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ABSTRACT

Multitasking in mixed reality (MR) environments introduces
unique cognitive demands, particularly in workload
management. Accurate workload prediction is critical for
optimizing user experience, safety, and performance in such
settings. This study proposes a novel framework that
integrates large language models (LLMs) with traditional
workload assessment tools to enhance prediction accuracy in
MR multitasking scenarios. A multitasking experiment
involving 36 participants was conducted, combining real-
world and virtual tasks, with workload evaluated using
NASA-TLX. To address limited sample sizes, synthetic data
was generated using generative adversarial networks
(GANSs), enabling robust model training. We employed a
hybrid deep learning model that integrates LLM-generated
text embeddings with numerical features in a feedforward
neural network (FNN). Results show that integrating LLMs,
specifically BERT and GPT-2, significantly improves
workload prediction accuracy, with a root mean square error
(RMSE) reduction from 6.82 (FNN-only) to 0.95 (BERT-
integrated model). The findings underscore the potential of
LLMs to augment cognitive workload assessment,
supporting more adaptive and scalable human-machine
collaboration in MR environments.

1. INTRODUCTION

Multitasking has become increasingly valuable in today’s
complex digital landscape (Spink et al., 2008). The rapid
evolution of computing technologies has not only facilitated
multitasking but also redefined how humans interact with
digital content. Mixed reality (MR), a spectrum that blends
real and virtual environments, is at the forefront of this
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transformation, enabling seamless interactions in hybrid
digital-physical worlds. As Abrash et al. (2021) note, these
emerging platforms are expected to shape human-computer
interaction for decades to come.

While MR environments offer significant advantages for
enhancing multitasking capabilities, they also introduce new
cognitive and perceptual challenges. Users may experience
limitations such as motion sickness, visual strain, divided
attention, reduced performance, and increased cognitive
workload (Rokhsaritalemi et al., 2020). Among these,
workload, defined as the total mental, physical, or combined
demands placed on an individual or system to complete tasks
(Matthews et al., 2015), plays a crucial role in maintaining
system usability, user well-being, and operational safety.

Accurately assessing and predicting workload in MR
environments is essential for optimizing user experiences and
ensuring effective human-machine collaboration. One of the
most established subjective methods for workload evaluation
is the NASA Task Load Index (NASA-TLX), introduced by
Hart and Staveland (1988), which measures six key
dimensions: mental demand, physical demand, temporal
demand, performance, effort, and frustration. While NASA-
TLX provides structured insight into perceived workload, it
may not fully capture the nuance and context-dependency of
individual user experiences.

To address this limitation, we explore the integration of large
language models (LLMs) as a novel approach to enhancing
workload prediction. LLMs such as BERT and GPT-2 have
demonstrated strong capabilities in natural language
understanding, sentiment analysis, and context-aware
reasoning. These models are particularly well-suited for
analyzing unstructured user inputs, such as verbal feedback
or written reflections, which often contain implicit indicators
of cognitive and emotional strain. By leveraging their
capacity to extract meaning from complex textual data, LLMs
offer the potential to infer user workload more accurately and
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responsively than traditional models. When used in
conjunction with structured tools like NASA-TLX, LLMs
can provide a richer, more adaptive framework for workload
assessment in multitasking MR scenarios.

Thus, we hypothesize that integrating a pre-trained LLM into
the workload evaluation process will enhance the precision
and contextual sensitivity of workload prediction in mixed-
reality multitasking environments.

Multitasking has become valuable as our environment
becomes increasingly complex (Spink et al., 2008).
Furthermore, technological advancements have integrated
multitasking into our daily lives, with new computing
platforms poised to shape our digital interactions for the next
50 years, as explained by Abrash et al. (2021). These
technological advancements allow humans to engage
seamlessly in digital-physical worlds, known as mixed
reality.

Despite the advantages of multitasking in mixed reality
environments, which enhance user interaction in the real
world compared to other technologies (Rokhsaritalemi et al.,
2020), users may encounter challenges stemming from
human limitations, such as discomfort, motion sickness,
visual impairment, reduced focus, increased workload, and
more. Workload, defined as the total mental, physical, or
combined effort and demands placed on an individual or a
system to complete tasks (Matthews et al., 2015), is a critical
factor in human-machine collaboration and is essential for
promoting overall well-being and safety within health
management.

In this context, integrating advanced technologies like LLMs
offers innovative approaches to analyzing and predicting
perceived workload from user interactions and feedback. A
standard method for assessing perceived workload is the
NASA-TLX, the most established and widely used subjective
method for detailed workload analysis (Bousdekis et al.,
2022). Hart and Staveland (1988) introduced the
development of the NASA-TLX to evaluate workload across
six dimensions: mental demand, physical demand, temporal
demand, performance, effort, and frustration. By combining
LLMs with established tools like the NASA-TLX, we can
gain deeper insights into the workload, enhancing decision-
making processes and improving the reliability and
efficiency of human interactions with mixed reality
applications. Thus, we hypothesize that integrating a pre-
trained LLM model will enhance the workload prediction in
mixed-reality multitasking.

2. RELATED WORK

The challenges of multitasking often surface through
increased cognitive demands, such as elevated mental
workload, greater attention requirements, and limited
working memory capacity (Dzubak, 2008; Kudesia et al.,
2022). These effects are particularly pronounced because

workload, in particular, is believed to increase during
multitasking due to decreased available resources for each
task (Strayer et al., 2022). In our technology-driven society,
shaped by tools designed to support human activity (Carroll,
2017), multitasking has evolved significantly, especially
within MR environments, where it has become a fundamental
aspect of user interaction (North et al., 2021). In MR settings,
multitasking involves simultaneously engaging with both
physical and virtual elements (Speicher et al., 2019).

Empirical studies have consistently confirmed that
multitasking contributes to increased workload, particularly
in MR contexts. For instance, Li et al. (2022) examined
mental workload during a simulated flight multitasking
scenario, finding that higher workload conditions
corresponded with elevated NASA-TLX scores. Similarly,
Fick et al. (2023) conducted a study involving medical
students and neurosurgeons who performed a virtual tumor
detection task using mixed reality, traditional MRI, and a 3D
viewer. While MR yielded the best task performance, it also
resulted in higher reported mental and temporal workloads
compared to the other methods. In another study, Criollo et
al. (2024) investigated the cognitive demands of immersive
technologies in higher education. Their findings revealed that
students experienced a moderate level of mental workload
when using virtual and mixed reality tools, significantly
higher than when immersive technologies were not used in
the learning process, as measured by NASA-TLX.

2.1. Applications of LLMs in Workload Assessment

Exploring the integration of LLMs presents a promising
direction for addressing workload challenges in mixed-reality
environments. LLMs, a class of advanced artificial
intelligence systems, have shown exceptional capabilities in
natural language processing, machine translation, and
question-answering tasks (Hadi et al., 2023). Their strength
lies in their ability to manage complex, context-rich
information through extensive pretraining on large-scale
datasets and the use of deep neural network architectures (Liu
et al., 2024). When combined with established workload
assessment tools, LLMs offer the potential to improve our
understanding of wuser experiences and support more
informed decision-making processes.

Several recent studies have explored the application of LLMs
in workload detection and management. Gao et al. (2024)
introduced WorkloadGPT, a language model designed to
classify pilot workload into low, medium, and high categories
to enhance aviation safety. Their model utilized eye-tracking
metrics from 20 pilots, such as gaze fixations, average gaze
duration, blink frequency, and pupil diameter, collected
during flight simulations of varying difficulty levels. These
physiological features were serialized into a natural language
format to create input data for the LLM. In addition to
physiological data, participants completed the NASA-TLX
questionnaire to provide subjective workload assessments.
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The researchers employed the pre-trained ChatGLM3-6B as
the model backbone, fine-tuned using Low-Rank Adaptation
(LoRA), and expanded the dataset with Generative
Adversarial Networks (GANs) for data augmentation. The
resulting model achieved a classification accuracy of 87.3%,
with less than 2% standard deviation across participants,
significantly outperforming traditional machine learning
models such as random forest (69.2%), support vector
machine (62.4%), and k-nearest neighbor (60.2%). While
WorkloadGPT demonstrated high classification
performance, it did not address real-time or continuous
workload prediction.

In another study, Colabianchi et al. (2024) examined the use
of Digital Intelligent Assistants (DIAs) powered by LLMs to
support manufacturing assembly tasks. Thirty participants
were divided into two groups: one followed traditional
instructions, while the other used the DIA-enhanced system.
Results showed that the DIA group experienced reduced
workload across all NASA-TLX dimensions, including
notable improvements in mental demand (14.67%), temporal
demand (21.34%), and effort (10.67%).

Similarly, Sonawani et al. (2024) introduced the SiSCo
(Signal ~ Synthesis  for  Effective = Human-Robot
Communication) framework, which integrates LLMs to
generate intuitive visual cues in a mixed-reality assembly
task. The system synthesized visual signals based on
contextual task information using hierarchical LLM queries.
These signals were projected into the environment to assist
21 participants during task execution. NASA-TLX results
revealed a 46% reduction in reported cognitive load
compared to conventional language-based guidance,
demonstrating the effectiveness of LLM-driven visual
communication.

In contrast, Nam et al. (2024) found a limited impact when
evaluating an LLM-augmented tool designed to assist
programmers within integrated development environments
(IDEs). Although 32 participants reported that the tool
improved ease of use and reduced perceived time pressure,
most NASA-TLX dimensions, particularly mental demand,
did not show statistically significant differences compared to
the baseline condition without LLM assistance.

Despite the mixed outcomes, these studies collectively
suggest that the integration of LLMs holds substantial
promise for improving workload assessment and
management. From enhancing classification accuracy to
enabling more intuitive human-machine interactions, LLMs
have the potential to overcome limitations in traditional
approaches. As Gao et al. (2024) suggest, these models may
ultimately transform workload detection systems, providing
scalable and adaptive solutions across a wide range of
applications.

2.2. Limitations in Leveraging LLMs for Effective
Workload Assessment

Explicit workload modeling plays a critical role in enabling
system designers to anticipate users’ cognitive demands
during the early stages of system development (Xie &
Salvendy, 2000). Despite the availability of such models, a
persistent gap remains in translating them effectively into
real-world applications. As our understanding of human
cognitive processes continues to evolve, there is a significant
opportunity to bridge the divide between theoretical research
and practical implementation (Card et al., 2018).

In the domain of LLMs, much of the existing research has
focused on evaluating mental workload using tools like the
NASA-TLX, particularly in tasks that involve language
comprehension or generation. However, relatively little work
has explored the use of LLMs to build predictive models that
assess or classify workload directly. This represents a key
limitation, as the structured, tabular data derived from
NASA-TLX scores lacks the rich, localized features that
LLMs are optimized to process in text or image-based
formats. Furthermore, the integration of multiple data
modalities—such as physiological signals, numerical
indicators, and subjective assessments—poses a challenge
for standard LLM architectures, which are inherently more
effective with natural language inputs.

Another major obstacle is the difficulty of collecting
sufficiently large datasets for training complex models in
human-machine interaction scenarios, such as those found in
mixed-reality environments. Small sample sizes can lead to
overfitting and reduced generalization performance,
underscoring the importance of data augmentation techniques
(Ru et al.,, 2024). However, synthetic data generation
introduces its own challenges. As noted by Rashid et al.
(2019), augmented samples often suffer from low fidelity and
may not accurately reflect real-world data distributions,

thereby introducing uncertainty and reducing model
reliability.
Overcoming these limitations offers a compelling

opportunity to advance the use of LLMs in workload
assessment, particularly within the context of mixed-reality
human-machine collaboration. Improved methods for
integrating multimodal data and generating high-quality,
diverse training samples could enhance the robustness of
workload classification and prediction models. For industries
leveraging mixed reality technologies, such advancements
would provide critical insights into workers' cognitive
demands, which are essential for effective task management,
user acceptance, and overall system performance (Widiastuti
et al., 2020).

3. THE METHODOLOGY

The framework of the integrated LLM model for workload
prediction in a mixed environment is provided in Figure 1.
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Figure 1. The Integrated Mixed Reality Workload
Prediction Framework.

As shown in Figure 1, the integrated MR workload prediction
framework consists of two key components: GAN-based data
augmentation and LLM-based workload prediction. These
two key components are explained in the following sections.

3.1. GAN-based Data Augmentation

Applying deep learning and LLMs to workload prediction
normally requires a large amount of data. Generating such a
huge amount of data from a mixed reality experiment could
be expensive and infeasible. Generating a large amount of
synthetic data from a small set of experimental data using
data augmentation represents an attractive approach for
meeting the challenge. One effective data augmentation
method is GANs. GANSs are a type of deep learning model
composed of two components, a generator (G) and a
discriminator (D), that are trained simultaneously in an
adversarial manner. The generator G attempts to produce
realistic data, while the discriminator D learns to distinguish
real from synthetic data, ultimately enhancing the quality of
the generated outputs (as shown in Figure 2).

Discriminator
D

Learn to distinguish
realistic and synthetic data

Learn the distribution
from synthetic data

L

Figure 2. The process of GANs.

As shown in Figure 2, after the generator and the
discriminator are trained individually, the GAN is trained on
a newly generated batch of synthetic samples labeled as
realistic for testing. Then, after each epoch, three losses are
calculated: generator loss (L), discriminator loss (Lp), and
GAN loss (Lg4y)- The GAN loss is the sum of both losses to
measure the overall performance of the GAN model.
Equations (1), (2), and (3) represent the mathematical
expressions of each loss.

Lg = E,-p(z»ilogD[G(2)]} )
Lp = Ex~P(x){lagD 0} +

Ez~P(z){10g (1 - D[G(Z)])} (2)
Lean = Lg + Lg 3)

In Equation (1), z is a noise vector of synthetic data.
E, pyrepresents the expectation over the latent variable z
sampled from a prior distribution. This expectation calculates
the average value of logD[G(z)], where G(z) is the
generator's output, and D[G(z)] is the discriminator's
probability that the generated sample is real. The generator
aims to maximize this quantity, meaning it tries to generate
samples that the discriminator classifies as real with high
confidence (i.e., D[G(2)] close to 1). The goal is to minimize
the L, which drives the generator to produce more realistic
samples that the discriminator is more likely to classify as
real.

In Equation ), EypoilogD(x)}
calculates the expected value of logD (x) for real samples x
drawn from the true distribution P(x) This encourages the
discriminator to classify real samples as real.
E, p»tlog (1 — D[G(2)])} computes the expected value of
log (1 — D[G(2)]) for generated samples, encouraging the
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discriminator to classify generated samples as fake (i.e.,
D[G(2)] close to 0). Together, these two terms push the
discriminator to maximize its ability to distinguish real from
fake samples.

The limitation of GANs, much like the other generative
models, lies in performing best when dealing with image
data. This is because when dealing with images, there is a
structure that can be utilized to produce additional artificial
photos. This becomes more complicated when dealing with
tabular data, an area where GANs are not widely used
because of the absence of a structural advantage, like in
images. Jordon et al. (2022) indicated that the field of tabular
data generation still needs to address such limitations.

3.2. Workload Prediction using LLMs

In general, two types of data are generated from the mixed
reality multitasking experiments: text data and numerical
data. To integrate the LLMs into the application of workload
prediction, the LLMs are used to convert the text input data
into numerical embeddings. These numerical embeddings of
the text data, along with the numerical data, are input into a
feedforward neural network (FNN) to predict the workload,
as shown in Figure 3. In this strategy, a combined loss
function is used to train the model. = The combined loss
function is represented by the following equation:

Loss = (a)Lossyy + (1 — a)Losspyy @))

In (4), a is the weight, 0 < a < 1.

-
. e

Figure 3. LLM integration strategy.

4. THE EXPERIMENTAL SETUP AND DATA

In this paper, the effectiveness of the presented approach is
demonstrated with an experimental study. In this study, 36
participants performed a mixed-reality —multitasking

experiment and measured their corresponding workload via
NASA-TLX.

4.1. The Multitasking Mixed Reality Experiment Setting

For our experiment, we recruited 36 eligible participants of
an equal number of males and females, with an average age
of 23.9 and a standard deviation of 4.22. All participants had
normal vision and no hearing impairments. However, they
reported varying levels of experience with AR/VR devices.
The majority of the participants were right-handed. The study
obtained approval from the Institutional Review Board (IRB)
at the University of Illinois Chicago (IRB# 2020-0466).

A combination of real-world (RW) and virtual-world (VW)
tasks was assigned for multitasking. A block-matching task
was assigned for the physical world task. It assesses
participants' workload using Getianlai toys educational
material, including English letter blocks and a board for
pairing them with their hands within a 90-second time frame.
This real-world task was selected because of its simplicity
and ability to provide data for the dependent variable
workload. This task includes a visual search, which affects
human workload, as is evident in previous studies such as
Dang et al. (2020). An N-back task application was
developed and augmented into the HoloLens2 device for the
VW task. This task assesses working memory, where the ‘N’
parameter is the number of steps required to recall
information from memory for a given stimulus (Chen et al.,
2008). The virtual N-back task used in our experiment had
two N values: N =1 and N = 2. This dynamic measure
affects the working memory, which affects presence in virtual
environments (Rawlinson et al., 2012). In this experiment,
the N-back involved matching the colors of a virtual cube for
one step and two steps through hand gestures in a given 90-
second frame that shut off automatically from the application.
A total of 34 stimuli were recorded for each participant. For
more details of the experiment design, please refer to Abbas
and Jeong (2024a, 2024b).

The apparatus used in the experiment was a video camera to
record participants' performance, a HoloLens 2 headset for
the virtual task, a board for the physical task, and a laptop for
recording the collected data. Figure 4 shows the experimental
setup.

Figure 4. Experimental setup: (a) a perspective from the
experimenter's viewpoint showing a participant wearing
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HoloLens and engaging with a virtual cube that is displayed
on the experimenter's laptop screen, and (b) a view captured
from the participant’s point of view while interacting with a
virtual cube and pairing English letters to a wooden board
concurrently.

Four multitasking conditions were assigned per participant,
as outlined in Table 1.

Table 1. Description of multitasking conditions

Condition Definition

Easy RW and Easy VW No order is given for the RW task and N =1
for the VW task.

Easy RW and Hard VW No order is given for the RW task and N =2
for the VW task.

Hard RW and Easy VW An order is given for the RW task and N =1
for the VW task.

Hard RW and Hard VW | An order is given for the RW task and N =2
for the VW task.

Four independent variables were selected; the task difficulty
level variable is categorical with four levels, gender is also
categorical with two levels, and familiarity and experience
with AR/VR handheld and wearable devices are numerical
and expressed in percentages. Age and dominant hand
variables were excluded because of their limited variability
in the collected data. The dependent variable, i.e., the output
variable, is the weighted workload average from the six
NASA-TLX dimensions.

4.2. Data Collection

Each participant performed two practice trials for each world
task before the experiment took place to acquaint themselves
with the nature of the experiment. After each practice, they
completed a pairwise comparison survey to evaluate
subjective workload using the NASA-TLX measure. In this
survey, they selected the dimensions they believed had a
higher impact in each of the 15 pairs. After that, the four
multitasking conditions were assigned to participants
randomly. After performing each condition of task difficulty,
they completed the post-task NASA-TLX to give a rating for
the demand of each condition on a scale from 0 to 100% for
each workload dimension based on how they perceived it. All
surveys were filled out using the Qualtrics survey tool.

Our study gathered data from 144 observations from the 36
participants, each performing four multitasking conditions,
and no missing data was present. The descriptive statistics for
each multitasking condition are shown in Table 2.

Table 2. Summary of descriptive statistics of the NASA-
TLX dimensions across the multitasking conditions

NASA-TLX Multitasking Conditions
Dimensions
Easy RW— | Easy RW- | Hard RW- | Hard
Easy VW Hard VW Easy VW RW-
Hard VW
Mental 41.11 44.75 41.06 44.11
Demand (26.57) (26.48) (27.48) (27.64)
Mean
(SD)
Physical 63.14 75.39 72.42 82.19
Demand (23.25) (19.29) (26.25) (23.03)
Mean
(SD)
Temporal 55.17 64.56 67.67 66.47
Demand (23.33) (25.41) (27.66) (28.56)
Mean
(SD)
Performance | 51.67 50.83 47.53 52.86
Mean (24.14) (22.85) (22.60) (27.55)
(SD)
Effort 66.42 72.89 75.25 82.11
Mean (22.50) (19.79) (20.34) (17.80)
(SD)
Frustration 36.53 44.28 49 53.14
Mean (28.14) (27.44) (32.78) (33.44)
(SD)

The six NASA-TLX dimensions results were combined into
a weighted average for the output overall workload. This
weighted rating was calculated by taking the recorded
responses to each NASA-TLX six dimensions for each
participant in the pairwise comparison survey, which
assessed 15 pairs. The ultimate weighted rating score was
calculated by dividing the sum-product of the inputs of each
NASA-TLX dimension (0-100%) from the post-task survey
and the corresponding counts from the pairwise survey by 15.
Equation (5) is the formula for calculating the weighted
average.

Z?ZI(Rating Response x count);
15

Workload =

®)

5. THE RESULTS

5.1. GAN Generated Synthetic Data

The GAN model was implemented on the dataset in a Google
Colab notebook. The observations from each condition were
treated as individual datasets, as each observation
corresponds to a distinct participant. To account for the
balanced gender variable, the four datasets were further
divided by gender, resulting in a total of eight datasets with
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18 observations each. This ensured equal representation of
males and females in the synthesized data, consistent with the
original dataset. This implies that both the task difficulty and
gender variables were omitted during the training of the GAN
and reintroduced afterward.

The traditional GAN is applied with an 80/20 split rule, where
approximately 80% of the original dataset is used for training
and 20% for testing after installing the necessary libraries,
including NumPy, Pandas, and TensorFlow.Keras, and
Scikit-learn. Three neural networks were built: the generator,
the discriminator, and the GAN, which combines both the
generator and the discriminator to compete with each other.
The ‘build model’ function is used to construct the three
models implemented as sequential deep-learning models.
The generator model is built with a total of four dense layers,
while the discriminator model is constructed with three dense
layers. The ‘LeakyReLU’ activation function is employed in
the hidden layers for both the generator and the discriminator
models with a small positive value of 0.2 for the alpha
parameter. This parameter controls the slope of the function
for the negative values. The choice of using the ‘LeakyReL.U’
function instead of the ‘ReLU’ function is because the
‘ReLU’ function can result in inactive neurons during
training. This occurs because the ‘ReL U’ assigns a value of
0 to all negative inputs. In contrast, the ‘LeakyReLU’
function resolves this problem by introducing a small slope
for the negative inputs instead of setting them to 0, ensuring
that neurons stay active during training and avoiding the issue
of inactive neurons that could occur when using ‘ReLU’
(Salam et al., 2021). However, both functions were
experimented with individually, and the ‘LeakyReLU’
achieved better results.

The sigmoid function is utilized in both the generator and
discriminator output layers. Using the 'sigmoid' activation
function in the generator ensures that the generated values
match the percentage range of the original samples. It
transforms the input into a scale from 0 to 1, making it ideal
for representing probabilities or values within a range.
Although other activation functions like ‘tanh’ and ‘linear’
were tested for experimentation, they did not produce better
outcomes. The discriminator’s ‘sigmoid’ activation function
assigns values closer to 0 to indicate fake samples and values
nearer to 1 to indicate actual samples. Then, the GAN model
is trained as a binary classification problem, aiming to
classify samples as real or fake. The combined GAN model
uses the ‘binary cross entropy’ loss function. The GAN
model is optimized using the Adaptive Moment Estimation
(Adam) optimizer, a commonly used stochastic gradient
descent optimization algorithm in deep learning (Zaheer &
Shziya, 2019).

After the generator and the discriminator were trained
individually, the GAN was trained on a newly generated
batch of fake samples labeled as real for testing. Then, after

each epoch, from equations (1) - (3), three losses were
calculated: Lg, Lp, and Ly .

A total of 1000 epochs were utilized to train the model.
However, to prevent overfitting, an early stopping rule is
implemented to monitor the model's performance. It stops the
training once there are no more improvements in the GAN
loss.

Throughout each epoch, the model assesses the current GAN
loss compared to a variable called ‘best loss’. This variable
keeps track of the best GAN losses achieved, with a threshold
set at 0.001 called ‘min_delta’. This threshold determines
what qualifies as an improvement in the GAN loss. If the
current loss surpasses the ‘best _loss’ by at least ‘min_delta,’
the ‘best loss’ gets updated with the current loss value, and
the counter variable ‘wait’ resets to 0. Otherwise, the ‘wait’
is incremented by 1. If there is no improvement in the GAN
loss for a specific number of epochs based on a parameter
known as ‘patience’, then early termination is triggered. The
‘patience’ parameter is set to 20. Multiple runs are performed
within a loop using different batch sizes to identify the
optimal batch size that yields the best performance for the
model. Since each dataset consists of 18 samples, batch sizes
of 2, 3, 6, and 9 were used for experimentation. The optimal
batch size is selected as 2 based on comparing the best GAN
loss achieved in each trial. Table 3 summarizes the best GAN
loss achieved for every batch size, categorized by each
categorical variable.

Table 3. Summary of the best GAN loss achieved for each
batch size per condition.

Condition Batch = Best Lg,y Best L,y
Size (Male) (Female)
2 0.628 0.590
Easy RW — Easy VW 3 0.83 0.609
6 0.784 0.621
9 0.817 0.631
2 0.663 0.598
Easy RW — Hard VW 3 0.851 0.691
6 0.878 0.686
9 0.844 0.644
2 0.628 0.534
Hard RW — Easy VW 3 1.005 0.786
6 1.013 0.774
9 0.996 0.756
2 0.519 0.604
Hard RW — Hard VW 3 0.943 0.731
6 0.981 0.737
9 0.997 0.662

Multiple trials were carried out using different values of
‘latent_dim,” such as 10, 100, and 500, to determine if
adjusting this parameter would affect output diversity, as it
influences the variety of the generated output. However, no
significant differences were observed; therefore, the
‘latent_dim’ was ultimately set to 500 because the larger the
latent dim, the more varied the data can be. After training the
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model with the optimal batch size, 625 fake samples are
generated per dataset from the ‘generate samples’ function,
employing the generator network. This results in a combined
total of 5,000 generated fake samples. Several experiments
were conducted to determine the appropriate number of fake
samples to generate from our original data. While it is
generally desirable to have more data, it is crucial to strike a
balance between data quality and diversity. The resulting fake
samples are then stored in a data frame named ‘fake data’.
Lastly, the ‘fake data’ data frame is converted into a CSV
file to be called for evaluation. The results of the assessment
are presented in the results section. Eventually, the real
(original) and the fake (GAN-generated) are combined after
evaluation. This combined dataset is then used to build a
prediction model for the weighted rating variable.

The synthesized data by GAN was evaluated. Since all
variables were continuous, the performance of the model on
the unseen data (testing set) was evaluated by measuring the
distribution matching evaluation using the Kolmogorov-
Smirnov (KS) test between these two sets as a part of the
evaluation process (Kolmogorov & Smirnov, 1933). The
assessment of the synthesized data compared to the original
data was measured by the overall quality score by calling the
‘evaluate_quality’ function from the ‘sdv.evaluation’
module, in addition to the KS distribution comparison
statistical test. The overall quality score was best achieved at
around 65%, and the p-values from the KS test were less than
0.001, indicating matching distributions. Table 4 shows the
overall quality scores per category for the synthesized data
generated by GAN.

Table 4. Summary of the overall quality scores of the

synthesized data by GAN
Difficulty Level Male Female Quality
Quality Score
Score (%)
(%)
Easy RW — Easy VW 64.25 63.98
Easy RW — Hard VW 62.23 65.71
Hard RW — Easy VW 61.65 65.85
Hard RW — Hard VW 62.73 64.63

5.2. LLM-based Workload Prediction Results

An LLM-based model was applied to the synthetic data
generated by GAN to predict the workload. This model used
a pre-trained large language model like BERT to process
textual data related to the difficulty level variables. The
remaining numerical variables were fed into a feedforward
neural network at the same time. The gender variable was
encoded using ‘0’ for males and ‘1’ for females. The model
was developed using the Python programming language in a
Google Colab notebook.

After importing the necessary libraries like transformers,
Sklearn.model_selection, TensorFlow, Numpy, and pandas,
the BERT model was called for custom configuration for
fine-tuning according to our specified task. The
‘attention_probs_dropout prob’ and ‘hidden_dropout prob’
are set to 0.1, which means 10% of attention probabilities in
the hidden layers will be dropped during training to prevent
overfitting. The activation function used in the hidden layer
is ‘gelu’, as it is commonly used in natural language
processing tasks. The ‘hidden size’ is set to 768, which
defines the number of units in each hidden layer, and the
‘intermediate_size’ is set to 3072, which represents the size
of the intermediate feedforward layer. The model can process
sequences up to 512 tokens long. It uses 12 attention heads,
and 12 transformer layers, allowing for complex
representations of the input sequence. The ‘vocab_size’ used
by BERT is set to 30522. These configurations optimize the
model to offer a balance between performance and efficiency.

After that, a utility function called ‘tokenize text’ is defined.
This function tokenizes the text data using BERT's tokenizer,
transforming raw text into a structured, numerical format that
BERT can use to understand and process text effectively.
After uploading our dataset from a CSV file, the tokenized
output of the difficulty level variable is stored in a new
column called 'text tokenized.' The numerical variables are
normalized using ‘StandardScaler’, which scales the data to
have a mean of zero and a standard deviation of one,
preparing it for input into the model.

After that, the dataset is split using the 80/20 split rule, and
the input for the BERT model ‘bert model’ is prepared using
TensorFlow/Keras. An input layer named ‘input ids’ is
defined, which expects sequences of integers with a fixed
length of 32; these integers represent tokenized words from
the text. The input is then processed through the BERT
model. The numerical inputs are set up for a basic
feedforward neural network, also using TensorFlow/Keras.
An input layer called ‘num_input’ is created to receive the
numerical data for processing, and a dense layer named
‘num_dense’ is added with 16 neurons and a ReL U activation
function. This layer takes the numerical input and applies the
ReLU function, which helps introduce non-linearity into the
model.

Instead of concatenating the output of the BERT with the
numerical inputs altogether, the BERT output is passed as
part of the dense layer input to the neural network ‘bert_dense
=tf.keras.layers.Dense(16, activation="relu')(bert_output),’
and then the model combines the numerical features with the
processed BERT output ‘combined =
tf.keras.layers.concatenate([bert_dense, num_dense])’.
Figure 4 shows an illustration of this explanation.

After this combination, a dense layer named ‘dense’ is
created with 32 neurons and a ReLLU activation function, and
another dense layer named ‘output’ is defined, which has a
single neuron where this layer is used for regression tasks to
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output a continuous value based on the input data. Lastly, the
model is defined using ‘tf.keras.Model’, which specifies the
entire network's input and output to make predictions.

The model's training was evaluated based on the comparison
of two parts, based on the Root Mean Square Error (RMSE),
because of the numerical nature of the weighted workload
target variable and based on a combined loss function from
the BERT and the neural network. For evaluation based on
the RMSE value, the model is compiled using the
‘model.compile’ method, where the Adam optimizer is
chosen, and the loss function is set to be the RMSE. The
learning rate in compiling the model was set to 0.0001, which
allows the model to learn slowly and more precisely than
setting a higher learning rate. The model was trained using
the ‘model.fit’ function, which takes the training data, where
‘X text train’ contains the tokenized text inputs, and
‘X _num_train’ holds the numerical inputs. The target values
the model aims to predict are represented by ‘y_train’.
Additionally, the model evaluates its performance on a
separate validation dataset consisting of ‘X text test’ and
‘X num_test’ along with their corresponding target values
‘y_test’. The training process runs for 20 epochs to balance
learning efficiency and computational constraints, such as
CPU capacity. More training epochs were experimented with
for testing, and the results did not significantly differ. Thus,
the number of epochs was set to 20. Different common batch
sizes were tested during this process, including 16, 32, and
64, to determine the optimal size for training given the
available resources. The RMSE equation for this part is
represented by the standard RMSE equation as:

RMSE = |1 5, (y; - 9)? ©)

In (6), y; represents the actual values (training data), and J; is
the predicted value (the output of the model). The difference
between them is the residual or the error for each data point.
By squaring the errors, we ensure that both positive and
negative errors contribute positively to the total error,
preventing any cancellations. Summing out the squared errors
for all the n data points, and then taking the square root returns
the error to the original units.

Another modification to the model was made to enhance its
prediction accuracy. Instead of keeping the BERT constant
by only taking it as an input to the NN, where in this case, its
weights were not being updated during training, a training
loop of the NN was created by integrating the BERT and fine-
tuning it inside the loop for the NN. In each iteration of the
loop, the tokenized text input is passed through the pre-
trained BERT, which generates the CLS token embeddings.
These embeddings are then processed by additional layers of
the NN, combined with numerical features and passed
through more layers to produce the final output. In this
method, the loss of the BERT is updated each time rather than
remaining constant in case it is not integrated into the neural

network loop. A total of 20 epochs were used to train this
model as well. Increasing the number of epochs did not
provide much of a difference in the results. The same batch
sizes of 16, 32, and 64 were used for comparison. This
modified model also uses an Adam optimizer.

Thus, before training, an individual loss function was defined
based on RMSE, one for the BERT model called ‘loss_bert,’
and the other one for the NN called ‘loss nn.” Then, a custom
loss function called ‘Weighted rmse loss’ was defined,
which combines the two losses. This function calculates the
losses for both ‘y true’, representing the true values, and
‘y_pred’, representing the predicted values. Then, it creates a
weighted sum using the parameter a ‘alpha’. The loss for
BERT is multiplied by ‘alpha’, while the loss of the NN is
multiplied by ‘(1-alpha)’. This method allows control to give
how much importance each model has in the final loss. So,
the ‘alpha’ here, by default, is set to 0.5.

For the simple neural network evaluation, the best
performance was achieved with a batch size of 16, yielding
an RMSE value of 6.82. Table 6 shows the results of each
batch size. When comparing the performance of the proposed
hybrid model and the simple neural network, it is noted that
the proposed hybrid model achieved better results in
predicting the workload, especially when integrating the
BERT into the training of the FNN, and was kept constant.
Therefore, the results of this study supported our hypothesis.

Table 5. Comparison of RMSE values of different
workload prediction methods

Workload RMSE
Prediction
Method batch size batch size batch size
=16 =32 = 64

FNN 6.82 6.88 6.93
BERT no 2.66 2.68 2.67
Integration
BERT with 1.03 0.95 0.99
Integration
GPT-2 no 2.70 271 2.68
Integration
GPT-2 with 0.99 0.98 1.01
Integration

As shown in Table 5, in comparison, the methods with LLM
integration give better results than those without LLM
integration. Between the two methods integrated with
different LLMs, the prediction accuracy of BERT is
comparable to that of GPT-2.

Figure 5 and Figure 6 show the predicted workload vs. the
actual workload for a simple FNN and an integrated LLM
model, respectively. The results presented by Figures 5 and
6 are consistent with the results presented in Table 5.
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Figure 5. Predicted workload vs. actual workload for the
simple FNN model.
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Figure 6. Predicted workload vs. actual workload for the
integrated BERT model.

6. CONCLUSION

This paper presents a novel framework for predicting user
workload in mixed reality (MR) multitasking environments
by integrating large language models (LLMs) with generative
adversarial networks (GANs) and traditional workload
metrics. By leveraging both structured numerical data and
unstructured textual inputs, our approach enhances the
precision and contextual relevance of workload predictions,
key for improving human-machine interaction in immersive
environments. Unlike conventional methods that rely solely
on subjective post-task evaluations such as NASA-TLX, our
model utilizes BERT and GPT-based embeddings to interpret

task complexity and user experience in real-time or near real-
time, enabling more proactive system adaptations.

To overcome data scarcity, a common barrier in experimental
MR research, we implemented GAN-based data
augmentation, which effectively synthesized diverse and
realistic training samples. The integration of these synthetic
datasets enabled more robust model generalization and
predictive accuracy. Our results clearly demonstrate that
LLM integration significantly outperforms baseline
feedforward neural network models, reducing root mean
square error (RMSE) from 6.82 to as low as 0.95 when BERT
is fine-tuned and jointly trained with the FNN.

The proposed methodology holds promise for a wide range
of applications in fields such as training simulation,
healthcare, aerospace, and manufacturing, where
understanding cognitive workload is essential to system
design and operational safety. Additionally, the framework
can serve as a foundation for further research in adaptive MR
systems that dynamically adjust task difficulty or interface
elements based on predicted cognitive load.

Future work should explore multimodal data fusion by
incorporating physiological signals (e.g., EEG, eye tracking)
alongside textual and numerical inputs, and investigate real-
time workload prediction in live MR environments.
Moreover, transfer learning and federated learning
approaches could improve scalability across different user
populations and hardware platforms. This research lays the
groundwork for intelligent, user-aware MR systems that are
both scalable and responsive to individual cognitive demands.
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