizations shift 

from reactive and time-based maintenance to proactive 

strategies that reduce unexpected failures and optimize 

maintenance schedules (Jardine, Lin, & Banjevic, 2006). 

Traditional PHM systems have predominantly relied on 

continuous time-series data gathered from sensors 

monitoring physical parameters such as temperature, 

pressure, vibration, and flow rate (Si, Wang, Hu, & Zhou, 

2011). While effective, such data acquisition entails 

significant costs in terms of data storage, processing power, 

and sensor infrastructure, especially when scaled to large 

industrial facilities. Furthermore, continuous monitoring 

generates massive volumes of data, much of which may be 

redundant or uninformative for early fault detection (Nor, 
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To address these challenges, recent research has turned 

toward event-based data, which captures system behavior 

through discrete events such as alarms, status changes, 

maintenance actions, and threshold violations. Event-based 

data, which reflect transitions in system states or specific.

operational triggers, offer valuable insights for understanding 

equipment behavior and predicting future failures without the 

overhead of handling full continuous streams. These sparse 

and meaningful representations not only reduce data volume 

but also offer cost-effective and scalable alternatives for 

PHM modeling (Saxena, Celaya, Saha, Saha, & Goebel, 

2010). Event-based PHM has shown promise in enhancing 

both diagnostic and prognostic tasks by focusing on patterns 

in event sequences rather than raw time-series streams 

(Fronza, Sillitti, Succi, & Vlasenko, 2011). However, despite 

their potential, challenges remain in effectively extracting, 

modeling, and applying event patterns across diverse 

industrial systems. Current literature lacks a comprehensive 

review addressing these issues, including pattern 

construction, heterogeneity, and scalability. 

Despite the growing interest, research on event-based PHM 

remains scattered, and few review studies comprehensively 

assess its methodologies, challenges, and applications. 

Existing reviews on PHM primarily emphasize condition 

monitoring, fault diagnosis, and deep learning models based 

on continuous signals (Fink et al., 2020; Zhang et al., 2019; 

Zhao et al., 2019). For instance, (Jia, Huang, Feng, Cai, & 

Lee, 2018) surveyed data-driven PHM using deep learning 

but did not focus on event-level representations. Similarly, 

major reviews by (Tsui, Chen, Zhou, Hai, & Wang, 2015) 

and  (Atamuradov, Medjaher, Dersin, Lamoureux, & 

Zerhouni, 2017) concentrate on condition monitoring, fault 

diagnosis, and RUL estimation from sensor-based continuous 

signals without addressing the potential of event-driven 

techniques. This lack of focused analysis motivates the need 

for a systematic review consolidating developments in event-

based pattern mining and modeling for PHM. 

This paper presents a comprehensive systematic review of 

event-based PHM methods, aiming to (i)-highlight the 

evolution of diagnostic and prognostic approaches using 

event sequences, (ii)-evaluate the scalability, interpretability, 

and robustness of existing models, (iii)-identify open 

challenges in real-world deployments, and (iv) explore the 

design of a generalizable event-pattern framework applicable 

to multiple PHM tasks and diverse industrial contexts. The 

review also considers hybrid frameworks that combine expert 

knowledge models with data-driven insights, and emphasizes 

the need for explainable and adaptive algorithms capable of 

operating in dynamic environments. 

Current literature lacks a comprehensive review addressing 

these issues, including pattern construction, heterogeneity, 

and scalability. This review aims to fill this gap by 

systematically analyzing the latest developments in event-

based PHM methodologies. We focus on three key research 

questions: RQ1: What are the main event data types and 

pattern extraction techniques used in PHM? RQ2: How do 

event patterns contribute to PHM applications? RQ3: What 

are the existing challenges and solutions for applying event-

based methods in industrial PHM? RQ4: How can a single, 

flexible framework for pattern construction be designed to 

support multiple PHM tasks and adapt to diverse industrial 

systems?  

The remainder of this paper is organized as follows: Section 

2 describes the review methodology, including search 

strategy, inclusion criteria, and research questions Section 3 

summarizes key methods in event-based PHM, highlighting 

diverse pattern mining techniques and their applications in 

diagnostics, prognostics, and monitoring. It emphasizes the 

strengths and limitations of models and provides a framework 

to address the remaining limitations. Section 4 concludes the 

paper with final observations and recommendations. 

2. METHODOLOGY OF SYSTEMATIC REVIEW 

2.1. Literature Search Strategy 

This review employs a systematic literature review 

methodology (Tranfield, Denyer, & Smart, 2003) to ensure a 

rigorous and unbiased synthesis of research on event-based 

PHM approaches. The key steps of this methodology are as 

follows: (i)-defining research scope and objectives which 

were established to guide the review with a focus on event 

data types, pattern extraction techniques, and the challenges 

of applying event-based PHM; (ii)-conducting a database 

search; (iii)-screening and selecting relevant studies; and (iv) 

extracting and synthesizing the data. 

To conduct a comprehensive and systematic literature 

review, an initial combination of keywords was constructed 

using logical operators (AND, OR) to accurately capture 

relevant studies on predictive maintenance within event-

driven data applications in PHM. Following extensive 

screening, the finalized keyword set (Figure 1) guided 

concurrent searches on Web of Science, Springer Link and 

IEEE xplore databases to ensure completeness and accuracy.  
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Figure  1 Keyword search strategy for literature selection for Event-Based PHM 

2.2. Study Selection and Screening Process 

The study selection process for this systematic review was 

carefully structured to ensure that only relevant and high-

quality studies on event-based PHM were included. An initial 

search across scientific databases yielded 414 records. The 

screening process began with the title screening of 414 

records, which led to the exclusion of 250 articles due to 

irrelevance or duplication. 

Subsequent stages involved abstract screening, where 164 

abstracts were reviewed in detail. This step resulted in the 

exclusion of 112 records for failing to meet the inclusion 

criteria, which specified that papers must focus on diagnostic 

or prognostic models using event-based data or 

methodologies that extract or model event patterns for health 

assessment or maintenance planning. Studies that did not 

contribute methodology (e.g., editorial notes, opinion pieces) 

or were biomedical PHM or focused on power transmission 

diagnostics were excluded. The eligibility phase consisted of 

full-text assessment for 52 publications, with 10 excluded for 

reasons such as inappropriate research questions (n=12) or 

unavailability of the full text (n=4). 

Ultimately, 36 publications were included in the qualitative 

synthesis, including 5 identified through an expert network. 

Therefore, 41 publications related to discrete event data were 

selected for study. This comprehensive and transparent 

process is illustrated in the accompanying PRISMA 

flowchart (Figure 2), which clearly outlines the stages of the 

study selection process. 

2.3. Keyword Co-occurrence Analysis 

Figure 3 illustrates the annual distribution of publications on 

event-based Prognostics and Health Management (PHM) 

from 2013 to 2025. The data show a relatively low number of 

publications in the early years, followed by a significant 

increase starting around 2018, indicating growing research 

interest in event-driven PHM methods. Before 2013, event-

based PHM approaches were either absent or rarely 

documented in academic literature, with most research 

focusing on continuous sensor data or physics-based 

modeling. Most of the publications from 2013 onward are 

sourced from major academic platforms such as Web of 

Science, IEEE Xplore, and SpringerLink, with a variety of 

other publishers contributing smaller shares. This reflects a 

broad and multidisciplinary dissemination of research in the 

event-based PHM domain. 

 

Figure 2. PRISMA flow diagram for literature selection 

process. 

  

 

Figure 3. Number of Event-Based PHM papers published by year 

 

The keyword co-occurrence analysis was conducted using 

VOSviewer software (Figure 4), and the resulting network 

graph is presented in the figure. Central to the network is 

“discrete-event systems,” which is strongly linked with 

“diagnosability,” “failure diagnosis,” and “verification,” 

emphasizing the importance of fault detection, system 

monitoring, and diagnostic verification in complex event-
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driven environments. This cluster highlights efforts to ensure 

that faults are not only identified but also verified in a timely 

and reliable manner. 

Another significant cluster connects “fault diagnosis” with 

“design,” “optimization,” and “prognostics,” indicating a 

focus on developing optimized diagnostic strategies and 

predictive models to anticipate failures. These associations 

underscore the growing emphasis on early detection of 

anomalies and degradations, which is crucial for minimizing 

downtime and preventing cascading failures.Modeling terms 

like “petri nets” indicate the use of formal models in 

diagnostic processes. 

Overall, this analysis reveals a close interplay between 

system modeling, fault diagnosis, and verification. It also 

highlights the increasing role of predictive and early fault 

detection mechanisms in enhancing system reliability, 

enabling proactive maintenance, and supporting decision-

making in discrete-event systems. 

 

Figure 4. Keyword Co-Occurrence network for Event-Based 

PHM literature. 

3. RESULTS DISCUSSION 

3.1. Event Data and Pattern Mining Approaches in 

PHM 

In recent years, the use of event-based data has gained 

increasing attention in the PHM domain due to its high 

interpretability, lower data acquisition costs, and ability to 

directly represent system transitions. Event data typically 

consist of discrete occurrences such as alarm activations, 

operational mode changes, maintenance logs, and threshold 

violations that mark observable changes in system 

behavior(Ariamuthu Venkidasalapathy & Kravaris, 2021; 

Benatia, Louis, & Baudry, 2020; Bezerra et al., 2019; Del 

Moral, Nowaczyk, & Pashami, 2022; Guillaume, Vrain, & 

Wael, 2020; Gutschi, Furian, Suschnigg, Neubacher, & 

Voessner, 2019; Petsinis, Naskos, & Gounaris, 2021). Unlike 

continuous sensor streams, event logs provide a sparse yet 

semantically meaningful abstraction of system dynamics, 

which can reduce data redundancy and facilitate more 

interpretable pattern discovery for degradation analysis (He 

et al., 2021; Liu et al., 2018). Event data are collected from 

multiple sources, including programmable logic controllers 

(PLCs), maintenance logs, and sensor-driven threshold alerts. 

Table 1 presents the major types of event data utilized in 

PHM. Despite their advantages, the heterogeneity of 

industrial systems poses challenges to the effective use of 

event data in PHM. 

Variability in data formats, semantic interpretations, sensor 

granularity, and logging policies complicates the direct 

application of generalized modeling techniques. 

Consequently, there is a growing need for scalable, robust, 

and domain-adaptive pattern extraction methods capable of 

handling irregular, noisy, and non-uniform event sequences 

(Wuest, Weimer, Irgens, & Thoben, 2016). To address these 

issues, numerous pattern mining approaches have been 

developed to uncover diagnostic and prognostic insights from 

event logs. Initial efforts focused on classical data mining 

methods such as frequent item set mining and sequential 

pattern discovery, which aim to identify recurring event 

combinations or fault-related subsequences (Liu et al., 

2018),(İfraz, Ersöz, Aktepe, & Çetinyokuş, 2024), 

(Kawabata, Matsubara, & Sakurai, 2019; Yan, Cao, Madden, 

& Rundensteiner, 2018). 

Table 1 Classification of Event Data Types and Sources 

 

Event Data 
Typical 

Sources 
References 

Alarm 

Events 

System alarms, 

sensor alerts 

(Ariamuthu 

Venkidasalapathy & 

Kravaris, 2021), (Bezerra et 

al., 2019), (Benatia et al., 

2020) 

Status 

Changes 

Operational 

logs, PLC 

status 

(Gutschi et al., 2019), 

(Guillaume et al., 2020),  

(Marin-Castro & Tello-

Leal, 2021), (Dakic, 

Stefanovic, Vuckovic, 

Zizakov, & Stevanov, 2023) 

Maintenance 

Actions 

Maintenance 

logs, work 

order databases 

(Atamuradov et al., 2017), 

(Del Moral et al., 2022), 

(Inyang, Petrunin, & 

Jennions, 2023), (Rakesh, 

Shruti, Thippeswamy, 

Nithya, & Dheeraj, 2024) 

Threshold 

Violations 

Sensor alerts, 

monitoring 

systems 

(Petsinis et al., 2021), 

(Giannoulidis, Gounaris, 

Nikolaidis, Naskos, & 

Caljouw, 2022), (Trilla, 

Mijatovic, & Vilasis-

Cardona, 2023) 

 

These approaches are computationally efficient and easy to 

interpret but often fail to capture complex temporal 

dependencies or rare but critical failure patterns. To 

overcome these limitations, more advanced models such as 

Hidden Markov Models (HMMs) and Bayesian networks 
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were introduced to model stochastic event transitions while 

accounting for temporal uncertainty and incomplete data 

(Cartella, Lemeire, Dimiccoli, & Sahli, 2015). Tree-based 

classifiers like decision trees and ensemble learning methods 

have also proven effective in balancing predictive accuracy 

with model interpretability in real-world industrial settings 

(Wuest et al., 2016). With the rise of deep learning, recent 

developments have introduced neural network-based 

approaches such as recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs)—that can 

automatically learn nonlinear temporal features and long-

range dependencies from event sequences. These models 

have achieved impressive predictive performance, especially 

in complex systems, but often require large volumes of 

labeled data and lack transparency (Guillaume et al., 

2020),(Yuan, Zhou, Sievenpiper, Mannar, & Zheng, 2011), 

(Trilla et al., 2023), (Zhou et al., 2023). The progression of 

these techniques highlights an important trade-off between 

model complexity and interpretability. While classical 

pattern mining techniques remain valuable for their 

transparency and simplicity, modern deep learning methods 

excel in capturing intricate patterns at the cost of 

explainability and scalability. Table 2 provides a comparative 

summary of these pattern mining approaches, evaluating their 

strengths, limitations, scalability, interpretability, robustness, 

and representative studies. 

Table 2 Pattern Extraction Techniques: Strengths and 

Limitations 

 

Technique Strengths Limitations References 

Frequent 

Pattern 

Mining 

Simple, 

interpretable 

patterns 

May miss rare 

but critical 

event patterns 

(He et al., 

2021; Liu et 

al., 2018), 

(Long, Ho, 

Cong, 

Dinh-Duc, 

& Ngoc, 

2024), 

Sequential 

Pattern 

Mining 

Captures 

event order 

and timing 

High 

computational 

complexity 

for long 

sequences 

(İfraz et al., 

2024), 

(Kawabata 

et al., 2019; 

Yan et al., 

2018), 

(Borah & 

Nath) 

Probabilistic 

Models 

Handles 

uncertainty 

and noisy data 

Requires 

careful 

parameter 

tuning 

(Cartella et 

al., 2015), 

(Ariamuthu 

Venkidasal

apathy & 

Kravaris, 

2021), 

(Trilla et 

al., 2023) 

Deep 

Learning 

(RNN/CNN) 

Learns 

complex 

temporal 

dependencies 

automatically 

Less 

interpretable, 

needs large 

data 

(Guillaume 

et al., 

2020), 

(Yuan et 

al., 2011),  

(Trilla et 

al., 2023), 

(Zhou et al., 

2023),  

3.2. Contributions of Event-Based Patterns in PHM 

Event-based pattern analysis plays a pivotal role in enhancing 

the diagnostic and prognostic capabilities of modern PHM 

systems. By abstracting system behavior into discrete and 

semantically meaningful events, such as fault activations or 

operational state changes, these patterns enable more focused 

and interpretable reasoning than raw sensor data. Rather than 

processing continuous, noisy signals, PHM models can 

leverage structured event sequences to detect anomalies, 

characterize degradation, and estimate component health 

trajectories (Zhou et al., 2023),(Trilla et al., 2023). 

In diagnostic tasks, event patterns support the early 

identification of incipient faults by capturing structured 

relationships among abnormal behaviors. Classical methods 

such as association rule mining and sequential pattern mining 

are commonly employed to discover frequently co-occurring 

or temporally dependent events from historical logs (Liu et 

al., 2018), (İfraz et al., 2024). These approaches are both 

interpretable and computationally efficient, making them 

suitable for rule-based fault identification frameworks. In 

more complex industrial environments, decision trees and 

ensemble learning methods have demonstrated strong 

performance in learning discriminative features from event 

logs while preserving model transparency (Guillaume et al., 

2020). For example, recent studies have applied these 

techniques to monitor rotating machinery, production lines, 

and energy systems achieving accurate fault classification 

and facilitating operator understanding without relying on 

black-box models (Inyang et al., 2023). 

For prognostics and Remaining Useful Life (RUL) 

estimation, event sequences serve as temporal abstractions 

that reflect the system’s health evolution. Unlike continuous 

signal trends, they can capture latent degradation stages 

through symbolic transitions. Survival analysis methods, 

particularly Cox proportional hazards models, have been 

employed to estimate failure probabilities from timestamped 

events, improving robustness in the face of censored or 

incomplete data (Fronza et al., 2011), (Yuan et al., 2011). 

Some approaches further enhance prediction by 

incorporating event-sequence features and domain 

knowledge into hybrid survival frameworks. Probabilistic 

models such as HMMs have also been applied to model 

transitions between hidden health states under uncertainty 

(Ariamuthu Venkidasalapathy & Kravaris, 2021). More 

recently, deep learning models like RNNs and LSTM 
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networks have shown strong capability in learning long-

range dependencies and degradation patterns directly from 

event logs (Zhou et al., 2023). In practice, these methods are 

often combined with statistical or physical models to form 

hybrid frameworks, improving both generalization and 

interpretability in RUL estimation. 

In condition monitoring, event patterns are used to 

continuously track system status and identify early signs of 

abnormal behavior. These patterns are often structured into 

Petri Net models to represent causal relationships and fault 

propagation paths, enabling transparent monitoring in 

complex systems (Blancke et al., 2018). Beyond Petri Nets, 

other models such as finite state machines (FSMs), temporal 

Bayesian networks are also employed to capture sequential 

dependencies and system dynamics under uncertainty 

(Arroyo-Figueroa & Sucar, 2013). In recent studies, graph-

based approaches, including dynamic dependency graphs and 

temporal event networks, have shown promise in modeling 

interactions across components in distributed systems 

(Narapureddy). To support real-time and scalable 

monitoring, especially in high-throughput industrial settings, 

researchers have proposed streaming pattern mining, 

incremental learning, and online graph updates, allowing the 

system to evolve adaptively with new event inputs (Patnaik, 

Ramakrishnan, Laxman, & Chandramouli, 2012), (Decker, 

Leite, Giommi, & Bonacorsi, 2020). These techniques reduce 

the need for full retraining, improve responsiveness, and are 

increasingly integrated into modern PHM pipelines for 

condition-aware maintenance decision-making.  

Overall, event-based patterns offer a powerful and flexible 

foundation for PHM systems by enabling modular, 

interpretable, and scalable analysis across diagnostic, 

prognostic, and monitoring tasks. Table 3 summarizes typical 

methods used in each application area, highlighting the 

diversity and adaptability of event-based approaches for 

predictive maintenance 

Table 3 Typical Event-Based Pattern Mining Methods Used 
 

Application 

Area 
Typical Methods References 

Diagnostics 

Association rule 

mining, sequential 

pattern mining, 

decision trees 

(Liu et al., 2018), (İfraz 

et al., 2024), (Guillaume 

et al., 2020), (Inyang et 

al., 2023) 

Prognostics 

(RUL) 

Survival analysis, 

HMMs, RNNs 

(LSTM), hybrid 

statistical models 

(Fronza et al., 2011), 

(Yuan et al., 

2011),(Zhou et al., 

2023),(Ureta, 2022) 

Condition 

Monitoring 

Petri Nets, adaptive 

graphs, streaming 

pattern mining 

(Arroyo-Figueroa & 

Sucar, 2013), 

(Narapureddy), (Patnaik 

et al., 2012), (Decker et 

al., 2020) 

3.3. Challenges and Limitations in Event-Based PHM 

Despite the growing interest in event-based approaches for 

PHM, several technical and practical challenges hinder their 

full deployment in real-world industrial settings. These 

challenges span from data-related limitations to model 

scalability, adaptability, and explainability, calling for both 

methodological advancements and practical innovations. 

Industrial event logs often suffer from heterogeneity in 

structure, semantics, and granularity across vendors, 

hindering data integration and cross-system generalization 

(Marin-Castro & Tello-Leal, 2021). Additionally, data 

quality issues such as noise, missing events, and 

inconsistencies from sensor faults challenge reliable pattern 

extraction (Marin-Castro & Tello-Leal, 2021),(Dakic et al., 

2023). The lack of publicly available, labeled event datasets 

also restricts reproducibility and benchmarking, slowing 

progress in developing and validating robust PHM models 

(Su & Lee, 2023). 

From a modeling perspective, most existing pattern mining 

techniques emphasize frequent patterns, potentially 

neglecting rare but critical event sequences that precede 

major failures (Long et al., 2024),(Shyalika, 

Wickramarachchi, & Sheth, 2024). These rare events are vital 

for early fault detection but are difficult to discover without 

tailored algorithms or domain feedback. In addition, 

capturing complex temporal dependencies in long and noisy 

event streams demands sophisticated, efficient pattern 

mining techniques that can scale computationally (Kawabata 

et al., 2019; Yan et al., 2018).  

Model transparency and explainability also remain key 

limitations. Complex models, particularly deep learning-

based architectures like RNNs or hybrid neural-statistical 

systems, often operate as black boxes. This lack of 

interpretability hinders trust and adoption by practitioners 

(Kundu & Hoque, 2023),(Nor et al., 2021). Incorporating 

Explainable AI (XAI) tools such as attention visualization or 

surrogate models can help elucidate model behavior and 

build user confidence (Rakesh et al., 2024).Despite their 

potential, event-based PHM systems face several key 

challenges. Integrating event data with continuous sensor 

signals remains limited, and hybrid models that fuse 

symbolic and numerical data are still under development 

(Tsallis, Papageorgas, Piromalis, & Munteanu, 2025). 

Real-time applicability is another concern, as many 

algorithms struggle with high-frequency, large-scale event 

streams and lack online inference capabilities (Patnaik et al., 

2012),(Mayer, Mayer, & Abdo, 2017). Although streaming 

pattern mining and online learning show promise (Patnaik et 

al., 2012) their scalability in dynamic environments requires 

improvement. Most models lack generalizability and cannot 

adapt well to new systems or changing conditions. While 

techniques like adaptive Petri Nets and transfer learning show 
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potential, they remain immature and are not yet widely 

applicable (Chiachío, Chiachío, Prescott, & Andrews, 2018).   

Finally, human-in-the-loop integration is essential to ensure 

interpretability, trust, and continuous model refinement 

through expert feedback. 

3.4. Toward a Generalizable Pattern Framework 

Despite significant advancements in event-based PHM 

research, current methods continue to face key challenges 

that limit their practical applicability. As outlined in Section 

3.3 and summarized in Table 4, these challenges do not 

always occur together in every scenario but represent 

recurring issues commonly encountered when extracting 

meaningful patterns from industrial event logs. To address 

these challenges, we propose a generalizable framework for 

event-pattern construction, with the ultimate goal of 

supporting downstream applications such as fault detection, 

diagnostics, and RUL prediction. The patterns extracted 

serve as compact, interpretable, and transferable 

representations of system behavior, enabling effective use of 

event data for predictive early faults. It also serves as a 

foundation for predictive maintenance and decision-making 

models. 

The full process is illustrated in Figure 5, which provides an 

end-to-end overview of the pipeline: from raw symbolic logs 

to multi-source fusion, pattern discovery, and explainable 

outputs. The architecture is modular and adaptable, allowing 

it to scale across systems and data conditions. 

Table 4 Typical Event-Based Pattern Mining Methods Used 

 
Gap Description References 

Gap 1 
Data is not standardized, 

making generalization difficult 

(Marin-Castro & 

Tello-Leal, 

2021) 

Gap 2 
Lack of labels and context, 

event meaning is unclear 

(Dakic et al., 

2023) 

Gap 3 
Pattern mining often overlooks 

important events 

(Su & Lee, 

2023), 

(Borah & Nath) 

Gap 4 

Simple patterns fail to capture 

relational or temporal 

dependencies 

(Kawabata et 

al., 2019), 

(Borah & Nath) 

Gap 5 
Patterns are difficult to apply 

across different systems 

(Kawabata et 

al., 2019; Yan et 

al., 2018) 

Gap 6 
Difficult to handle real-time or 

streaming data 

(Patnaik et al., 

2012),(Mayer et 

al., 2017) 

Gap 7 

Patterns are hard to interpret, 

impractical to use, and lack 

explain ability 

(Kundu & 

Hoque, 

2023),(Nor et 

al., 2021) 

Gap 8 

Lack of integrated multi-source 

modeling: combining 

continuous and discrete data is 

difficult 

(Tsallis et al., 

2025) 

 

The process begins with raw symbolic event logs, which 

often vary widely in format, terminology, and semantic 

granularity. To address this heterogeneity (Gap 1), event 

tokens are first mapped to a unified ontology or taxonomy. 

This standardization is guided by expert knowledge, which 

helps clarify the meaning of domain-specific terms and align 

them across different datasets or systems. By combining 

automated parsing with expert-driven mapping, the 

framework ensures semantic consistency and facilitates 

downstream processing. Subsequently, semantic embedding 

techniques such as Word2Vec or Event2Vec etc are applied 

to encode symbolic sequences into continuous vector 

representations. These sequences are segmented into time 

windows or sessions, preserving temporal locality and system 

context. 

Since many datasets lack annotated fault data (Gap 2), the 

framework adopts unsupervised learning methods—such as 

clustering (e.g., KMeans, DBSCAN), LSTM autoencoders, 

or isolation forests—to identify structural anomalies in event 

sequences. These anomalies are assigned pseudo-labels, 

enabling the creation of surrogate target variables for 

downstream supervised tasks. To further mitigate data 

imbalance caused by rare faults (Gap 4), data augmentation 

techniques, including SMOTE and Generative Adversarial 

Networks (GANs), are employed. However, when datasets 

are already balanced, this step can be omitted. 

In the next stage, the framework performs pattern mining to 

identify high-utility sub-patterns within the labeled 

sequences. Methods such as n-gram mining, PrefixSpan, and 

SPADE, along with attention mechanisms in Transformer or 

LSTM architectures, are utilized to extract patterns that 

reveal meaningful temporal dependencies. This process helps 

capture long-range interactions and complex transitions (Gap 

3), which are often overlooked in simple rule-based systems. 

To improve cross-system generalization (Gap 5), learned 

embeddings and sub-patterns are used in transfer learning 

schemes. These embeddings serve as shared representations 

that can be fine-tuned or reused across different machines, 

product lines, or operational environments. The framework 

thus supports flexible adaptation with minimal retraining 

effort. 

To handle real-time or streaming scenarios (Gap 6), the 

framework incorporates online anomaly detection through a 

sliding-window approach. Incoming event logs are 

continuously segmented into short time-based windows, 

which are encoded using pre-trained embeddings enriched 

with temporal features (e.g., delta time). These segments are 

then passed through lightweight models such as LSTM 

Autoencoders or online classifiers that estimate 

reconstruction errors on the fly. If the anomaly score exceeds 

a threshold, a warning is triggered in real time. Additionally, 

online learning tools (e.g., Incremental Isolation Forest) are 
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integrated to support adaptive behavior and enable fast 

response to system drift without full retraining. This allows 

the framework to operate effectively in dynamic industrial 

environments where timely fault detection is critical. 

To address the limited semantic interpretability of discovered 

event patterns (Gap 7), the framework incorporates a 

dedicated explanation layer that combines Explainable AI 

techniques with expert knowledge. This module goes beyond 

structural analysis and focuses on interpreting the meaning of 

each pattern specifically, whether it represents a normal 

behavior, a sign of system degradation, or an actual fault. 

While domain experts contribute contextual knowledge to 

label and validate these behaviors. This human-in-the-loop 

process enables the translation of abstract sequences into 

semantically meaningful insights, enhancing trust, 

facilitating corrective actions, and aligning pattern-based 

predictions with real-world operational understanding. 

To address the lack of integration between existing event logs 

and continuous sensor signals in industrial systems (Gap 8), 

the framework introduces a multi-modal fusion module. 

Although both data sources are often available, they are 

typically analyzed separately, limiting their combined 

potential for predictive maintenance. By synchronizing event 

sequences with sensor measurements via timestamps, the 

framework creates a unified representation that captures both 

discrete system transitions and continuous physical 

dynamics. This integration enhances model performance by 

providing richer context for state estimation, anomaly 

detection, and fault diagnosis. 

  

  

 Figure 5 Proposing a generalized Event Pattern building framework for PHM

4. CONCLUSION 

This paper presented a systematic review of event-based 

approaches in Prognostics and Health Management (PHM), 

emphasizing their potential to improve diagnostics, 

prognostics, and condition monitoring through interpretable 

and cost-efficient event patterns. We categorized event data 

types, compared various pattern extraction techniques, and 

analyzed their application domains. Despite notable progress, 

challenges remain regarding data heterogeneity, limited 

labels, pattern generalizability, and real-time implementation 

in dynamic environments. To bridge these gaps, we proposed 

a generalizable event-pattern framework that integrates 

unsupervised learning, anomaly detection, temporal 

modeling, expert feedback, and multi-source data fusion. 

This framework supports scalable PHM solutions and 

encourages reuse across diverse industrial systems. Future 

work should focus on benchmarking with real-world datasets, 

validating hybrid approaches, and developing practical tools 

that enable seamless integration into existing maintenance 

workflows. The proposed framework lays the foundation for 

a more intelligent, transparent, and sustainable maintenance 

ecosystem. 
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NOMENCLATURE 

PHM Prognostics and Health Management 

RUL Remaining Useful Life 

XAI Explainable AI 

CNN      Convolutional Neural Network 

LSTM    Long Short-Term Memory 

RNN      Recurrent Neural Network 

GAN      Generative Adversarial Network 

AE          Autoencoder 

HMM     Hidden Markov Models 
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