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ABSTRACT

While supervised machine learning is prevalent in prognos-
tics and health management applications, the success of these
models is dependent upon being trained on accurate data.
Training data collected with faulty sensors can degrade the
performance of these models when deployed in an opera-
tional environment. This study investigates the impact of
faulty data and the robustness of feature extraction methods
and tree-based classifiers. This study also provides an open-
source software package for injecting faults into time series
data. The numerical experiments are performed on an open-
source hydraulic actuator data set and demonstrate that cer-
tain features are robust to certain types of faults and that more
complex models, such as ensemble techniques, are more ro-
bust to sensor faults than simple models. This work suggests
that more complex models and larger (and possibly redun-
dant) feature sets may be preferred in situations where sensor
faults are likely. Furthermore, certain feature extraction tech-
niques may be selected if certain faults are more likely than
others.

1. INTRODUCTION

Machine learning (ML) has had a significant impact on
the field of prognostics and health management (PHM)
(Rezaeianjouybari & Shang, 2020; Fink et al., 2020; Zhang et
al., 2019). When deploying an ML-based PHM system, the
data pipeline for many applications is to collect data using
sensors from a system, extract features from the sensor sig-
nals, and then use the ML model for estimation of the health
state or remaining useful life. For successful deployment of
the model, it must be trained on data that is representative
of the deployed environment. There are numerous sources
of error that could cause the deployed environment to differ
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from the training environment. Furthermore, when designing
an ML-based PHM system and the data pipeline, it is critical
to understand how the system will respond and adapt to the
deployed environment. The data pipeline may be able to be
designed to be robust to particular disturbances that are likely
to occur in the deployed environment.

Sensors play a critical role in the data pipeline, but like
any other system, they can degrade over time or be faulty
from the start. Corrupted sensor data can degrade the per-
formance of the ML model by creating differences in the
marginal distributions of the training and deployed data.
In the ML community, this is often referred to as domain
shift and can be addressed using transfer learning tech-
niques (Pan & Yang, 2009). However, transfer learning re-
quires data collection and retraining in the deployed environ-
ment. ML models have also been developed to detect sen-
sor faults but these studies do not address mediation of the
fault (Argawal, Kalel, Harshit, Domnic, & Singh, 2021; Mar-
takis et al., 2021; Mohapatra, Subudhi, & Daniel, 2020; de
Silva et al., 2020; Adams, Beling, Greenspan, Velez-Rojas,
& Mankovski, 2018; Liu, Adams, & Beling, 2020). A more
straightforward approach is to train models that are robust to
differences in the training and deployed environment, essen-
tially zero-shot transfer learning.

Adversarial ML techniques assume that an adversary is in-
tentionally trying to degrade the ML pipeline with the ob-
jective of changing the prediction of the model (Wang, Li,
Kuang, Tan, & Li, 2019), but most of the work in this area fo-
cuses on computer vision (Machado, Silva, & Goldschmidt,
2021). Adversarial training adds corrupted examples to the
training set with the objective of making the learned model
robust to similar examples during deployment (Wiyatno, Xu,
Dia, & De Berker, 2019). Adversarial training could be used
to strengthen PHM models against sensor faults, however the
techniques used to generate adversarial examples often focus
on selecting examples that will most affect the model, which
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aligns with the adversary’s intent. Sensor faults are naturally
occurring and adversarial selection techniques may select ex-
amples that are not possible on a real system. Other machine
learning methods account for noisy data during the train-
ing process but do not explicitly model sensor faults (Gupta
& Gupta, 2019; Alzraiee & Niswonger, 2024; Poulinakis,
Drikakis, Kokkinakis, & Spottswood, 2023), i.e. specific sen-
sor fault types are not considered. However, it is possible that
these methods could be adapted to explicitly account for sen-
sor faults in future studies.

The presented study focuses on sensor faults during the model
training process and seeks to understand the impact of com-
mon sensor faults on the model’s performance in the de-
ployed environment. Essentially, this study investigates the
case where sensors on the training testbed are faulty, and the
training data has been collected with faults. The first con-
tribution of this work is a study of the relationship between
common fault types and feature extraction techniques. Two
common faults, a noise fault and an offset fault, are injected
into the sensor data before feature extraction, and two statis-
tical features are extracted from the data: the mean and the
variance. This study also evaluates the performance of two
classification models on sensor faults: classification trees and
random forests. There are numerous other feature extraction
techniques, such as frequency domain features and higher or-
der moments, and classification models, such as neural net-
works, but this initial study focuses on a simple case. Other
feature extraction methods and models should be incorpo-
rated into future work. The second contribution of this work
is the release of a software package for injecting faults into
data1. The software package contains common sensor faults
that arise in PHM settings. A similar study has investigated
the impact of sensor noise for structural health monitoring
(Ibrahim, Eltawil, Na, & El-Tawil, 2019).

Hydraulic actuators are utilized in numerous applications and
have been used for many PHM studies (Adams et al., 2016,
2017; Meekins et al., 2018; Cody et al., 2019; Adams et
al., 2019; Adams, Cody, Beling, Polter, & Farinholt, 2020;
Meekins, Adams, Farinholt, Polter, & Beling, 2020). Much
of this prior work focuses on reducing the power consump-
tion of the model by selecting simple models (Adams et
al., 2016) and implementing feature selection (Adams et al.,
2017; Meekins et al., 2018, 2020). One of the results of the
presented work is that more complex models, such as the
random forest - an ensemble of classification trees, and di-
verse sensor and feature sets create models that are robust
to sensor faults. The numerical experiments in the presented
study use an open-source hydraulic actuator data set (Helwig,
Pignanelli, & Schtze, 2015; Helwig, Pignanelli, & Schütze,
2015a; Schneider, Helwig, & Schütze, 2017). A similar study
has investigated sensor faults with this data set (Helwig, Pig-
nanelli, & Schütze, 2015b). The presented study builds upon
1https : //github.com/vtnsi/fault injector

the previous study by focusing on designing a robust PHM
system through feature extraction and classifier selection, in-
stead of identifying faulty sensors and eliminating them from
the classifier’s input. Furthermore, the presented study uses
tree-based methods that outperform the linear discriminate
analysis in the previous study.

This study is organized as follows. Section 2 outlines the ca-
pabilities of the fault injector software package. Section 3 de-
scribes the statistical methods used for analyzing the features,
and Section 4 presents the numerical experiments. Section
5 outlines the conclusions of this study and areas for future
work.

2. FAULT INJECTOR

The Fault Injector software package allows users to augment
data in a way that represents a signal fault. The Fault Injector
has six different faults:

1. Drift - a linear line is added to the original signal data
resulting in the signal drifting further from the original
over time,

2. Offset - a constant value is added to the original signal,

3. No output (NaN) - all original values replaced with NaN
representing no output from the sensor,

4. Stuck value - all the faulty values will be equal to the
same value,

5. Gaussian noise - Gaussian random noise is added to the
original signal, and

6. Uniform noise - a uniform random variable [0, 1] is added
to the original signal.

All of the fault options augment the data in different ways,
while still resembling actual faults that can occur with sen-
sors. Additionally, they are customizable to inject different
fault magnitudes and varying lengths of data.

The standard ML pipeline for PHM applications is to collect
sensor signals, extract features from the signal, feed the ex-
tracted data to the ML model, and produce a prediction. The
faulty pipeline investigated in this study corrupts the sensor
signal before feature extraction. Figure 1 displays the stan-
dard ML pipeline (top) and the faulty ML pipeline (bottom).

3. STATISTICAL METHODS

All sensors have some amount of measurement error, which
can be broken down into two types of error: variance and bias.
Let τ0 represent the standard deviation of the measurement
error, and let b0 represent the bias of the measurement error.
Therefore, the collected signal s can be modeled as

s = s0 + b0 + ϵ0, (1)
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Figure 1. The top figure displays standard ML pipeline for PHM applications. The bottom figure displays the pipeline with a
noisy sensor fault.

where s0 is the true signal, and ϵ0 ∼ N (0, τ20 ).

There are many types of sensor faults. This study implements
two types of faults: a noise fault and an offset fault. A noise
fault adds additional random noise to the collected signal, and
the offset fault adds additional bias to the collected signal.
These types of faults are present when the collected signal
contains error that is greater than the measurement error. Let
s′ represent a sensor signal with a sensor fault

s′ = s+ b+ ϵ, (2)

where b is the bias from the offset fault, and ϵ ∼ N (0, τ2) is
the random noise from the noise fault.

Assume that there are I sensors, and J features to extract
from each sensor. Let xij = hj(si) represent the feature ex-
traction function for feature j = 1...J that converts the sensor
signal for sensor i = 1...I to xij . The individual features can
be accumulated into a single array x = [x11, ..., xIJ ]. Let
y = f(x) be a classifier that maps the feature array to classes
y = {1, ..., C}. The entire machine learning pipeline can be
modeled as y = f(h(s)), where s = [s1, ..., sI ].

There are numerous feature extraction functions that could be
used for h(s). In this study, the mean and the variance of the
sensor signals are used as features. Let µ and σ2 represent
the mean and variance of s collected for T time steps. The
calculation of the mean and variance is

µ =

∑T
t=1 st
T

, (3)

and

σ2 =

∑T
t=1(st − µ)2

T
. (4)

When a noise fault is present, b = 0 and τ > 0, so s′ = s+ ϵ.
After feature extraction, the mean and variance of the faulty
sensor signal are µ′ = µ and σ2′ = σ2 + τ2. When an offset
fault is present, b > 0 and τ = 0. After feature extraction,
µ′ = µ + b and σ2′ = σ2. In summary, a noise fault should
not affect the mean features, and an offset fault should not
affect the variance.

These results can be proven by treating the sensor signal as a
random variable S with expectation E[S] and variance Var[S].
The noise fault is the addition of two independent random
variables, so

E[S + ϵ] = E[S] + E[ϵ]
= E[S],

(5)

and

Var[S + ϵ] = Var[S] + Var[ϵ] + 2Cov[S, ϵ]
= Var[S] + Var[ϵ],

(6)

where Cov[S, ϵ] is the covariance. The offset fault is the ad-
dition of a constant to a random variable, so
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Table 1. Summary of Sensors. This table contains the sensor
type, the number of sensors of each type in the data set, the
units for each sensor, and the sampling rate.

Sensor Type # Sensors Units Hz
Pressure 6 bar 100

Temperature 4 degrees C 1
Flow 2 l/min 10

Motor Power 1 W 100
Vibration 1 mm/s 1

Cooling Efficiency 1 % 1
Cooling Power 1 kW 1

Efficiency Factor 1 % 1

E[S + b] = E[S] + E[b]
= E[S] + b,

(7)

and

Var[S + b] = E[(S + b)− E[S + b]]2

= E[S − E[S]]2

= Var[S].

(8)

4. NUMERICAL EXPERIMENTS

This section outlines the data set used in the numerical exper-
iments, the benchmark experiments, and the single and multi-
sensor fault analysis.

4.1. Data Set

The hydraulic actuator data set used in the numerical exper-
iments is publicly available on the UCI Machine Learning
Repository (Helwig, Pignanelli, & Schtze, 2015). The data
set contains 2205 observations. Seventeen sensors are used to
collect data from the hydraulic actuator at various sampling
rates. More information on each sensor type is displayed in
Table 1.

The data set contains four target conditions.

1. Cooler condition (3 states): 100% - full efficiency, 20%
- reduced efficiency, and 3% - near failure.

2. Valve condition (4 states): 100% - optimal switching,
90% - short lag, 80% - severe lag, and 73% near failure.

3. Internal pump leak (3 states): 0 - no leak, 1 - small leak,
and 2 - severe leak.

4. Hydraulic accumulator (4 states): 130 bar - ideal pres-
sure, 115 bar - slightly reduced pressure, 100 bar -
severely reduce pressure, and 90 bar - near failure.

Each value for the target variable state is treated as a discrete

Figure 2. Distribution of target variables.

class. The distribution of the target variables is displayed in
Figure 2.

4.2. Benchmark Experiments

This section outlines the benchmark experiments that were
conducted to establish the accuracy of the models without
sensor faults in the training data. Two models are evaluated:
classification trees (Rokach & Maimon, 2010) and random
forests (Breiman, 2001). For this set of experiments and all
following experiments, default parameter settings from the
scikit learn Python package (Pedregosa et al., 2011) are used
for the model, e.g. 100 estimators for the random forest. The
data set is split into training and testing sets with one third of
the data withheld for testing. Two features are extracted from
the sensor data: the mean and the variance. Before the fea-
tures are extracted, the data from the sensors are normalized
between 0 and 1. Models are trained on each feature set and a
combination of the feature sets, i.e. a data set with the mean
and variance features. The accuracy of each model is calcu-
lated on the test set. Each condition in the data set, e.g. cooler
condition, is treated as a unique target variable and numeri-
cal experiment. The training process is displayed as a block
diagram in Figure 3. The dashed line around the Fault Injec-
tion block indicates that this step is not performed during the
benchmark experiments.

Table 2 contains performance results for the benchmark ex-
periments. For the Accumulator target variable, the random
forest model trained using both feature sets (mean and vari-
ance) achieved an accuracy of 98%. The random forest using
just the mean features also had an accuracy of 98%, but the
random forest using just the variance features only had an ac-
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Figure 3. Training process. The dashed lines around the Fault Injection block indicates that this step is not conducted during
the benchmark experiments.

Table 2. Benchmark performance measures.

Target Model Mean Variance Mean+
Variance

Accumulator Tree 0.930 0.809 0.930
RF 0.984 0.924 0.982

Cooler Tree 0.997 0.986 0.997
RF 0.997 0.996 0.997

Pump Tree 0.993 0.966 0.984
RF 0.997 0.982 0.996

Valve Tree 0.913 0.930 0.941
RF 0.972 0.985 0.984

curacy of 92%. The classification tree was less accurate with
an accuracy of 93% when using the combined feature set and
the mean features and an accuracy of only 81% when using
the variance features. For the Cooler target variable, both
models and all feature sets had a high accuracy above 98%.
The models for the Pump target variables also achieved high
accuracy scores above 96%. For the Valve target variable, the
random forest had an accuracy above 97% for all feature sets.
The classification tree was less accurate but still maintained
accuracy above 91%.

4.3. Single Sensor Faults

This section outlines the numerical experiments where a fault
was added to a single sensor in the training set before fea-
ture extraction. The test data is not corrupted with a fault.
The fault was added to the entire length of the observation for
that sensor replicating the situation where the sensor is con-
sistently generating the fault. Every sensor was used as the
fault sensor. The standard deviation for the noise fault was
σ = [0.25, 0.5, 0.75, 1.0, 1.5, 2.0]. The value of the offset
used the same values as the standard deviation for the noise
fault. Similar to the previous section, the mean and variance
are used as features along with a combined feature data set.

Figures 4 and 5 present the results for the noise fault and the
offset fault respectively. The mean over the different sensors
for each fault parameter value is displayed. Generally, a fault
in a single sensor does not affect the accuracy of the model
on the test set. This can be observed by comparing the re-
sults in Figures 4 and 5 to the benchmark results in Table 2.

Similarly, increasing the magnitude of the fault does not de-
crease performance. Therefore, we can conclude that for the
actuator data set corrupting a single sensor will not impact the
performance of a model.

4.4. Multi-Sensor Faults

This section sequentially corrupts sensors in the training set.
The order of the sensors is determined by the feature im-
portance calculated from a model trained on an uncorrupted
training set. The importance of the sensor is estimated using
the mean of the features from that sensor. Let ηµi represent
the estimated feature importance for the mean of the ith sen-
sor, and let ησ

2

i represent the estimated feature importance for
the variance of the ith sensor. Then the importance of the ith

feature is

ηi =
ηµi + ησ

2

i

2
. (9)

For thoroughness, the same parameters as the previous ex-
periments are used for the magnitude of the fault, however
the magnitude has little impact on the performance. The pre-
sented results reflect the mean of the accuracy over the differ-
ent magnitudes of the fault.

Figures 6 and 7 display the results for the noise and offset
faults respectively where the order is least important sensor to
most important sensor. When adding noise to the mean fea-
ture subset, the performance across all labels does not start to
drop until more than 10 sensors are corrupted for both mod-
els. While theoretically adding noise should not affect the
mean feature subset, the mean of the finite sample from ϵ is
non-zero. When adding noise to the variance feature subset,
the effect can be seen almost immediately, and the classifica-
tion tree degrades faster than the random forest. The results
for the combined feature set show a decline but more features
need to be corrupted for a significant effect, and the classi-
fication tree degrades faster than the random forest model.
When adding an offset to the mean feature subset, perfor-
mance begins to degrade quickly. However, adding an offset
to the variance feature subset has no effect. As before, the
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Figure 4. Average accuracy when a noise fault is injected into
a single sensor. The average accuracy is over the sensors for
each value of the standard deviation of the noise.

Figure 5. Average accuracy when an offset fault is injected
into a single sensor. The average accuracy is over the sensors
for each value of the offset.
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Figure 6. Accuracy as noise is added to each feature sequentially starting with the least important feature.

Figure 7. Accuracy as offset is added to each feature sequentially starting with the least important feature.
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Figure 8. Accuracy as noise is added to each feature sequentially starting with the most important feature.

Figure 9. Accuracy as offset is added to each feature sequentially starting with the most important feature.
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combined feature set shows a degradation of performance but
more sensors need to be corrupted for a significant impact.

Figure 8 and 9 display the results for the noise and offset
faults respectively where the order is most important to least
important. As would be expected, the noise fault has little
impact on the mean feature subset until a larger number of
sensors are corrupted but an immediate impact on the perfor-
mance of the variance feature subset. The combined feature
set degrades at a slower rate than the variance feature subset.
Similarly, the offset fault quickly degrades the mean feature
subset, has little impact on the variance feature subset, and
slowly degrades the performance on the combined feature set.

In summary, the impact of the fault is dependent on the type
of fault and the extracted features. The mean feature appears
to be robust to the noise fault, and the variance feature appears
to be robust to the offset fault. If the type of fault that may
occur is unknown, a combined feature set may balance the
tradeoffs between the individual features. Furthermore, the
random forest appears to be more robust to sensor faults than
the classification tree. This observation aligns with theory as
ensemble techniques should be more robust to corrupted data.

5. CONCLUSION

This study demonstrates, through a statistical analysis, that
certain types of feature selection methods should eliminate
the impact of certain types of sensor faults. Specifically, noise
faults should not impact models that use mean of sensor sig-
nals as the features, and offset faults should not impact mod-
els that use the variance of the sensor signals as features. Fur-
thermore, this study has demonstrated that more-complex en-
semble techniques, such as the random forest, are more robust
to sensor faults than simple models, such as a classification
tree. This work suggests that larger feature sets and more
complex models may be preferred when sensor faults are a
concern. This could be contrary to work that focuses on re-
ducing feature sets and simplifying models to save cost and
deploy at the edge. Future work should focus on specific ML
methods that account for sensor faults during training, such
as the probabilistic random forest (Reis, Baron, & Shahaf,
2018). Furthermore, future work could expand the types of
faults and feature selection methods that are studied.
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