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ABSTRACT 

Multitasking in mixed reality (MR) environments introduces 
unique cognitive demands, particularly in workload 
management. Accurate workload prediction is critical for 
optimizing user experience, safety, and performance in such 
settings. This study proposes a novel framework that 
integrates large language models (LLMs) with traditional 
workload assessment tools to enhance prediction accuracy in 
MR multitasking scenarios. A multitasking experiment 
involving 36 participants was conducted, combining real-
world and virtual tasks, with workload evaluated using 
NASA-TLX. To address limited sample sizes, synthetic data 
was generated using generative adversarial networks 
(GANs), enabling robust model training. We employed a 
hybrid deep learning model that integrates LLM-generated 
text embeddings with numerical features in a feedforward 
neural network (FNN). Results show that integrating LLMs, 
specifically BERT and GPT-2, significantly improves 
workload prediction accuracy, with a root mean square error 
(RMSE) reduction from 6.82 (FNN-only) to 0.95 (BERT-
integrated model). The findings underscore the potential of 
LLMs to augment cognitive workload assessment, 
supporting more adaptive and scalable human-machine 
collaboration in MR environments. 

1. INTRODUCTION 

Multitasking has become increasingly valuable in today’s 
complex digital landscape (Spink et al., 2008). The rapid 
evolution of computing technologies has not only facilitated 
multitasking but also redefined how humans interact with 
digital content. Mixed reality (MR), a spectrum that blends 
real and virtual environments, is at the forefront of this 

transformation, enabling seamless interactions in hybrid 
digital-physical worlds. As Abrash et al. (2021) note, these 
emerging platforms are expected to shape human-computer 
interaction for decades to come. 

While MR environments offer significant advantages for 
enhancing multitasking capabilities, they also introduce new 
cognitive and perceptual challenges. Users may experience 
limitations such as motion sickness, visual strain, divided 
attention, reduced performance, and increased cognitive 
workload (Rokhsaritalemi et al., 2020). Among these, 
workload, defined as the total mental, physical, or combined 
demands placed on an individual or system to complete tasks 
(Matthews et al., 2015), plays a crucial role in maintaining 
system usability, user well-being, and operational safety. 

Accurately assessing and predicting workload in MR 
environments is essential for optimizing user experiences and 
ensuring effective human-machine collaboration. One of the 
most established subjective methods for workload evaluation 
is the NASA Task Load Index (NASA-TLX), introduced by 
Hart and Staveland (1988), which measures six key 
dimensions: mental demand, physical demand, temporal 
demand, performance, effort, and frustration. While NASA-
TLX provides structured insight into perceived workload, it 
may not fully capture the nuance and context-dependency of 
individual user experiences. 

To address this limitation, we explore the integration of large 
language models (LLMs) as a novel approach to enhancing 
workload prediction. LLMs such as BERT and GPT-2 have 
demonstrated strong capabilities in natural language 
understanding, sentiment analysis, and context-aware 
reasoning. These models are particularly well-suited for 
analyzing unstructured user inputs, such as verbal feedback 
or written reflections, which often contain implicit indicators 
of cognitive and emotional strain. By leveraging their 
capacity to extract meaning from complex textual data, LLMs 
offer the potential to infer user workload more accurately and 
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responsively than traditional models. When used in 
conjunction with structured tools like NASA-TLX, LLMs 
can provide a richer, more adaptive framework for workload 
assessment in multitasking MR scenarios. 

Thus, we hypothesize that integrating a pre-trained LLM into 
the workload evaluation process will enhance the precision 
and contextual sensitivity of workload prediction in mixed-
reality multitasking environments. 

Multitasking has become valuable as our environment 
becomes increasingly complex (Spink et al., 2008). 
Furthermore, technological advancements have integrated 
multitasking into our daily lives, with new computing 
platforms poised to shape our digital interactions for the next 
50 years, as explained by Abrash et al. (2021). These 
technological advancements allow humans to engage 
seamlessly in digital-physical worlds, known as mixed 
reality. 

Despite the advantages of multitasking in mixed reality 
environments, which enhance user interaction in the real 
world compared to other technologies (Rokhsaritalemi et al., 
2020), users may encounter challenges stemming from 
human limitations, such as discomfort, motion sickness, 
visual impairment, reduced focus, increased workload, and 
more. Workload, defined as the total mental, physical, or 
combined effort and demands placed on an individual or a 
system to complete tasks (Matthews et al., 2015), is a critical 
factor in human-machine collaboration and is essential for 
promoting overall well-being and safety within health 
management. 

In this context, integrating advanced technologies like LLMs 
offers innovative approaches to analyzing and predicting 
perceived workload from user interactions and feedback. A 
standard method for assessing perceived workload is the 
NASA-TLX, the most established and widely used subjective 
method for detailed workload analysis (Bousdekis et al., 
2022).  Hart and Staveland (1988) introduced the 
development of the NASA-TLX to evaluate workload across 
six dimensions: mental demand, physical demand, temporal 
demand, performance, effort, and frustration. By combining 
LLMs with established tools like the NASA-TLX, we can 
gain deeper insights into the workload, enhancing decision-
making processes and improving the reliability and 
efficiency of human interactions with mixed reality 
applications. Thus, we hypothesize that integrating a pre-
trained LLM model will enhance the workload prediction in 
mixed-reality multitasking. 

2. RELATED WORK 

The challenges of multitasking often surface through 
increased cognitive demands, such as elevated mental 
workload, greater attention requirements, and limited 
working memory capacity (Dzubak, 2008; Kudesia et al., 
2022). These effects are particularly pronounced because 

workload, in particular, is believed to increase during 
multitasking due to decreased available resources for each 
task (Strayer et al., 2022).  In our technology-driven society, 
shaped by tools designed to support human activity (Carroll, 
2017), multitasking has evolved significantly, especially 
within MR environments, where it has become a fundamental 
aspect of user interaction (North et al., 2021).  In MR settings, 
multitasking involves simultaneously engaging with both 
physical and virtual elements (Speicher et al., 2019). 

Empirical studies have consistently confirmed that 
multitasking contributes to increased workload, particularly 
in MR contexts. For instance, Li et al. (2022) examined 
mental workload during a simulated flight multitasking 
scenario, finding that higher workload conditions 
corresponded with elevated NASA-TLX scores. Similarly, 
Fick et al. (2023) conducted a study involving medical 
students and neurosurgeons who performed a virtual tumor 
detection task using mixed reality, traditional MRI, and a 3D 
viewer. While MR yielded the best task performance, it also 
resulted in higher reported mental and temporal workloads 
compared to the other methods. In another study, Criollo et 
al. (2024) investigated the cognitive demands of immersive 
technologies in higher education. Their findings revealed that 
students experienced a moderate level of mental workload 
when using virtual and mixed reality tools, significantly 
higher than when immersive technologies were not used in 
the learning process, as measured by NASA-TLX. 

2.1. Applications of LLMs in Workload Assessment 

Exploring the integration of LLMs presents a promising 
direction for addressing workload challenges in mixed-reality 
environments. LLMs, a class of advanced artificial 
intelligence systems, have shown exceptional capabilities in 
natural language processing, machine translation, and 
question-answering tasks (Hadi et al., 2023). Their strength 
lies in their ability to manage complex, context-rich 
information through extensive pretraining on large-scale 
datasets and the use of deep neural network architectures (Liu 
et al., 2024). When combined with established workload 
assessment tools, LLMs offer the potential to improve our 
understanding of user experiences and support more 
informed decision-making processes. 

Several recent studies have explored the application of LLMs 
in workload detection and management. Gao et al. (2024) 
introduced WorkloadGPT, a language model designed to 
classify pilot workload into low, medium, and high categories 
to enhance aviation safety. Their model utilized eye-tracking 
metrics from 20 pilots, such as gaze fixations, average gaze 
duration, blink frequency, and pupil diameter, collected 
during flight simulations of varying difficulty levels. These 
physiological features were serialized into a natural language 
format to create input data for the LLM. In addition to 
physiological data, participants completed the NASA-TLX 
questionnaire to provide subjective workload assessments. 
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The researchers employed the pre-trained ChatGLM3-6B as 
the model backbone, fine-tuned using Low-Rank Adaptation 
(LoRA), and expanded the dataset with Generative 
Adversarial Networks (GANs) for data augmentation. The 
resulting model achieved a classification accuracy of 87.3%, 
with less than 2% standard deviation across participants, 
significantly outperforming traditional machine learning 
models such as random forest (69.2%), support vector 
machine (62.4%), and k-nearest neighbor (60.2%). While 
WorkloadGPT demonstrated high classification 
performance, it did not address real-time or continuous 
workload prediction. 

In another study, Colabianchi et al. (2024) examined the use 
of Digital Intelligent Assistants (DIAs) powered by LLMs to 
support manufacturing assembly tasks. Thirty participants 
were divided into two groups: one followed traditional 
instructions, while the other used the DIA-enhanced system. 
Results showed that the DIA group experienced reduced 
workload across all NASA-TLX dimensions, including 
notable improvements in mental demand (14.67%), temporal 
demand (21.34%), and effort (10.67%). 

Similarly, Sonawani et al. (2024) introduced the SiSCo 
(Signal Synthesis for Effective Human-Robot 
Communication) framework, which integrates LLMs to 
generate intuitive visual cues in a mixed-reality assembly 
task. The system synthesized visual signals based on 
contextual task information using hierarchical LLM queries. 
These signals were projected into the environment to assist 
21 participants during task execution. NASA-TLX results 
revealed a 46% reduction in reported cognitive load 
compared to conventional language-based guidance, 
demonstrating the effectiveness of LLM-driven visual 
communication. 

In contrast, Nam et al. (2024) found a limited impact when 
evaluating an LLM-augmented tool designed to assist 
programmers within integrated development environments 
(IDEs). Although 32 participants reported that the tool 
improved ease of use and reduced perceived time pressure, 
most NASA-TLX dimensions, particularly mental demand, 
did not show statistically significant differences compared to 
the baseline condition without LLM assistance. 

Despite the mixed outcomes, these studies collectively 
suggest that the integration of LLMs holds substantial 
promise for improving workload assessment and 
management. From enhancing classification accuracy to 
enabling more intuitive human-machine interactions, LLMs 
have the potential to overcome limitations in traditional 
approaches. As Gao et al. (2024) suggest, these models may 
ultimately transform workload detection systems, providing 
scalable and adaptive solutions across a wide range of 
applications. 

2.2. Limitations in Leveraging LLMs for Effective 
Workload Assessment 

Explicit workload modeling plays a critical role in enabling 
system designers to anticipate users’ cognitive demands 
during the early stages of system development (Xie & 
Salvendy, 2000). Despite the availability of such models, a 
persistent gap remains in translating them effectively into 
real-world applications. As our understanding of human 
cognitive processes continues to evolve, there is a significant 
opportunity to bridge the divide between theoretical research 
and practical implementation (Card et al., 2018). 

In the domain of LLMs, much of the existing research has 
focused on evaluating mental workload using tools like the 
NASA-TLX, particularly in tasks that involve language 
comprehension or generation. However, relatively little work 
has explored the use of LLMs to build predictive models that 
assess or classify workload directly. This represents a key 
limitation, as the structured, tabular data derived from 
NASA-TLX scores lacks the rich, localized features that 
LLMs are optimized to process in text or image-based 
formats. Furthermore, the integration of multiple data 
modalities—such as physiological signals, numerical 
indicators, and subjective assessments—poses a challenge 
for standard LLM architectures, which are inherently more 
effective with natural language inputs. 

Another major obstacle is the difficulty of collecting 
sufficiently large datasets for training complex models in 
human-machine interaction scenarios, such as those found in 
mixed-reality environments. Small sample sizes can lead to 
overfitting and reduced generalization performance, 
underscoring the importance of data augmentation techniques 
(Ru et al., 2024). However, synthetic data generation 
introduces its own challenges. As noted by Rashid et al. 
(2019), augmented samples often suffer from low fidelity and 
may not accurately reflect real-world data distributions, 
thereby introducing uncertainty and reducing model 
reliability. 

Overcoming these limitations offers a compelling 
opportunity to advance the use of LLMs in workload 
assessment, particularly within the context of mixed-reality 
human-machine collaboration. Improved methods for 
integrating multimodal data and generating high-quality, 
diverse training samples could enhance the robustness of 
workload classification and prediction models. For industries 
leveraging mixed reality technologies, such advancements 
would provide critical insights into workers' cognitive 
demands, which are essential for effective task management, 
user acceptance, and overall system performance (Widiastuti 
et al., 2020). 

3. THE METHODOLOGY 

The framework of the integrated LLM model for workload 
prediction in a mixed environment is provided in Figure 1. 
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Figure 1.  The Integrated Mixed Reality Workload 
Prediction Framework. 

 

As shown in Figure 1, the integrated MR workload prediction 
framework consists of two key components: GAN-based data 
augmentation and LLM-based workload prediction.  These 
two key components are explained in the following sections. 

3.1. GAN-based Data Augmentation 

Applying deep learning and LLMs to workload prediction 
normally requires a large amount of data.  Generating such a 
huge amount of data from a mixed reality experiment could 
be expensive and infeasible.  Generating a large amount of 
synthetic data from a small set of experimental data using 
data augmentation represents an attractive approach for 
meeting the challenge.  One effective data augmentation 
method is GANs.  GANs are a type of deep learning model 
composed of two components, a generator (G) and a 
discriminator (D), that are trained simultaneously in an 
adversarial manner. The generator G attempts to produce 
realistic data, while the discriminator D learns to distinguish 
real from synthetic data, ultimately enhancing the quality of 
the generated outputs (as shown in Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The process of GANs. 

As shown in Figure 2, after the generator and the 
discriminator are trained individually, the GAN is trained on 
a newly generated batch of synthetic samples labeled as 
realistic for testing. Then, after each epoch, three losses are 
calculated: generator loss (𝐿𝐿𝐺𝐺), discriminator loss (𝐿𝐿𝐷𝐷), and 
GAN loss (𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺). The GAN loss is the sum of both losses to 
measure the overall performance of the GAN model.  
Equations (1), (2), and (3) represent the mathematical 
expressions of each loss. 

𝐿𝐿𝐺𝐺 =  𝐸𝐸𝑧𝑧~𝑃𝑃(𝑧𝑧){𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝐺𝐺(𝑧𝑧)]}       (1) 

𝐿𝐿𝐷𝐷 = 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥){𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)} + 
         𝐸𝐸𝑧𝑧~𝑃𝑃(𝑧𝑧){log (1 − 𝐷𝐷[𝐺𝐺(𝑧𝑧)])}       (2)                                                  

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐿𝐿𝐺𝐺 + 𝐿𝐿𝐺𝐺                                     (3) 

 

In Equation (1), 𝑧𝑧  is a noise vector of synthetic data. 
𝐸𝐸𝑧𝑧~𝑃𝑃(𝑧𝑧)represents the expectation over the latent variable 𝑧𝑧 
sampled from a prior distribution. This expectation calculates 
the average value of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝐺𝐺(𝑧𝑧)] , where 𝐺𝐺(𝑧𝑧)  is the 
generator's output, and 𝐷𝐷[𝐺𝐺(𝑧𝑧)]  is the discriminator's 
probability that the generated sample is real. The generator 
aims to maximize this quantity, meaning it tries to generate 
samples that the discriminator classifies as real with high 
confidence (i.e., 𝐷𝐷[𝐺𝐺(𝑧𝑧)]  close to 1). The goal is to minimize 
the 𝐿𝐿𝐺𝐺, which drives the generator to produce more realistic 
samples that the discriminator is more likely to classify as 
real. 

In Equation (2), 𝐸𝐸𝑥𝑥~𝑃𝑃(𝑥𝑥){𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)} 
 calculates the expected value of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) for real samples x 
drawn from the true distribution 𝑃𝑃(𝑥𝑥). This encourages the 
discriminator to classify real samples as real. 
𝐸𝐸𝑧𝑧~𝑃𝑃(𝑧𝑧){log (1 − 𝐷𝐷[𝐺𝐺(𝑧𝑧)])} computes the expected value of 
log (1 − 𝐷𝐷[𝐺𝐺(𝑧𝑧)])  for generated samples, encouraging the 
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discriminator to classify generated samples as fake (i.e., 
𝐷𝐷[𝐺𝐺(𝑧𝑧)]   close to 0). Together, these two terms push the 
discriminator to maximize its ability to distinguish real from 
fake samples. 

The limitation of GANs, much like the other generative 
models, lies in performing best when dealing with image 
data. This is because when dealing with images, there is a 
structure that can be utilized to produce additional artificial 
photos. This becomes more complicated when dealing with 
tabular data, an area where GANs are not widely used 
because of the absence of a structural advantage, like in 
images. Jordon et al. (2022) indicated that the field of tabular 
data generation still needs to address such limitations. 

 

3.2. Workload Prediction using LLMs 

In general, two types of data are generated from the mixed 
reality multitasking experiments: text data and numerical 
data.  To integrate the LLMs into the application of workload 
prediction, the LLMs are used to convert the text input data 
into numerical embeddings.  These numerical embeddings of 
the text data, along with the numerical data, are input into a 
feedforward neural network (FNN) to predict the workload, 
as shown in Figure 3.  In this strategy, a combined loss 
function is used to train the model.    The combined loss 
function is represented by the following equation:  

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  (𝛼𝛼)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + (1 − 𝛼𝛼)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹      (4) 

In (4), 𝛼𝛼 is the weight, 0 ≤ 𝛼𝛼 ≤ 1. 

 

 

 

 

 

 

 

 

 

Figure 3.  LLM integration strategy. 

 

4. THE EXPERIMENTAL SETUP AND DATA 

In this paper, the effectiveness of the presented approach is 
demonstrated with an experimental study.  In this study, 36 
participants performed a mixed-reality multitasking 

experiment and measured their corresponding workload via 
NASA-TLX. 

4.1. The Multitasking Mixed Reality Experiment Setting 

For our experiment, we recruited 36 eligible participants of 
an equal number of males and females, with an average age 
of 23.9 and a standard deviation of 4.22. All participants had 
normal vision and no hearing impairments. However, they 
reported varying levels of experience with AR/VR devices. 
The majority of the participants were right-handed. The study 
obtained approval from the Institutional Review Board (IRB) 
at the University of Illinois Chicago (IRB# 2020-0466). 

A combination of real-world (RW) and virtual-world (VW) 
tasks was assigned for multitasking. A block-matching task 
was assigned for the physical world task. It assesses 
participants' workload using Getianlai toys educational 
material, including English letter blocks and a board for 
pairing them with their hands within a 90-second time frame. 
This real-world task was selected because of its simplicity 
and ability to provide data for the dependent variable 
workload. This task includes a visual search, which affects 
human workload, as is evident in previous studies such as 
Dang et al. (2020).  An N-back task application was 
developed and augmented into the HoloLens2 device for the 
VW task. This task assesses working memory, where the ‘N’ 
parameter is the number of steps required to recall 
information from memory for a given stimulus (Chen et al., 
2008).  The virtual N-back task used in our experiment had 
two N values: 𝑁𝑁 = 1  and 𝑁𝑁 = 2 . This dynamic measure 
affects the working memory, which affects presence in virtual 
environments (Rawlinson et al., 2012). In this experiment, 
the N-back involved matching the colors of a virtual cube for 
one step and two steps through hand gestures in a given 90-
second frame that shut off automatically from the application.  
A total of 34 stimuli were recorded for each participant. For 
more details of the experiment design, please refer to Abbas 
and Jeong (2024a, 2024b). 

The apparatus used in the experiment was a video camera to 
record participants' performance, a HoloLens 2 headset for 
the virtual task, a board for the physical task, and a laptop for 
recording the collected data. Figure 4 shows the experimental 
setup.  

 
Figure 4.  Experimental setup: (a) a perspective from the 
experimenter's viewpoint showing a participant wearing 
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HoloLens and engaging with a virtual cube that is displayed 
on the experimenter's laptop screen, and (b) a view captured 
from the participant’s point of view while interacting with a 
virtual cube and pairing English letters to a wooden board 

concurrently. 

Four multitasking conditions were assigned per participant, 
as outlined in Table 1. 

Table 1. Description of multitasking conditions 
Condition Definition 

Easy RW and Easy VW No order is given for the RW task and N = 1 
for the VW task.  

Easy RW and Hard VW No order is given for the RW task and N = 2 
for the VW task. 

Hard RW and Easy VW An order is given for the RW task and N = 1 
for the VW task. 

Hard RW and Hard VW An order is given for the RW task and N = 2 
for the VW task. 

 

Four independent variables were selected; the task difficulty 
level variable is categorical with four levels, gender is also 
categorical with two levels, and familiarity and experience 
with AR/VR handheld and wearable devices are numerical 
and expressed in percentages. Age and dominant hand 
variables were excluded because of their limited variability 
in the collected data. The dependent variable, i.e., the output 
variable, is the weighted workload average from the six 
NASA-TLX dimensions. 

4.2. Data Collection 

Each participant performed two practice trials for each world 
task before the experiment took place to acquaint themselves 
with the nature of the experiment. After each practice, they 
completed a pairwise comparison survey to evaluate 
subjective workload using the NASA-TLX measure. In this 
survey, they selected the dimensions they believed had a 
higher impact in each of the 15 pairs. After that, the four 
multitasking conditions were assigned to participants 
randomly. After performing each condition of task difficulty, 
they completed the post-task NASA-TLX to give a rating for 
the demand of each condition on a scale from 0 to 100% for 
each workload dimension based on how they perceived it. All 
surveys were filled out using the Qualtrics survey tool. 

Our study gathered data from 144 observations from the 36 
participants, each performing four multitasking conditions, 
and no missing data was present. The descriptive statistics for 
each multitasking condition are shown in Table 2.  

 

 

 

 

 

Table 2. Summary of descriptive statistics of the NASA-
TLX dimensions across the multitasking conditions 

NASA-TLX 
Dimensions 

Multitasking Conditions 

Easy RW–
Easy VW 

Easy RW–
Hard VW 

Hard RW–
Easy VW 

Hard 
RW– 
Hard VW 

Mental 
Demand 
Mean  
(SD) 

41.11 
(26.57)  

 

44.75 
(26.48)  

 

41.06 
(27.48)  

 

44.11  
(27.64) 

Physical 
Demand 
Mean  
(SD) 

63.14 
(23.25)  
 

75.39 
(19.29)  
 

72.42 
(26.25)  
 

82.19 
(23.03) 

Temporal 
Demand 
Mean  
(SD) 

55.17 
(23.33)  
 

64.56 
(25.41)  
 

67.67 
(27.66)  
 

66.47 
(28.56) 

Performance 
Mean  
(SD) 

51.67 
(24.14)  
 

50.83 
(22.85)  
 

47.53 
(22.60)  
 

52.86 
(27.55) 

Effort 
Mean  
(SD) 

66.42 
(22.50)  
 

72.89 
(19.79)  
 

75.25 
(20.34)  
 

82.11 
(17.80) 

Frustration 
Mean  
(SD) 

36.53 
(28.14)  
 

44.28 
(27.44)  
 

49 
(32.78)  
 

53.14 
(33.44) 

 

The six NASA-TLX dimensions results were combined into 
a weighted average for the output overall workload. This 
weighted rating was calculated by taking the recorded 
responses to each NASA-TLX six dimensions for each 
participant in the pairwise comparison survey, which 
assessed 15 pairs. The ultimate weighted rating score was 
calculated by dividing the sum-product of the inputs of each 
NASA-TLX dimension (0-100%) from the post-task survey 
and the corresponding counts from the pairwise survey by 15. 
Equation (5) is the formula for calculating the weighted 
average.  

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =   ∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑖𝑖6
𝑖𝑖=1

15
        

                                                                                                (5) 

5. THE RESULTS 

5.1. GAN Generated Synthetic Data 

The GAN model was implemented on the dataset in a Google 
Colab notebook. The observations from each condition were 
treated as individual datasets, as each observation 
corresponds to a distinct participant. To account for the 
balanced gender variable, the four datasets were further 
divided by gender, resulting in a total of eight datasets with 
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18 observations each. This ensured equal representation of 
males and females in the synthesized data, consistent with the 
original dataset. This implies that both the task difficulty and 
gender variables were omitted during the training of the GAN 
and reintroduced afterward. 

The traditional GAN is applied with an 80/20 split rule, where 
approximately 80% of the original dataset is used for training 
and 20% for testing after installing the necessary libraries, 
including NumPy, Pandas, and TensorFlow.Keras, and 
Scikit-learn. Three neural networks were built: the generator, 
the discriminator, and the GAN, which combines both the 
generator and the discriminator to compete with each other. 
The ‘build_model’ function is used to construct the three 
models implemented as sequential deep-learning models. 
The generator model is built with a total of four dense layers, 
while the discriminator model is constructed with three dense 
layers. The ‘LeakyReLU’ activation function is employed in 
the hidden layers for both the generator and the discriminator 
models with a small positive value of 0.2 for the alpha 
parameter. This parameter controls the slope of the function 
for the negative values. The choice of using the ‘LeakyReLU’ 
function instead of the ‘ReLU’ function is because the 
‘ReLU’ function can result in inactive neurons during 
training. This occurs because the ‘ReLU’ assigns a value of 
0 to all negative inputs. In contrast, the ‘LeakyReLU’ 
function resolves this problem by introducing a small slope 
for the negative inputs instead of setting them to 0, ensuring 
that neurons stay active during training and avoiding the issue 
of inactive neurons that could occur when using ‘ReLU’ 
(Salam et al., 2021). However, both functions were 
experimented with individually, and the ‘LeakyReLU’ 
achieved better results.  

The sigmoid function is utilized in both the generator and 
discriminator output layers. Using the 'sigmoid' activation 
function in the generator ensures that the generated values 
match the percentage range of the original samples. It 
transforms the input into a scale from 0 to 1, making it ideal 
for representing probabilities or values within a range. 
Although other activation functions like ‘tanh’ and ‘linear’ 
were tested for experimentation, they did not produce better 
outcomes. The discriminator’s ‘sigmoid’ activation function 
assigns values closer to 0 to indicate fake samples and values 
nearer to 1 to indicate actual samples. Then, the GAN model 
is trained as a binary classification problem, aiming to 
classify samples as real or fake. The combined GAN model 
uses the ‘binary cross entropy’ loss function. The GAN 
model is optimized using the Adaptive Moment Estimation 
(Adam) optimizer, a commonly used stochastic gradient 
descent optimization algorithm in deep learning (Zaheer & 
Shziya, 2019). 

After the generator and the discriminator were trained 
individually, the GAN was trained on a newly generated 
batch of fake samples labeled as real for testing. Then, after 

each epoch, from equations (1) - (3), three losses were 
calculated: 𝐿𝐿𝐺𝐺, 𝐿𝐿𝐷𝐷, and 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺. 

A total of 1000 epochs were utilized to train the model. 
However, to prevent overfitting, an early stopping rule is 
implemented to monitor the model's performance. It stops the 
training once there are no more improvements in the GAN 
loss. 

Throughout each epoch, the model assesses the current GAN 
loss compared to a variable called ‘best_loss’. This variable 
keeps track of the best GAN losses achieved, with a threshold 
set at 0.001 called ‘min_delta’. This threshold determines 
what qualifies as an improvement in the GAN loss. If the 
current loss surpasses the ‘best_loss’ by at least ‘min_delta,’ 
the ‘best_loss’ gets updated with the current loss value, and 
the counter variable ‘wait’ resets to 0. Otherwise, the ‘wait’ 
is incremented by 1. If there is no improvement in the GAN 
loss for a specific number of epochs based on a parameter 
known as ‘patience’, then early termination is triggered. The 
‘patience’ parameter is set to 20. Multiple runs are performed 
within a loop using different batch sizes to identify the 
optimal batch size that yields the best performance for the 
model. Since each dataset consists of 18 samples, batch sizes 
of 2, 3, 6, and 9 were used for experimentation. The optimal 
batch size is selected as 2 based on comparing the best GAN 
loss achieved in each trial. Table 3 summarizes the best GAN 
loss achieved for every batch size, categorized by each 
categorical variable. 

Table 3. Summary of the best GAN loss achieved for each 
batch size per condition. 

Condition Batch 
Size 

Best 𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮 
(Male) 

Best 𝑳𝑳𝑮𝑮𝑮𝑮𝑮𝑮 
(Female) 

 
Easy RW – Easy VW 

2 0.628 0.590 
3 0.83 0.609 
6 0.784 0.621 
9 0.817 0.631 

 
Easy RW – Hard VW 

2 0.663 0.598 
3 0.851 0.691 
6 0.878 0.686 
9 0.844 0.644 

 
Hard RW – Easy VW 

2 0.628 0.534 
3 1.005 0.786 
6 1.013 0.774 
9 0.996 0.756 

 
Hard RW – Hard VW 

2 0.519 0.604 
3 0.943 0.731 
6 0.981 0.737 
9 0.997 0.662 

 
Multiple trials were carried out using different values of 
‘latent_dim,’ such as 10, 100, and 500, to determine if 
adjusting this parameter would affect output diversity, as it 
influences the variety of the generated output. However, no 
significant differences were observed; therefore, the 
‘latent_dim’ was ultimately set to 500 because the larger the 
latent_dim, the more varied the data can be. After training the 
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model with the optimal batch size, 625 fake samples are 
generated per dataset from the ‘generate_samples’ function, 
employing the generator network. This results in a combined 
total of 5,000 generated fake samples. Several experiments 
were conducted to determine the appropriate number of fake 
samples to generate from our original data. While it is 
generally desirable to have more data, it is crucial to strike a 
balance between data quality and diversity. The resulting fake 
samples are then stored in a data frame named ‘fake_data’. 
Lastly, the ‘fake_data’ data frame is converted into a CSV 
file to be called for evaluation. The results of the assessment 
are presented in the results section. Eventually, the real 
(original) and the fake (GAN-generated) are combined after 
evaluation. This combined dataset is then used to build a 
prediction model for the weighted rating variable. 

The synthesized data by GAN was evaluated. Since all 
variables were continuous, the performance of the model on 
the unseen data (testing set) was evaluated by measuring the 
distribution matching evaluation using the Kolmogorov-
Smirnov (KS) test between these two sets as a part of the 
evaluation process (Kolmogorov & Smirnov, 1933). The 
assessment of the synthesized data compared to the original 
data was measured by the overall quality score by calling the 
‘evaluate_quality’ function from the ‘sdv.evaluation’ 
module, in addition to the KS distribution comparison 
statistical test. The overall quality score was best achieved at 
around 65%, and the p-values from the KS test were less than 
0.001, indicating matching distributions. Table 4 shows the 
overall quality scores per category for the synthesized data 
generated by GAN. 

Table 4. Summary of the overall quality scores of the 
synthesized data by GAN 

Difficulty Level Male 
Quality 
Score  
(%) 

Female Quality 
Score 
(%) 

Easy RW – Easy VW 64.25 63.98 
Easy RW – Hard VW 62.23 65.71 
Hard RW – Easy VW 61.65 65.85 
Hard RW – Hard VW 62.73 64.63 

 

5.2. LLM-based Workload Prediction Results 

An LLM-based model was applied to the synthetic data 
generated by GAN to predict the workload.  This model used 
a pre-trained large language model like BERT to process 
textual data related to the difficulty level variables. The 
remaining numerical variables were fed into a feedforward 
neural network at the same time. The gender variable was 
encoded using ‘0’ for males and ‘1’ for females. The model 
was developed using the Python programming language in a 
Google Colab notebook. 

After importing the necessary libraries like transformers, 
Sklearn.model_selection, TensorFlow, Numpy, and pandas, 
the BERT model was called for custom configuration for 
fine-tuning according to our specified task. The 
‘attention_probs_dropout_prob’ and ‘hidden_dropout_prob’ 
are set to 0.1, which means 10% of attention probabilities in 
the hidden layers will be dropped during training to prevent 
overfitting. The activation function used in the hidden layer 
is ‘gelu’, as it is commonly used in natural language 
processing tasks. The ‘hidden size’ is set to 768, which 
defines the number of units in each hidden layer, and the 
‘intermediate_size’ is set to 3072, which represents the size 
of the intermediate feedforward layer. The model can process 
sequences up to 512 tokens long. It uses 12 attention heads, 
and 12 transformer layers, allowing for complex 
representations of the input sequence. The ‘vocab_size’ used 
by BERT is set to 30522. These configurations optimize the 
model to offer a balance between performance and efficiency.  

After that, a utility function called ‘tokenize_text’ is defined. 
This function tokenizes the text data using BERT's tokenizer, 
transforming raw text into a structured, numerical format that 
BERT can use to understand and process text effectively. 
After uploading our dataset from a CSV file, the tokenized 
output of the difficulty level variable is stored in a new 
column called 'text_tokenized.' The numerical variables are 
normalized using ‘StandardScaler’, which scales the data to 
have a mean of zero and a standard deviation of one, 
preparing it for input into the model. 

After that, the dataset is split using the 80/20 split rule, and 
the input for the BERT model ‘bert_model’ is prepared using 
TensorFlow/Keras. An input layer named ‘input_ids’ is 
defined, which expects sequences of integers with a fixed 
length of 32; these integers represent tokenized words from 
the text. The input is then processed through the BERT 
model. The numerical inputs are set up for a basic 
feedforward neural network, also using TensorFlow/Keras. 
An input layer called ‘num_input’ is created to receive the 
numerical data for processing, and a dense layer named 
‘num_dense’ is added with 16 neurons and a ReLU activation 
function. This layer takes the numerical input and applies the 
ReLU function, which helps introduce non-linearity into the 
model. 

Instead of concatenating the output of the BERT with the 
numerical inputs altogether, the BERT output is passed as 
part of the dense layer input to the neural network ‘bert_dense 
=tf.keras.layers.Dense(16, activation='relu')(bert_output),’ 
and then the model combines the numerical features with the 
processed BERT output ‘combined = 
tf.keras.layers.concatenate([bert_dense, num_dense])’. 
Figure 4 shows an illustration of this explanation. 

After this combination, a dense layer named ‘dense’ is 
created with 32 neurons and a ReLU activation function, and 
another dense layer named ‘output’ is defined, which has a 
single neuron where this layer is used for regression tasks to 
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output a continuous value based on the input data. Lastly, the 
model is defined using ‘tf.keras.Model’, which specifies the 
entire network's input and output to make predictions. 

The model's training was evaluated based on the comparison 
of two parts, based on the Root Mean Square Error (RMSE), 
because of the numerical nature of the weighted workload 
target variable and based on a combined loss function from 
the BERT and the neural network. For evaluation based on 
the RMSE value, the model is compiled using the 
‘model.compile’ method, where the Adam optimizer is 
chosen, and the loss function is set to be the RMSE. The 
learning rate in compiling the model was set to 0.0001, which 
allows the model to learn slowly and more precisely than 
setting a higher learning rate. The model was trained using 
the ‘model.fit’ function, which takes the training data, where 
‘X_text_train’ contains the tokenized text inputs, and 
‘X_num_train’ holds the numerical inputs. The target values 
the model aims to predict are represented by ‘y_train’. 
Additionally, the model evaluates its performance on a 
separate validation dataset consisting of ‘X_text_test’ and 
‘X_num_test’ along with their corresponding target values 
‘y_test’. The training process runs for 20 epochs to balance 
learning efficiency and computational constraints, such as 
CPU capacity. More training epochs were experimented with 
for testing, and the results did not significantly differ. Thus, 
the number of epochs was set to 20. Different common batch 
sizes were tested during this process, including 16, 32, and 
64, to determine the optimal size for training given the 
available resources. The RMSE equation for this part is 
represented by the standard RMSE equation as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛

 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                       (6)

  
In (6), 𝑦𝑦𝑖𝑖  represents the actual values (training data), and 𝑦𝑦�𝑖𝑖 is 
the predicted value (the output of the model). The difference 
between them is the residual or the error for each data point. 
By squaring the errors, we ensure that both positive and 
negative errors contribute positively to the total error, 
preventing any cancellations. Summing out the squared errors 
for all the 𝑛𝑛 data points, and then taking the square root returns 
the error to the original units.  

Another modification to the model was made to enhance its 
prediction accuracy. Instead of keeping the BERT constant 
by only taking it as an input to the NN, where in this case, its 
weights were not being updated during training, a training 
loop of the NN was created by integrating the BERT and fine-
tuning it inside the loop for the NN. In each iteration of the 
loop, the tokenized text input is passed through the pre-
trained BERT, which generates the CLS token embeddings. 
These embeddings are then processed by additional layers of 
the NN, combined with numerical features and passed 
through more layers to produce the final output. In this 
method, the loss of the BERT is updated each time rather than 
remaining constant in case it is not integrated into the neural 

network loop. A total of 20 epochs were used to train this 
model as well. Increasing the number of epochs did not 
provide much of a difference in the results. The same batch 
sizes of 16, 32, and 64 were used for comparison. This 
modified model also uses an Adam optimizer.  

Thus, before training, an individual loss function was defined 
based on RMSE, one for the BERT model called ‘loss_bert,’ 
and the other one for the NN called ‘loss_nn.’ Then, a custom 
loss function called ‘Weighted_rmse_loss’ was defined, 
which combines the two losses. This function calculates the 
losses for both ‘y_true’, representing the true values, and 
‘y_pred’, representing the predicted values. Then, it creates a 
weighted sum using the parameter α ‘alpha’. The loss for 
BERT is multiplied by ‘alpha’, while the loss of the NN is 
multiplied by ‘(1-alpha)’. This method allows control to give 
how much importance each model has in the final loss. So, 
the ‘alpha’ here, by default, is set to 0.5. 

For the simple neural network evaluation, the best 
performance was achieved with a batch size of 16, yielding 
an RMSE value of 6.82. Table 6 shows the results of each 
batch size. When comparing the performance of the proposed 
hybrid model and the simple neural network, it is noted that 
the proposed hybrid model achieved better results in 
predicting the workload, especially when integrating the 
BERT into the training of the FNN, and was kept constant. 
Therefore, the results of this study supported our hypothesis. 

 

Table 5.  Comparison of RMSE values of different 
workload prediction methods 

Workload 
Prediction 

Method 

RMSE 

batch size 
= 16 

batch size 
= 32 

batch size 
= 64 

FNN 6.82 6.88 6.93 

BERT no 
Integration 

2.66 2.68 2.67 

BERT with 
Integration 

1.03 0.95 0.99 

GPT-2 no 
Integration 

2.70 2.71 2.68 

GPT-2 with 
Integration 

0.99 0.98 1.01 

 

As shown in Table 5, in comparison, the methods with LLM 
integration give better results than those without LLM 
integration.  Between the two methods integrated with 
different LLMs, the prediction accuracy of BERT is 
comparable to that of GPT-2.  

Figure 5 and Figure 6 show the predicted workload vs. the 
actual workload for a simple FNN and an integrated LLM 
model, respectively.  The results presented by Figures 5 and 
6 are consistent with the results presented in Table 5. 
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Figure 5.  Predicted workload vs. actual workload for the 
simple FNN model. 

 

 

Figure 6.  Predicted workload vs. actual workload for the 
integrated BERT model. 

 

6. CONCLUSION 

This paper presents a novel framework for predicting user 
workload in mixed reality (MR) multitasking environments 
by integrating large language models (LLMs) with generative 
adversarial networks (GANs) and traditional workload 
metrics. By leveraging both structured numerical data and 
unstructured textual inputs, our approach enhances the 
precision and contextual relevance of workload predictions, 
key for improving human-machine interaction in immersive 
environments. Unlike conventional methods that rely solely 
on subjective post-task evaluations such as NASA-TLX, our 
model utilizes BERT and GPT-based embeddings to interpret 

task complexity and user experience in real-time or near real-
time, enabling more proactive system adaptations. 

To overcome data scarcity, a common barrier in experimental 
MR research, we implemented GAN-based data 
augmentation, which effectively synthesized diverse and 
realistic training samples. The integration of these synthetic 
datasets enabled more robust model generalization and 
predictive accuracy. Our results clearly demonstrate that 
LLM integration significantly outperforms baseline 
feedforward neural network models, reducing root mean 
square error (RMSE) from 6.82 to as low as 0.95 when BERT 
is fine-tuned and jointly trained with the FNN. 

The proposed methodology holds promise for a wide range 
of applications in fields such as training simulation, 
healthcare, aerospace, and manufacturing, where 
understanding cognitive workload is essential to system 
design and operational safety. Additionally, the framework 
can serve as a foundation for further research in adaptive MR 
systems that dynamically adjust task difficulty or interface 
elements based on predicted cognitive load. 

Future work should explore multimodal data fusion by 
incorporating physiological signals (e.g., EEG, eye tracking) 
alongside textual and numerical inputs, and investigate real-
time workload prediction in live MR environments. 
Moreover, transfer learning and federated learning 
approaches could improve scalability across different user 
populations and hardware platforms. This research lays the 
groundwork for intelligent, user-aware MR systems that are 
both scalable and responsive to individual cognitive demands. 
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