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ABSTRACT

Recent advances in deep learning (DL), particularly
transformer-based  architectures, have opened new
possibilities for time series forecasting. Large Language
Models (LLMs), initially developed for natural language
processing, are emerging as promising tools for sequence
modeling beyond text due to their scalability, multimodal
integration, and few-shot learning capabilities. However,
their application in industrial forecasting tasks, such as
turboshaft engine torque prediction, remains largely
unexplored.

This paper evaluates the potential of LLMs for forecasting
engine torque, a key parameter for ensuring the safety,
reliability, and efficiency of helicopter operations. We
compare the performance of four models: two general-
purpose LLMs (GPT-2 and ChatGPT), a specialized time
series LLM (TimeGPT), and a standard transformer-based
time series model. Using real-world Health and Usage
Monitoring System (HUMS) data from a Bell 407 engine, we
assess these models in terms of forecasting accuracy and
classification of insufficient torque conditions. Our findings
demonstrate that GPT-2 and TimeGPT achieve strong
predictive performance (RMSE ~1.35-1.46), while prompt-
based solutions like ChatGPT, though accessible, lag in
accuracy. The results highlight the promise of LLMs for
industrial time series forecasting and outline future directions
for developing efficient, domain-adaptable models.

Alessandro Tronconi et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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1. INTRODUCTION

The rapid advancement of LLMs has significantly
transformed various industries, enabling diverse applications
ranging from simple user tasks to complex industrial
processes. Among these applications, researchers have begun
to explore using LLMs in the critical domain of time series
forecasting. Time series forecasting involves predicting
future values based on historical, time-stamped observations.
Based on a sequence of values {xi,..,xr}, where x;
corresponds to the time stamp ¢, its objective is to estimate
Xxr41- Time series analysis and forecasting underpin decision-
making in industrial contexts, where achieving high accuracy
in prediction is essential, as it directly influences strategic and
operational decisions.

Traditional statistical forecasting methods, such as seasonal
autoregressive integrated moving average with exogenous
variables (SARIMAX), have demonstrated strong
performance in short-term predictions but often require
significant domain expertise and manual adjustments to
achieve optimal results. More recently, DL approaches like
Long Short-Term Memory (LSTM) networks have gained
popularity due to their effectiveness in capturing longer-term
dependencies within time series data. However, existing
methods typically remain specialized, with models frequently
optimized for specific data characteristics and prediction
horizons.

Inspired by the success of transformer-based architectures,
particularly large-scale models developed initially for natural
language processing (NLP), this paper investigates their
potential for enhancing time series forecasting capabilities.
Models such as Informer (Zhou, Zhang, Peng, Zhang, Li et
al., 2021) have already demonstrated substantial success
within this context, suggesting that transformer architectures
possess inherent advantages in handling temporal data.
Leveraging LLMs introduces the possibility of employing
their advanced capabilities for forecasting purposes. This
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approach offers significant promise, particularly due to the
models' abilities to understand and reason over complex
patterns and temporal dependencies without extensive
domain-specific customization (Chang, Wang, Peng, &
Chen, 2025).

Furthermore, the growing accessibility and relatively low
cost associated with LLMs highlight their potential as
efficient alternatives to specialized forecasting models. This
paper examines explicitly whether cost-effective, readily
accessible LLMs can outperform traditional forecasting
approaches, thereby providing broader and more generalized
solutions.

The remainder of this paper is organized as follows. Section
II reviews the relevant literature and contextual background.
Section III outlines the proposed methodology. Section IV
presents the case study and its results. Finally, Section V
concludes the study and discusses potential directions for
future research.

2. BACKGROUND AND RELATED WORK

2.1. Deep Learning-Based Time Series Forecasting

The foundation of time series forecasting rests on classical
statistical methods refined over decades of research and
practical application. These methods include exponential
smoothing, moving averages, and autoregressive models that
assume relatively stable underlying patterns in the data. The
autoregressive integrated moving average (ARIMA) family
of models represents one of the most influential
developments in classical time series analysis. Such models
are capable of modeling a wide range of temporal patterns,
and the integration of seasonal components has proven
particularly valuable in domains where predictable cyclical
patterns significantly influence outcomes.

Machine learning (ML) models such as Linear Regression,
Random Forest, Gradient Boosting, and other regression-
based algorithms have been widely applied to high-
dimensional time series data. The advent of DL has
transformed time series forecasting, introducing neural
network (NN) architectures specifically designed to capture
complex temporal dependencies.

Modern DL architectures for time series forecasting typically
employ encoder-decoder frameworks that can handle both
one-step-ahead and multi-horizon prediction tasks, and the
diversity of architectural choices reflects the heterogeneous
nature of time series problems across various domains. Lim
and Zohren (2020) provided an extensive overview of DL
methods for time series forecasting. A significant trend in
recent years has been the emergence of hybrid models that
combine well-established statistical techniques with NN
components, leveraging both statistical methods' theoretical
foundation and interpretability and the pattern recognition
capabilities of DL architectures (Lim & Zohren, 2020).
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Figure 1. The transformer model architecture (extracted
from Vaswani et al., 2017).

Multi-Layer Perceptron (MLP), Convolutional Neural
Network (CNN), and LSTM networks are among the most
popular DL models, and combining CNN with LSTM offers
distinct advantages for processing long input sequences
(Brownlee, 2019). However, among DL methods,
transformer-based architectures (Figure 1) have emerged as
particularly promising and are the focus of our research, as
they have marked a significant milestone in the evolution of
temporal prediction methods. The success of transformers in
NLP has inspired researchers to adapt these architectures for
time series applications, leading to the development of
specialized models. The transformer architecture is entirely
based on the self-attention mechanism (Vaswani, Shazeer,
Parmar, Uszkoreit, Jones et al., 2017), composed of encoder-
decoder layers. The multi-head attention mechanism, which
forms the core of the encoder-decoder structure, consists of
multiple attention heads whose outputs, derived from scaled
dot-product attention, are concatenated and linearly projected
(see Figure 2). The attention function is computed as follows

(Soydaner, 2022):
. QK"
Attention(Q,K,V) = softmax % (1)

Nep

In Eq. (1), Q, K, and V represent the matrices containing
queries, keys, and values, respectively. dy represents the
dimension of the keys.

Z; = Attention(QW,°, KWX,vw}) )
MultiHead(Q,K,V) = Concat(Z;, ..., Z,)W° 3)
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Equations (2) and (3) show the multi-head attention
computation, where W9, WX WV are the weight matrices
for queries, keys, and values, and W9 is a learned weight
matrix used to linearly project the attentions (Z;), combining
information from different heads in a learned manner.
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Figure 2. The basic structure of the multi-head attention
mechanism (extracted from Vaswani et al., 2017).

Several advanced models have been developed to adapt
transformers to the specificities and challenges of time series
data, such as the issue of quadratic complexity, by revising
the attention mechanism. The Informer model (Zhou et al.,
2021) represents a relevant advancement in applying
attention mechanisms to long sequence time series
forecasting, addressing the computational limitations of
Vanilla transformers for temporal data, and opening the door
to multivariate time series forecasting (Simhayev, Rogge, &
Rasul, 2023).

Examples of similar models are the Autoformer (Simhayev,
Rasul, & Rogge, 2023) and the Temporal Fusion Transformer
(Kafritsas, 2024). Overall, recent studies have provided
evidence that when compared against equivalent-sized
models, transformer-based architectures consistently achieve
superior performance on standard test metrics.

2.2. Large Language Models and LLM-Based Time
Series Forecasting

LLMs are advanced Artificial Intelligence (AI) systems
designed to understand and generate human language by
learning from vast textual corpora. Built on DL architectures,
particularly transformers, they can capture complex linguistic
patterns. Models such as GPT revolutionized NLP with a
two-stage approach: pre-training on large-scale, unlabeled
datasets through self-supervised learning objectives,
followed by fine-tuning on specific downstream tasks (Cao
& Wang, 2024).

This paradigm has led to state-of-the-art performance across
diverse applications, including text generation, translation,
and conversational agents. The most prominent LLM

providers include OpenAl, Meta, and Google. OpenAl's GPT
series, particularly GPT-2, gained early recognition for
generating coherent and contextually appropriate text. Its
architecture is displayed in Figure 3. Building on this
foundation, ChatGPT has become one of the most popular
conversational systems worldwide.

The success of LLMs in NLP has sparked interest in their
potential applications beyond textual data. The pattern
recognition capabilities exhibited by LLMs have proven
transferable to other domains, suggesting that the underlying
mechanisms for sequence modeling and pattern extraction
may be more general than initially anticipated (Jin, Wang,
Ma, Chu, Zhang et al. 2024). The challenge lies in effectively
bridging the modality gap between numerical time series
observations and the natural language tokens that LLMs are
designed to process.

Multimodal LLMs (MLLMs) are models capable of
processing heterogeneous and unstructured data from
multiple modalities and are increasingly applied in industrial
settings for anomaly detection. Recent approaches have
explored their adaptation to non-textual domains such as
vibration and acoustic signals. Leveraging transfer learning
and few-shot learning frameworks enables effective
classification and forecasting with minimal labeled data (He,
He, & Taffari, 2023).
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Figure 3. GPT-2 architecture (from Wikipedia).
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Figure 4. TimeGPT architecture overview (extracted from Garza, Challu, & Mergenthaler-Canseco, 2023).

Jiang, Li, Deng, Liu, Gao et al. (2025) proposed a benchmark
for MLLMs handling images and textual data in the field of
industrial inspection, while other studies have addressed
adapted models for zero-shot anomaly detection (Deng, Luo,
Zhai, Cao, & Kang, 2021). Through GPT4MTS, Jia, Wang,
Zheng, Cao, and Liu (2023) have also explored a prompt-
based solution for the integration of textual and numerical
data.

Specialized GPT models for time series have been
introduced, such as TEMPO (Cao, Jia, Arik, Pfister, Zheng et
al., 2023), which uses a prompt-based approach and employs
a transformer architecture fed with data about the trend,
seasonal, and residual components of the data. In such cases,
designing an optimal prompt is crucial and generally, LLMs
perform well in forecasting time series with clear patterns and
trends but struggle with datasets that lack periodicity or
exhibit irregular behavior (Tang, Zhang, Jin, Yu, Wang et al.,
2025), which requires specific adaptation to address time
series forecasting and outperform the classical models
effectively.

TimeGPT (Garza, Challu, Mergenthaler-Canseco, 2024), a
large pre-trained time series model developed by Nixtla, is
among the most promising recent advancements. It delivers
state-of-the-art performance while maintaining accessibility
through built-in functions and user-friendly settings. Figure 4
illustrates its architecture, closely resembling the standard
transformer framework shown in Figure 2. However, instead
of a Softmax layer, TimeGPT employs a linear
transformation to output forecasted values directly.

2.3. Turboshaft Engine Torque Prediction

The analysis and prediction of turboshaft engine torque are
critical to ensure the safety and longevity of helicopter
operations. Torque measurements directly reflect mechanical
load on the engine components. They are closely linked to
component wear, fuel consumption, and overall performance,

serving as a key indicator for proactive maintenance and
failure prevention. Previous research has explored data-
driven approaches utilizing HUMS sensor data, including DL
models to capture complex temporal dynamics. In particular,
He, Bechhoefer, and Hess (2025) applied LSTM-based
models trained on HUMS data and fine-tuned them for new
engines and operating conditions, demonstrating strong
generalization with minimal target-domain data. Our
approach builds on this foundation by investigating whether
LLMs can achieve comparable or superior performance.
Paniccia, Tucci, Guerrero, Capone, Sanguini et al. (2025)
applied NN to Leonardo’s AW189P4 prototype engine for
torque prediction. However, these approaches face
limitations in terms of generalization capabilities and
accessibility. GPT variants and transformer-based foundation
models are increasingly explored for time-series forecasting
and can address these limitations through their native support
for heterogeneous data types, enabling multimodal
processing. Furthermore, the self-attention mechanism
effectively captures long-range dependencies within torque
time series, offering improved performance over traditional
window-based forecasting approaches.

3. THE METHODOLOGY

Four models have been included in our analysis: (1) GPT-2
as an LLM; (2) ChatGPT-o04-mini-high, the most suitable
OpenAl conversational model for code generation and visual
reasoning, in a prompt-based configuration; (3) TimeGPT as
a specialized large time-series model; (4) Time Series
Transformer model as a benchmark. Figure 5 illustrates the
proposed methodology for forecasting turboshaft engine
torque. The process begins with collecting and preparing
HUMS sensor data. The workflow then branches into four
model-specific  pipelines, including embedding and
positional encoding when applicable, model training, and
forecasting.
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Figure 5. Flowchart of the proposed methodology.

The GPT-2 and Time Series Transformer models were
implemented using the PyTorch library in Python. Their
setup involved model initialization, parameter configuration,
and the training loop. In contrast, ChatGPT operates through
prompt-based interactions; it requires appropriate textual
prompts and produces output in the form of a structured
dataset containing predicted values. TimeGPT requires a
more claborate preprocessing phase, including proper
formatting of the input sequences, to utilize its built-in fine-
tuning and forecasting functions; multiple training and test
splits were considered to evaluate the model's forecasting
performance across different data availability scenarios. All
paths converge at a common forecasting accuracy evaluation
step, measured by Root Mean Squared Error (RMSE),
defined in Eq. (4).

RMSE = 4

ChatGPT’s classification performance was also assessed, as
detailed in the following section.
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4. CASE STUDY

4.1. The Dataset

This study utilizes HUMS data collected from a Bell 407
helicopter engine. The dataset contains 7954 observations of
engine torque, recorded alongside six exogenous variables:
Outside Air Temperature (OAT), Measured Gas Temperature
(MGT), Pressure Altitude (PA), Indicated Airspeed (IAS),
Gas Generator Speed (Ng), and Power Turbine Speed (Np).
The measurement units and corresponding value ranges for
each variable are summarized in Table 1. For all the models,
the dataset was partitioned into a training set (80%, 6363
observations) and a test set (20%, 1591 observations).

Table 1. The dataset parameters and value range.

Parameter Unit Range

Engine Torque | % [0.102, 93.445]

OAT °C [-2.086, 15.684]
MGT °C [454.633, 812.562]
PA feet [3348.425, 8699.112]
IAS knot [-0.186, 147.156]
NG rpm [68.499, 99.889]

NP rpm [41.030, 102.988]

The target variable, Engine Torque, was recorded as a time
series and expressed as a percentage of the engine’s
maximum torque. Data analysis revealed extended intervals
during which torque values remained consistently low and
stable, indicating insufficient torque output by the engine.
This condition reflects a reduced capacity to generate
rotational force, resulting in diminished acceleration and
lower power at reduced speeds. Consequently, it is also
relevant to evaluate the model’s ability to forecast torque
values accurately and assess its effectiveness in classifying
whether the torque exceeds a defined operational threshold.

To this end, for ChatGPT, a threshold of 40% was adopted,
and the model's classification effectiveness in identifying
insufficient torque conditions was measured by precision,
recall, and accuracy.

4000 5000 6000 7000

Test set

Figure 6. Engine Torque data plot.
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4.2. Results

4.2.1. GPT-2

The GPT-2 model was fine-tuned for time series forecasting
using all six exogenous variables. Prior to training, the input
data were scaled, and numerical features were embedded with
positional encoding to retain temporal structure. The pre-
trained GPT-2 architecture was adapted and fine-tuned using
the parameters detailed in Table 2 and the default gps2
configuration. After training, the model was applied to
forecast the values in the test set (Figure 7), yielding an
RMSE of 1.35, indicating effective learning of temporal
dependencies and exogenous variable influence.

Table 2. GPT-2 model’s hyperparameters.

Hyperparameter Value
Embedding dimension 768

Batch size 32

Epochs 100

Initial Learning Rate 1074

Final Learning Rate 106

Scheduler Cosine Annealing
Loss function MSE

Optimizer AdamW

4.2.2. ChatGPT

It was observed that ChatGPT-o4-mini-high defaults to using
a basic ARIMA approach when requested to generate
forecasts without a properly formulated instruction prompt; it
fails to infer the appropriate order, resulting in inaccurate
predictions. Instead, when explicitly asked to perform
forecasting using an LLM, it produces satisfactory results
even on the first attempt (Figure 8). This demonstrates the
model's effectiveness in a scenario where no additional
contextual information is provided. However, the model
produced a relatively high RMSE of 12.93, as the prediction
consistently overestimated the true values. Nevertheless, it
successfully captured the overall trend of the data over time
and correctly identified periods of insufficient torque. Its
classification performance—distinguishing whether values
were above or below the 40% threshold—shows about 75%
in recall (see Table 3).

Table 3. ChatGPT’s classification performance.

Classification metric | Value
Precision 0.9897
Recall 0.7467
Accuracy 0.8517

4.2.3. TimeGPT

TimeGPT from Nixtla was first evaluated in its forecasting
capabilities without exogenous variables, and it failed to
produce meaningful forecasts for short and long (timegpt-1-
long-horizon) horizons, indicating that the target variable
cannot be reliably predicted from historical values alone and
demonstrating intrinsic dependence of the engine torque on
contextual variables. While this may appear as a limitation, it
aligns with practical scenarios where such contextual data is
usually available. When all six exogenous variables were
included, TimeGPT (Figure 9) demonstrated strong
predictive performance, achieving an RMSE of 1.46 (Table
4). In addition to accurate predictions, the model returned
interpretable variable importance scores, allowing for
analysis of the relative influence of each exogenous input on
the forecast. To explore the effect of prediction horizon on
model accuracy, the number of predicted values was
progressively increased, therefore decreasing the training set
size. When forecasting 6000 values, instead of the standard
1591, the RMSE rose within acceptable limits, while further
increases in the forecasting horizon led to continued
degradation in accuracy, with the model struggling to capture
peaks.

Table 4. TimeGPT’s prediction performance with
various training and test splits.

Training test size | Test set size RMSE
6363 (80%) 1591 (20%) 1.4585
1954 (25%) 6000 (75%) 2.2037
454 (6%) 7500 (94%) 4.1259

4.2.4. Time Series Transformer Model

Finally, we evaluated a time series transformer, which
involves token embedding and positional encoding as the
main components. The model training was performed on
normalized data and using the hyperparameters in Table 5.
The resulting forecasting RMSE was 5.38. As a reference, a
simple SARIMAX(2,1,1) model yielded an RMSE of 6.12.

Table 5. Time Series Transformer hyperparameters.

Hyperparameter Value

Model dimension 256

Batch size 32

Epochs 100

Initial Learning Rate 1074

Final Learning Rate 1076

Scheduler Cosine Annealing
Loss function MSE

Optimizer AdamW
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Figure 7. GPT-2 forecasting plot.
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Figure 9. TimeGPT forecasting plot.

4.2.5. Summary

A summary of the prediction results is presented in Table 6.

Table 6. Prediction results for the models assessed.

Model RMSE
GPT-2 1.35
ChatGPT 12.9260
TimeGPT 1.4585
Time Series Transformer | 5.3787

Among the evaluated models, GPT-2, ChatGPT, TimeGPT,
and a time series transformer, GPT-2 and ChatGPT represent
LLMs and were the primary focus of the investigation. LLMs
exhibited strong potential in this domain, with GPT-2
achieving comparable results to TimeGPT. However,
constraints like computational costs and limited accessibility
for larger models persist. Prompt-based approaches have
emerged as a practical and user-friendly solution, as
evidenced by the increasing popularity of tools like ChatGPT,
but they lack accuracy and control over training procedures
compared to code-based models.
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Figure 8. ChatGPT forecasting plot.
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Figure 10. Time Series Transformer forecasting plot.

For time series transformers, hyperparameter tuning becomes
a critical challenge that can significantly impact performance
when dealing with black-box datasets lacking contextual or
domain-specific information. Specialized models further
illustrate the potential of transformer-based architectures in
time series forecasting. GPT-2 achieved the best performance
in our study, with an RMSE of 1.35, while TimeGPT stood
out for its ease of use and built-in explainability, combining
strong predictive accuracy with minimal configuration effort.

In summary, the results highlight the growing potential of
both general-purpose and domain-specific LLMs for accurate
time series forecasting.

5. CONCLUSIONS

This study assessed the feasibility and performance of
applying LLMs to the challenging task of turboshaft engine
torque prediction, comparing general-purpose and
specialized transformer-based architectures.

The results obtained by GPT-2 affirm the promise of LLMs
for industrial forecasting tasks when properly fine-tuned.
Meanwhile, the time series transformer and ChatGPT,
despite their advantages in flexibility and interactivity,
lagged in accuracy, underscoring the importance of model
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selection and configuration for mission-critical forecasting
applications.

Looking ahead, two avenues for future research emerge.
First, developing compact, efficient, and domain-adaptable
LLMs tailored for time series tasks could democratize access
to advanced forecasting tools for non-expert users. Second,
enhancing the fine-tuning and few-shot learning capabilities
of general-purpose LLMs will be key to unlocking their full
potential in industrial contexts, such as prognostics, quality
assurance, and zero-defect manufacturing. These directions
promise to accelerate the integration of LLM-based solutions
into real-world aerospace and industrial health management
systems, supporting more reliable and data-driven decision-
making.
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