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ABSTRACT 

Recent advances in deep learning (DL), particularly 
transformer-based architectures, have opened new 
possibilities for time series forecasting. Large Language 
Models (LLMs), initially developed for natural language 
processing, are emerging as promising tools for sequence 
modeling beyond text due to their scalability, multimodal 
integration, and few-shot learning capabilities. However, 
their application in industrial forecasting tasks, such as 
turboshaft engine torque prediction, remains largely 
unexplored. 

This paper evaluates the potential of LLMs for forecasting 
engine torque, a key parameter for ensuring the safety, 
reliability, and efficiency of helicopter operations. We 
compare the performance of four models: two general-
purpose LLMs (GPT-2 and ChatGPT), a specialized time 
series LLM (TimeGPT), and a standard transformer-based 
time series model. Using real-world Health and Usage 
Monitoring System (HUMS) data from a Bell 407 engine, we 
assess these models in terms of forecasting accuracy and 
classification of insufficient torque conditions. Our findings 
demonstrate that GPT-2 and TimeGPT achieve strong 
predictive performance (RMSE ~1.35–1.46), while prompt-
based solutions like ChatGPT, though accessible, lag in 
accuracy. The results highlight the promise of LLMs for 
industrial time series forecasting and outline future directions 
for developing efficient, domain-adaptable models. 

 

1. INTRODUCTION 

The rapid advancement of LLMs has significantly 
transformed various industries, enabling diverse applications 
ranging from simple user tasks to complex industrial 
processes. Among these applications, researchers have begun 
to explore using LLMs in the critical domain of time series 
forecasting. Time series forecasting involves predicting 
future values based on historical, time-stamped observations. 
Based on a sequence of values {𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 } , where 𝑥𝑥𝑡𝑡 
corresponds to the time stamp 𝑡𝑡, its objective is to estimate 
𝑥𝑥𝑇𝑇+1. Time series analysis and forecasting underpin decision-
making in industrial contexts, where achieving high accuracy 
in prediction is essential, as it directly influences strategic and 
operational decisions. 

Traditional statistical forecasting methods, such as seasonal 
autoregressive integrated moving average with exogenous 
variables (SARIMAX), have demonstrated strong 
performance in short-term predictions but often require 
significant domain expertise and manual adjustments to 
achieve optimal results. More recently, DL approaches like 
Long Short-Term Memory (LSTM) networks have gained 
popularity due to their effectiveness in capturing longer-term 
dependencies within time series data. However, existing 
methods typically remain specialized, with models frequently 
optimized for specific data characteristics and prediction 
horizons. 

Inspired by the success of transformer-based architectures, 
particularly large-scale models developed initially for natural 
language processing (NLP), this paper investigates their 
potential for enhancing time series forecasting capabilities. 
Models such as Informer (Zhou, Zhang, Peng, Zhang, Li et 
al., 2021) have already demonstrated substantial success 
within this context, suggesting that transformer architectures 
possess inherent advantages in handling temporal data. 
Leveraging LLMs introduces the possibility of employing 
their advanced capabilities for forecasting purposes. This 
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approach offers significant promise, particularly due to the 
models' abilities to understand and reason over complex 
patterns and temporal dependencies without extensive 
domain-specific customization (Chang, Wang, Peng, & 
Chen, 2025). 

Furthermore, the growing accessibility and relatively low 
cost associated with LLMs highlight their potential as 
efficient alternatives to specialized forecasting models. This 
paper examines explicitly whether cost-effective, readily 
accessible LLMs can outperform traditional forecasting 
approaches, thereby providing broader and more generalized 
solutions. 

The remainder of this paper is organized as follows. Section 
II reviews the relevant literature and contextual background. 
Section III outlines the proposed methodology. Section IV 
presents the case study and its results. Finally, Section V 
concludes the study and discusses potential directions for 
future research. 

2. BACKGROUND AND RELATED WORK 

2.1. Deep Learning-Based Time Series Forecasting 

The foundation of time series forecasting rests on classical 
statistical methods refined over decades of research and 
practical application.  These methods include exponential 
smoothing, moving averages, and autoregressive models that 
assume relatively stable underlying patterns in the data. The 
autoregressive integrated moving average (ARIMA) family 
of models represents one of the most influential 
developments in classical time series analysis. Such models 
are capable of modeling a wide range of temporal patterns, 
and the integration of seasonal components has proven 
particularly valuable in domains where predictable cyclical 
patterns significantly influence outcomes. 

Machine learning (ML) models such as Linear Regression, 
Random Forest, Gradient Boosting, and other regression-
based algorithms have been widely applied to high-
dimensional time series data. The advent of DL has 
transformed time series forecasting, introducing neural 
network (NN) architectures specifically designed to capture 
complex temporal dependencies.  

Modern DL architectures for time series forecasting typically 
employ encoder-decoder frameworks that can handle both 
one-step-ahead and multi-horizon prediction tasks, and the 
diversity of architectural choices reflects the heterogeneous 
nature of time series problems across various domains. Lim 
and Zohren (2020) provided an extensive overview of DL 
methods for time series forecasting. A significant trend in 
recent years has been the emergence of hybrid models that 
combine well-established statistical techniques with NN 
components, leveraging both statistical methods' theoretical 
foundation and interpretability and the pattern recognition 
capabilities of DL architectures (Lim & Zohren, 2020). 

 
Figure 1. The transformer model architecture (extracted 

from Vaswani et al., 2017). 

Multi-Layer Perceptron (MLP), Convolutional Neural 
Network (CNN), and LSTM networks are among the most 
popular DL models, and combining CNN with LSTM offers 
distinct advantages for processing long input sequences 
(Brownlee, 2019). However, among DL methods, 
transformer-based architectures (Figure 1) have emerged as 
particularly promising and are the focus of our research, as 
they have marked a significant milestone in the evolution of 
temporal prediction methods. The success of transformers in 
NLP has inspired researchers to adapt these architectures for 
time series applications, leading to the development of 
specialized models. The transformer architecture is entirely 
based on the self-attention mechanism (Vaswani, Shazeer, 
Parmar, Uszkoreit, Jones et al., 2017), composed of encoder-
decoder layers. The multi-head attention mechanism, which 
forms the core of the encoder-decoder structure, consists of 
multiple attention heads whose outputs, derived from scaled 
dot-product attention, are concatenated and linearly projected 
(see Figure 2). The attention function is computed as follows 
(Soydaner, 2022): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝐾𝐾
�𝑉𝑉 (1) 

In Eq. (1), 𝑄𝑄 , 𝐾𝐾 , and 𝑉𝑉  represent the matrices containing 
queries, keys, and values, respectively. 𝑑𝑑𝐾𝐾  represents the 
dimension of the keys. 

𝑍𝑍𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑄𝑄𝑊𝑊𝑖𝑖
𝑄𝑄, 𝐾𝐾𝑊𝑊𝑖𝑖

𝐾𝐾, 𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉� (2) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄, 𝐾𝐾, 𝑉𝑉) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑖𝑖, … , 𝑍𝑍ℎ)𝑊𝑊𝑂𝑂 (3) 
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Equations (2) and (3) show the multi-head attention 
computation, where 𝑊𝑊𝑄𝑄 , 𝑊𝑊𝐾𝐾 , 𝑊𝑊𝑉𝑉 are the weight matrices 
for queries, keys, and values, and 𝑊𝑊𝑂𝑂  is a learned weight 
matrix used to linearly project the attentions (𝑍𝑍𝑖𝑖), combining 
information from different heads in a learned manner. 

 

 
Figure 2. The basic structure of the multi-head attention 

mechanism (extracted from Vaswani et al., 2017). 

 

Several advanced models have been developed to adapt 
transformers to the specificities and challenges of time series 
data, such as the issue of quadratic complexity, by revising 
the attention mechanism. The Informer model (Zhou et al., 
2021) represents a relevant advancement in applying 
attention mechanisms to long sequence time series 
forecasting, addressing the computational limitations of 
Vanilla transformers for temporal data, and opening the door 
to multivariate time series forecasting (Simhayev, Rogge, & 
Rasul, 2023). 

Examples of similar models are the Autoformer (Simhayev, 
Rasul, & Rogge, 2023) and the Temporal Fusion Transformer 
(Kafritsas, 2024). Overall, recent studies have provided 
evidence that when compared against equivalent-sized 
models, transformer-based architectures consistently achieve 
superior performance on standard test metrics. 

2.2. Large Language Models and LLM-Based Time 
Series Forecasting 

LLMs are advanced Artificial Intelligence (AI) systems 
designed to understand and generate human language by 
learning from vast textual corpora. Built on DL architectures, 
particularly transformers, they can capture complex linguistic 
patterns. Models such as GPT revolutionized NLP with a 
two-stage approach: pre-training on large-scale, unlabeled 
datasets through self-supervised learning objectives, 
followed by fine-tuning on specific downstream tasks (Cao 
& Wang, 2024). 

This paradigm has led to state-of-the-art performance across 
diverse applications, including text generation, translation, 
and conversational agents. The most prominent LLM 

providers include OpenAI, Meta, and Google. OpenAI's GPT 
series, particularly GPT-2, gained early recognition for 
generating coherent and contextually appropriate text. Its 
architecture is displayed in Figure 3. Building on this 
foundation, ChatGPT has become one of the most popular 
conversational systems worldwide.  

The success of LLMs in NLP has sparked interest in their 
potential applications beyond textual data. The pattern 
recognition capabilities exhibited by LLMs have proven 
transferable to other domains, suggesting that the underlying 
mechanisms for sequence modeling and pattern extraction 
may be more general than initially anticipated (Jin, Wang, 
Ma, Chu, Zhang et al. 2024). The challenge lies in effectively 
bridging the modality gap between numerical time series 
observations and the natural language tokens that LLMs are 
designed to process. 

Multimodal LLMs (MLLMs) are models capable of 
processing heterogeneous and unstructured data from 
multiple modalities and are increasingly applied in industrial 
settings for anomaly detection. Recent approaches have 
explored their adaptation to non-textual domains such as 
vibration and acoustic signals. Leveraging transfer learning 
and few-shot learning frameworks enables effective 
classification and forecasting with minimal labeled data (He, 
He, & Taffari, 2023).  

 

 
Figure 3. GPT-2 architecture (from Wikipedia). 
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Jiang, Li, Deng, Liu, Gao et al. (2025) proposed a benchmark 
for MLLMs handling images and textual data in the field of 
industrial inspection, while other studies have addressed 
adapted models for zero-shot anomaly detection (Deng, Luo, 
Zhai, Cao, & Kang, 2021). Through GPT4MTS, Jia, Wang, 
Zheng, Cao, and Liu (2023) have also explored a prompt-
based solution for the integration of textual and numerical 
data. 

Specialized GPT models for time series have been 
introduced, such as TEMPO (Cao, Jia, Arik, Pfister, Zheng et 
al., 2023), which uses a prompt-based approach and employs 
a transformer architecture fed with data about the trend, 
seasonal, and residual components of the data. In such cases, 
designing an optimal prompt is crucial and generally, LLMs 
perform well in forecasting time series with clear patterns and 
trends but struggle with datasets that lack periodicity or 
exhibit irregular behavior (Tang, Zhang, Jin, Yu, Wang et al., 
2025), which requires specific adaptation to address time 
series forecasting and outperform the classical models 
effectively. 

TimeGPT (Garza, Challu, Mergenthaler-Canseco, 2024), a 
large pre-trained time series model developed by Nixtla, is 
among the most promising recent advancements. It delivers 
state-of-the-art performance while maintaining accessibility 
through built-in functions and user-friendly settings. Figure 4 
illustrates its architecture, closely resembling the standard 
transformer framework shown in Figure 2. However, instead 
of a Softmax layer, TimeGPT employs a linear 
transformation to output forecasted values directly. 

2.3. Turboshaft Engine Torque Prediction 

The analysis and prediction of turboshaft engine torque are 
critical to ensure the safety and longevity of helicopter 
operations. Torque measurements directly reflect mechanical 
load on the engine components. They are closely linked to 
component wear, fuel consumption, and overall performance, 

serving as a key indicator for proactive maintenance and 
failure prevention. Previous research has explored data-
driven approaches utilizing HUMS sensor data, including DL 
models to capture complex temporal dynamics. In particular, 
He, Bechhoefer, and Hess (2025) applied LSTM-based 
models trained on HUMS data and fine-tuned them for new 
engines and operating conditions, demonstrating strong 
generalization with minimal target-domain data. Our 
approach builds on this foundation by investigating whether 
LLMs can achieve comparable or superior performance. 
Paniccia, Tucci, Guerrero, Capone, Sanguini et al. (2025) 
applied NN to Leonardo’s AW189P4 prototype engine for 
torque prediction. However, these approaches face 
limitations in terms of generalization capabilities and 
accessibility. GPT variants and transformer-based foundation 
models are increasingly explored for time-series forecasting 
and can address these limitations through their native support 
for heterogeneous data types, enabling multimodal 
processing. Furthermore, the self-attention mechanism 
effectively captures long-range dependencies within torque 
time series, offering improved performance over traditional 
window-based forecasting approaches. 

3. THE METHODOLOGY 

Four models have been included in our analysis: (1) GPT-2 
as an LLM; (2) ChatGPT-o4-mini-high, the most suitable 
OpenAI conversational model for code generation and visual 
reasoning, in a prompt-based configuration; (3) TimeGPT as 
a specialized large time-series model; (4) Time Series 
Transformer model as a benchmark. Figure 5 illustrates the 
proposed methodology for forecasting turboshaft engine 
torque. The process begins with collecting and preparing 
HUMS sensor data. The workflow then branches into four 
model-specific pipelines, including embedding and 
positional encoding when applicable, model training, and 
forecasting. 

Figure 4. TimeGPT architecture overview (extracted from Garza, Challu, & Mergenthaler-Canseco, 2023). 
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Figure 5. Flowchart of the proposed methodology. 

The GPT-2 and Time Series Transformer models were 
implemented using the PyTorch library in Python. Their 
setup involved model initialization, parameter configuration, 
and the training loop. In contrast, ChatGPT operates through 
prompt-based interactions; it requires appropriate textual 
prompts and produces output in the form of a structured 
dataset containing predicted values. TimeGPT requires a 
more elaborate preprocessing phase, including proper 
formatting of the input sequences, to utilize its built-in fine-
tuning and forecasting functions; multiple training and test 
splits were considered to evaluate the model's forecasting 
performance across different data availability scenarios. All 
paths converge at a common forecasting accuracy evaluation 
step, measured by Root Mean Squared Error (RMSE), 
defined in Eq. (4). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑇𝑇
�(
𝑇𝑇

𝑡𝑡=1

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2 (4) 

ChatGPT’s classification performance was also assessed, as 
detailed in the following section. 

4. CASE STUDY 

4.1. The Dataset 

This study utilizes HUMS data collected from a Bell 407 
helicopter engine. The dataset contains 7954 observations of 
engine torque, recorded alongside six exogenous variables: 
Outside Air Temperature (OAT), Measured Gas Temperature 
(MGT), Pressure Altitude (PA), Indicated Airspeed (IAS), 
Gas Generator Speed (Ng), and Power Turbine Speed (Np). 
The measurement units and corresponding value ranges for 
each variable are summarized in Table 1. For all the models, 
the dataset was partitioned into a training set (80%, 6363 
observations) and a test set (20%, 1591 observations).  

 
The target variable, Engine Torque, was recorded as a time 
series and expressed as a percentage of the engine’s 
maximum torque. Data analysis revealed extended intervals 
during which torque values remained consistently low and 
stable, indicating insufficient torque output by the engine. 
This condition reflects a reduced capacity to generate 
rotational force, resulting in diminished acceleration and 
lower power at reduced speeds. Consequently, it is also 
relevant to evaluate the model’s ability to forecast torque 
values accurately and assess its effectiveness in classifying 
whether the torque exceeds a defined operational threshold. 

To this end, for ChatGPT, a threshold of 40% was adopted, 
and the model's classification effectiveness in identifying 
insufficient torque conditions was measured by precision, 
recall, and accuracy.  

Table 1. The dataset parameters and value range. 

Parameter Unit Range 
Engine Torque % [0.102, 93.445] 
OAT °C [-2.086, 15.684] 
MGT °C [454.633, 812.562] 
PA feet [3348.425, 8699.112] 
IAS knot [-0.186, 147.156] 
NG rpm [68.499, 99.889] 
NP rpm [41.030, 102.988] 

 

0
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0 1000 2000 3000 4000 5000 6000 7000

Training set Test set

Figure 6. Engine Torque data plot. 
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4.2. Results 

4.2.1. GPT-2 

The GPT-2 model was fine-tuned for time series forecasting 
using all six exogenous variables. Prior to training, the input 
data were scaled, and numerical features were embedded with 
positional encoding to retain temporal structure. The pre-
trained GPT-2 architecture was adapted and fine-tuned using 
the parameters detailed in Table 2 and the default gpt2 
configuration. After training, the model was applied to 
forecast the values in the test set (Figure 7), yielding an 
RMSE of 1.35, indicating effective learning of temporal 
dependencies and exogenous variable influence. 

 

4.2.2. ChatGPT 

It was observed that ChatGPT-o4-mini-high defaults to using 
a basic ARIMA approach when requested to generate 
forecasts without a properly formulated instruction prompt; it 
fails to infer the appropriate order, resulting in inaccurate 
predictions. Instead, when explicitly asked to perform 
forecasting using an LLM, it produces satisfactory results 
even on the first attempt (Figure 8). This demonstrates the 
model's effectiveness in a scenario where no additional 
contextual information is provided. However, the model 
produced a relatively high RMSE of 12.93, as the prediction 
consistently overestimated the true values. Nevertheless, it 
successfully captured the overall trend of the data over time 
and correctly identified periods of insufficient torque. Its 
classification performance—distinguishing whether values 
were above or below the 40% threshold—shows about 75% 
in recall (see Table 3). 

 

4.2.3. TimeGPT 

TimeGPT from Nixtla was first evaluated in its forecasting 
capabilities without exogenous variables, and it failed to 
produce meaningful forecasts for short and long (timegpt-1-
long-horizon) horizons, indicating that the target variable 
cannot be reliably predicted from historical values alone and 
demonstrating intrinsic dependence of the engine torque on 
contextual variables. While this may appear as a limitation, it 
aligns with practical scenarios where such contextual data is 
usually available. When all six exogenous variables were 
included, TimeGPT (Figure 9) demonstrated strong 
predictive performance, achieving an RMSE of 1.46 (Table 
4). In addition to accurate predictions, the model returned 
interpretable variable importance scores, allowing for 
analysis of the relative influence of each exogenous input on 
the forecast. To explore the effect of prediction horizon on 
model accuracy, the number of predicted values was 
progressively increased, therefore decreasing the training set 
size. When forecasting 6000 values, instead of the standard 
1591, the RMSE rose within acceptable limits, while further 
increases in the forecasting horizon led to continued 
degradation in accuracy, with the model struggling to capture 
peaks. 

 

4.2.4. Time Series Transformer Model 

Finally, we evaluated a time series transformer, which 
involves token embedding and positional encoding as the 
main components. The model training was performed on 
normalized data and using the hyperparameters in Table 5. 
The resulting forecasting RMSE was 5.38. As a reference, a 
simple SARIMAX(2,1,1) model yielded an RMSE of 6.12. 

 

Table 2. GPT-2 model’s hyperparameters. 

Hyperparameter Value 
Embedding dimension 768 
Batch size 32 
Epochs 100 
Initial Learning Rate 10−4 
Final Learning Rate 10−6 
Scheduler Cosine Annealing 
Loss function MSE 
Optimizer AdamW 

 

Table 3. ChatGPT’s classification performance. 

Classification metric Value 
Precision 0.9897 
Recall 0.7467 
Accuracy 0.8517 

 

Table 4. TimeGPT’s prediction performance with 
various training and test splits. 

Training test size Test set size RMSE 
6363 (80%) 1591 (20%) 1.4585 
1954 (25%) 6000 (75%) 2.2037 
454 (6%) 7500 (94%) 4.1259 

 

Table 5. Time Series Transformer hyperparameters. 

Hyperparameter Value 
Model dimension 256 
Batch size 32 
Epochs 100 
Initial Learning Rate 10−4 
Final Learning Rate 10−6 
Scheduler Cosine Annealing 
Loss function MSE 
Optimizer AdamW 
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Figure 7. GPT-2 forecasting plot. 

 

Figure 9. TimeGPT forecasting plot. 

 

4.2.5. Summary 

A summary of the prediction results is presented in Table 6. 

 
 

Among the evaluated models, GPT-2, ChatGPT, TimeGPT, 
and a time series transformer, GPT-2 and ChatGPT represent 
LLMs and were the primary focus of the investigation. LLMs 
exhibited strong potential in this domain, with GPT-2 
achieving comparable results to TimeGPT. However, 
constraints like computational costs and limited accessibility 
for larger models persist. Prompt-based approaches have 
emerged as a practical and user-friendly solution, as 
evidenced by the increasing popularity of tools like ChatGPT, 
but they lack accuracy and control over training procedures 
compared to code-based models. 

Figure 8. ChatGPT forecasting plot. 

 

Figure 10. Time Series Transformer forecasting plot. 

 

 

For time series transformers, hyperparameter tuning becomes 
a critical challenge that can significantly impact performance 
when dealing with black-box datasets lacking contextual or 
domain-specific information. Specialized models further 
illustrate the potential of transformer-based architectures in 
time series forecasting. GPT-2 achieved the best performance 
in our study, with an RMSE of 1.35, while TimeGPT stood 
out for its ease of use and built-in explainability, combining 
strong predictive accuracy with minimal configuration effort.  

In summary, the results highlight the growing potential of 
both general-purpose and domain-specific LLMs for accurate 
time series forecasting.  

5. CONCLUSIONS 

This study assessed the feasibility and performance of 
applying LLMs to the challenging task of turboshaft engine 
torque prediction, comparing general-purpose and 
specialized transformer-based architectures.  

The results obtained by GPT-2  affirm the promise of LLMs 
for industrial forecasting tasks when properly fine-tuned.  
Meanwhile, the time series transformer and ChatGPT, 
despite their advantages in flexibility and interactivity, 
lagged in accuracy, underscoring the importance of model 
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Table 6. Prediction results for the models assessed. 

Model RMSE 
GPT-2 1.35 
ChatGPT 12.9260 
TimeGPT 1.4585 
Time Series Transformer 5.3787 
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selection and configuration for mission-critical forecasting 
applications. 

Looking ahead, two avenues for future research emerge. 
First, developing compact, efficient, and domain-adaptable 
LLMs tailored for time series tasks could democratize access 
to advanced forecasting tools for non-expert users. Second, 
enhancing the fine-tuning and few-shot learning capabilities 
of general-purpose LLMs will be key to unlocking their full 
potential in industrial contexts, such as prognostics, quality 
assurance, and zero-defect manufacturing. These directions 
promise to accelerate the integration of LLM-based solutions 
into real-world aerospace and industrial health management 
systems, supporting more reliable and data-driven decision-
making. 
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