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ABSTRACT

Rolling element bearings (REBs) are key components of ro-
tating machines and the estimation of their remaining useful
life (RUL) is crusial but still very challenging. First, fault
detection should be achieved as early as possible and then
the RUL should be estimated as accurately as possible. Both
steps require dedicated Health Indicators (HIs), which might
not be the same when looking towards detection or prognos-
tics. A key property of REB signals is cyclostationarity, as
the statistical properties of their vibration behavior vary pe-
riodically over time. This characteristic has been effectively
exploited to construct HIs for anomaly detection, and fault
diagnosis in the field of condition monitoring (CM) achiev-
ing high performance. Although a plethora of methodolo-
gies have been proposed for RUL estimation, they usually
are restricted in cases where the load conditions are assumed
steady, reducing significantly their applicability and imple-
mentation in industry. Therefore there is a clear need for
methodologies that are able to estimate the RUL of REBs
operating under variable or varying load and/or speed con-
ditions. The goal of this paper is the exploration of the per-
formance of different vibration-based HIs for fault detection,
diagnosis and prognosis, including both time domain and or-
der domain features. A dedicated bearing prognostics test rig
was used to perform accelerated life tests of a self-aligned
bearing, operating under varying load and speed conditions.
The speed ranges from 0 to 3000 rpm and the load varies
from 0 to 12 kN. The measurements lasted for around 400
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hours and an outer race fault was naturally (based on over-
loading) generated in the loading zone of the outer race. Dif-
ferent signals have been acquired during the tests, including
accelerations, temperature and strain signals, based on fiber
optic sensors. This paper proposes a probabilistic fault detec-
tion strategy that fuses multiple HIs, rather than relying on
a single one, to improve the robustness of fault onset iden-
tification. The complementarity between different HIs, such
as those based on cyclic spectral coherence and cyclic spec-
tral correlation, is explicitly exploited to enhance early detec-
tion performance and reduce false alarms. Then, this paper
proposes a method to determine the optimized noise matri-
ces for different estimators, i.e., the Extended Kalman filter
(EKF), the Adaptive Kernel Kalman filter (AKKF), and the
Moving Horizon Estimator (MHE). Finally, the noise matri-
ces are used for different estimators to estimaate the RUL of
the bearing.

1. INTRODUCTION

Rolling element bearings (REBs) are one of the most critical
components in rotating machinery, e.g. in pumps, compres-
sors, and wind turbines (Vencl, Gašić, & Stojanović, 2017).
The prognostics of REBs helps operators schedule mainte-
nance or replacement of these components (Wen, Fashiar
Rahman, Xu, & Tseng, 2022). Consequently, the remaining
useful life (RUL) estimation of REBs has attracted significant
attention from academic researchers and industrial operators
(Qi, Zhu, Liu, Mauricio, & Gryllias, 2024; SKF Evolution
Team, 2024).

Generally, prognostics of RUL of REBs falls into three cat-
egories: (a) methods driven by artificial intelligence (Ma,
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Yan, Wang, & Liao, 2023), (b) stochastic process model-
ing approaches (Lim & Mba, 2015; Y. Li, Huang, Ding, &
Zhao, 2021; Soave, D’Elia, & Dalpiaz, 2023), and (c) physics
model-based methodologies (Gabrielli, Battarra, Mucchi, &
Dalpiaz, 2024). Most of these methods include 3 main steps:
(1) Health indicators (HIs) extraction, (2) Fault detection, and
(3) RUL estimation using different models.

Specifically, for the RUL estimation using Kalman filter (KF),
a data-driven approach was proposed in (Singleton, Strangas,
& Aviyente, 2015), where time and time-frequency domain
features were extracted and fitted using analytical degrada-
tion models. An extended Kalman filter was then applied to
predict the RUL of bearings, and validated on the PRONOS-
TIA dataset under different operating conditions. Lim and
Mba (Lim & Mba, 2015) proposed a Switching Kalman Fil-
ter (SKF) framework to model the degradation of bearings
using multiple state-space models. Bayesian inference was
employed to select the most probable degradation mode, en-
abling more flexible RUL prediction from in-service condi-
tion monitoring data. Cui et al. (Cui, Wang, Xu, Jiang, &
Zhou, 2019) developed a Switching Unscented Kalman Fil-
ter (SUKF) to predict bearing RUL by modeling multiple
operation states and dynamically selecting the most proba-
ble one via Bayesian estimation. The method improves upon
traditional SKF by capturing nonlinear degradation behavior
and ensuring smoother filtering outputs. Qi et al. (Qi et al.,
2024) proposed a robust RUL prediction framework combin-
ing Support Vector Data Description (SVDD) for anomaly
detection and Moving Horizon Estimation (MHE) for multi-
step forecasting. Their method addresses issues such as
HI trend instability, fault onset misidentification, and limita-
tions of single-step estimators, demonstrating improved per-
formance over conventional single-step estimators, including
Kalman and particle filters.

Despite the notable progress made in the aforementioned lit-
erature, several critical challenges remain. First, many of
the proposed approaches are developed and validated under
idealized laboratory conditions with constant speed and load
profiles. However, such stationary assumptions often fail to
reflect the variability and complexity encountered in real-
world operational environments, limiting the robustness and
generalizability of these methods. Second, most existing fault
detection strategies rely on a single HI as the basis for degra-
dation tracking. While this can simplify implementation, it
increases the risk of false alarms or missed detections, es-
pecially in noisy or ambiguous conditions where the chosen
HI may not fully capture the evolving fault dynamics. Third,
the determination of the noise covariances in Kalman-based
prognostics, namely, the process noise and the measurement
noise, is often heuristically tuned or left unspecified. A more
systematic and adaptive strategy for identifying these matri-
ces is essential to improve the filtering accuracy and reliabil-
ity of the RUL estimation process.

To address the limitations identified above, this paper pro-
poses a comprehensive framework for bearing degradation
monitoring and RUL estimation under non-stationary oper-
ating conditions. First, a set of fault-related indicators is
extracted in the order domain instead of frequency domain.
This transformation effectively captures cyclostationary pat-
terns induced by bearing faults and ensures robustness to vari-
ations in rotational speed and load. Second, a fault detection
method is introduced, which leverages a probabilistic formu-
lation across multiple HIs rather than a single metric. This
multi-indicator fusion reduces the risk of false alarms and en-
ables a more reliable detection of the fault onset. Third, the
process and measurement noise in the Kalman-based estima-
tor are determined using a data-driven multi-objective opti-
mization procedure. Specifically, the process noise (Q) is
adaptively selected to balance trajectory smoothness and con-
sistency to observations, while the measurement noise (R) is
derived from the healthy-state HI statistics. Finally, a dataset
under varying load and speed is used for validation of pro-
posed methods.

The rest of the paper is organized as follows: Section 2
presents the proposed method including HI extraction, fault
detection algorithm, and the RUL estimation methodology.
Moreover, in Section 3, the experimental setup and the mea-
surements campaign are described. Furthermore the proposed
methodology is applied on the experimental dataset and its
results are analyzed and evaluated. The final section draws
some conclusions and highlights the potential of the proposed
method in the field of REBs health monitoring.

2. PROPOSED METHOD

Aiming at RUL estimation under varying speed and load,
this section proposes a framework as shown in Figure 1.
The first step is HI extraction, where indicators, exploit-
ing the Enhanced Envelope Spectrum based on Correlation
(EESCor), the Enhanced Envelope Spectrum based on Coher-
ence (EESCoh), and the Improved Envelope Spectrum based
on Coherence (IESCoh) (Mauricio, Smith, Randall, Antoni,
& Gryllias, 2020; Mauricio & Gryllias, 2021; Antoni, Xin, &
Hamzaoui, 2017), are extracted for fault detection and RUL
estimation. The second step is to use all the indicators jointly
to detect the fault initiation time. The third step is to use the
Kalman filter to estimate the RUL based on the EESCor in
which fault severity can be better represented.

2.1. HI extraction under varying speed and load condi-
tions

When the rotational speed varies with time, the number of
samples captured per revolution also changes. This non-
uniform sampling introduces spectral smearing and leakage,
as frequency components no longer align neatly with fixed
spectral lines, making the frequency components less stable
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Fault detection Prognostics

When has a fault
been generated?

How long until the fault
leads to a failure?

HI extraction

Which is the health
state of the bearing?

Figure 1. Framework of this paper.

Figure 2. Resampling in angle domain. (a) Raw vibration
signal in the time domain; (b) Encoder signal in the time do-
main; (c) Resampled vibration signal in the angle domain.

or non-stationary. To address this, the signal is resampled
with respect to a constant angular increment rather than uni-
form time steps. This ensures a consistent number of sam-
ples per revolution, independent of speed fluctuations. This
transformation, which is from the time domain to the angu-
lar domain, is precisely what angular resampling achieves, as
depicted in Figure 2.

Assume a signal x(t) in the time domain, it can be resampled
as x(θ(t)) in the angle domain based on synchronized en-
coder signals, as shown in Figure 2. As an extended form of
the definition of the CSCor (Antoni et al., 2017), the CSCor
in the Order-Order domain can be calculated as:

CSCorOO(α(θ), f(ϕ)) = lim
W→∞

1

W
E
{

FW [x(t(θ))] FW [x(t(θ + ϕ))]
∗
} (1)

where ϕ is the angle lag of θ. FW (·) denotes the Fourier
transform in a finite time duration of W . Moreover E(·) de-
notes the ensemble averaging operator. The subscript OO in-
dicates that the described quantity is in the order-order do-
main.

To minimize the influence of energy variations and enhance
interpretability, a normalization operation can be applied to
the CSCor, yielding the Cyclic Spectral Coherence (CSCoh).
This normalization bounds the coherence values between 0
and 1, eliminates amplitude-related distortions, and allows for
consistent comparison of spectral correlation strength across
different frequencies or signal conditions. The CSCoh is de-
fined as:

CSCohOO(α(θ), f(ϕ)) =

CSCor(α(θ), f(ϕ))√
CSC(0, f(ϕ)) · CSCx(0, f(ϕ) + α(θ))

(2)

Both CSCor and the CSCoh can be integrated along the spec-
tral frequency (order) axis and the corresponding envelope
spectra, i.e., EESCor and EESCoh, are obtained:

EESCorOO =
1

Os/2

∫ Os

0

|CSCor(α(θ), f(ϕ))| dO (3)

EESCohOO =
1

Os/2

∫ Os

0

|CSCoh(α(θ), f(ϕ))| dO (4)

where Os is the angular sampling resolution after resampling.
If a specific band in the CSCoh map, such as [F1, F2] (or
equivalently [O1, O2] in the order domain), is selected for in-
tegration instead of the full range, the visibility of charac-
teristic frequencies (orders) associated with bearing damage
can be significantly improved (Wang et al., 2019; Mauricio et
al., 2020; Antoni et al., 2017). Consequently, the Improved
Envelope Spectrum based on coherence (IESCoh) can be ob-
tained:
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IESCohOO =
1

O2 −O1

∫ O2

O1

|CSCoh(α(θ), f(ϕ))| dO

(5)

It should be mentioned that the frequency (order) band can be
selected based on different methods (Mauricio et al., 2020;
Mauricio & Gryllias, 2021; Wang et al., 2019). In this paper,
IESFOgram is adopted (Mauricio et al., 2020). From the re-
sulting maps (EESCorOO, EESCohOO and IESCohOO),
relevant indicators can be extracted by identifying prominent
peaks corresponding to characteristic fault orders. These in-
dicators provide a straightforward and interpretable represen-
tation for tracking the health state of rotating machinery.

The HIs are computed based on the sum of amplitudes
of the first three harmonics of the characteristic fault fre-
quency/order (CF or CO) extracted from EESCorOO,
EESCohOO, and IESCohOO, as defined by the following
equations:

COEESCor =

3∑
k=1

|EESCor(kα0)| (6)

COEESCoh =

3∑
k=1

|EESCoh(kα0)| (7)

COIESCoh =

3∑
k=1

|IESCohOO(kα0)| (8)

where α0 denotes the targeted fault-related order. In this pa-
per, α0 corresponds to the BPOO as introduced earlier.

It is worth noting that although the external load is assumed
to be able to change throughout the operation, its influence is
not explicitly modeled or segmented in this paper. Therefore
the HIs are carefully designed being computed as averages
of the vibration energy over time windows. In specific use
cases, like the one used as application in this paper, where the
external load follows an apriori known periodic pattern, these
short-term load fluctuations tend to cancel out during the av-
eraging process. As a result, the derived HIs reflect the under-
lying degradation more clearly. This simplification enables a
focused analysis of speed-dependent effects while maintain-
ing robust degradation tracking. The influence of load vari-
ation will be addressed in future work, where more detailed
modeling and segmented analysis will be explored if neces-
sary.

2.2. Fault detection method

In this section, to determine the onset of bearing degrada-
tion, a statistical change detection method based on HIs is
introduced. A period during which the bearing is confirmed
to be healthy is first selected, and the corresponding HI
values (e.g., EESCor, EESCoh, and IESCoh) are extracted.
The best-fitting distribution for these data is identified us-
ing the Bayesian Information Criterion (BIC) from a prede-
fined library that includes Normal, Lognormal, Exponential,
Weibull, and Rayleigh distributions. This reference distribu-
tion, denoted as Dis, is used to establish a statistical baseline,
and a counter is initialized. During monitoring, if five consec-
utive HI values exceed the upper bound (which is determined
by the fitted parameters of the selected distribution) of Dis,
the point is identified as the degradation onset.

2.3. RUL estimation using Kalman filter

After the fault is identified to appear, the HI, which should
have the highest trendability among all HIs, is used as the ob-
servation of the Kalman filter. The flowchart of the RUL esti-
mation using Kalman filter is shown in Figure 3. Degradation
functions are combined with observations of the selected HI
and processed by state estimators such as the EKF, AKKF, or
MHE. These estimators identify the underlying model param-
eters, which are then used together with a predefined failure
threshold to generate RUL particles for probabilistic RUL es-
timation. The algorithms of different estimators can be found
in these references (Singleton et al., (2015); Qi et al., (2024);
Li et al., (2025)).

It should be noted that the determination of noise covariance
matrices, namely, the process noise (Qp) and the measure-
ment noise (Rm)—has long been a recognized challenge in
the Kalman filtering community. As discussed in the litera-
ture (Zhang et al., 2020), these matrices significantly influ-
ence filter behavior by governing the balance between trust-
ing the degradation model and relying on observed HIs.

In this study, a systematic approach is proposed to address
this issue. The measurement noise Rm is assumed to reflect
the variability of the system in its healthy state and is there-
fore estimated from the variance of the HI during the healthy
period, H, as determined in the previous section. The pro-
cess noise Qp, on the other hand, is optimized using a short
segment of data from the early stage of degradation. This ap-
proach ensures that the noise matrices capture realistic model
uncertainty while avoiding overfitting.

To enhance the robustness and generalization of the Kalman-
based estimators, the process noise covariance Qp is opti-
mized through a single-objective search that balances estima-
tion smoothness and statistical consistency with the observa-
tions. The measurement noise Rm is assumed to be known
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Estimators (EKF,
AKKF, MHE)

Observations (HI)

Degradation
functions

Estimated
parameters

Failure threshold

RUL particles

Figure 3. Flowchart of the RUL estimation.

and fixed based on the healthy-state statistics, as described
earlier. The detailed steps are outlined below:

Step 1: Definition of the candidate grid for Qp

To perform a grid search over candidate values of
the process noise, a set of positive scalar values is
defined:

Q = {q1, q2, . . . , qnq
}, qi ∈ R+.

Each qi represents a scalar variance parameter,
which is used to construct the process noise covari-
ance matrix. Specifically, for each qi ∈ Q, the cor-
responding process noise covariance matrix is de-
fined as:

Q(i)
p = qiI2 =

[
qi 0
0 qi

]
,

where I2 denotes the 2 × 2 identity matrix. This
formulation assumes isotropic process noise, i.e.,
equal variance in both dimensions of the process
state.
The measurement noise covariance Rm is kept
fixed and is estimated from the variance of the
health indicator (HI) signal during a known healthy
operating period:

Rm = Var(yt), t ∈ H (9)

Here, yt is the observed HI at time t, and H de-
notes the time interval during which the system is
confirmed to be healthy.

Step 2: Application of the estimator
For each candidate qi, the chosen filtering algo-
rithm (e.g., EKF, AKKF, or MHE) is applied to
the HI sequence {yt}Tt=1, yielding filtered outputs
ŷt(qi). These outputs represent the estimated latent
degradation trajectory. The time horizon T refers
to a predefined early degradation period, which al-
lows for reliable assessment before severe nonlin-
earity or noise dominates.

Step 3: Computation of the smoothness loss
To ensure temporal consistency and suppress esti-
mation jitter, the second-order difference energy is

used to quantify smoothness:

Jsmooth(qi) =
1

T − 2

T∑
t=3

(ŷt − 2ŷt−1 + ŷt−2)
2

(10)
This metric penalizes abrupt local curvature, favor-
ing stable and physically plausible degradation pat-
terns over time.

Step 4: Computation of the fit-to-observation loss
The discrepancy between the estimated and the ob-
served HI is quantified using the Mean Squared Er-
ror (MSE):

Jfit(qi) =
1

T

T∑
t=1

(yt − ŷt)
2 (11)

While the goal is not to strictly fit the observa-
tions, this term helps ensuring that the residuals re-
main within a reasonable range, consistent with the
Gaussian noise assumption in Kalman filtering. It
reflects how well the model explains the observa-
tions under the assumed measurement noise.

Step 5: Normalization of the objectives
To ensure a fair combination of the two loss terms
(which may differ in scale), both are normalized us-
ing min-max normalization:

J̃smooth(q) =
Jsmooth(q)−min Jsmooth

max Jsmooth −min Jsmooth
(12)

J̃fit(qi) =
Jfit(qi)−min Jfit
max Jfit −min Jfit

(13)

Step 6: Computation of the total weighted loss
The total cost is formulated as a weighted sum of
smoothness and fit losses:

Jtotal(qi) = λ1 · J̃smooth(qi) + λ2 · J̃fit(qi) (14)

where λ1 and λ2 = 1−λ1 are user-defined trade-off
parameters. This formulation allows flexible bal-
ancing between robustness (smoothness) and sta-
tistical consistency with the observed data, as ex-
pected under the Gaussian noise assumption.
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Step 7: Selection of the optimal Qp

The optimal process noise level q∗ is selected by
minimizing the total loss over the search grid:

q∗ = argmin
q∈Q

Jtotal(qi),

where Jtotal(q) denotes the objective function (e.g.,
prediction error, likelihood, etc.) evaluated under
process noise level q.
The corresponding optimal process noise covari-
ance matrix is then:

Q∗
p = q∗I2 =

[
q∗ 0
0 q∗

]
.

This value is used in the subsequent Kalman-based
estimation and prediction.

3. DESCRIPTION OF THE EXPERIMENTAL SET UP AND
OF THE MEASUREMENT CAMPAIGN

This section describes the measurement campaign, including
an accelerated life test, carried out under varying speed and
load conditions. The measurement campaign was conducted
on the KU Leuven Bearing Prognostics Setup (KULBPS). As
shown in Figure 4, one test bearing and two support bearings
were mounted on a shaft. The test bearing was subjected to
a radial force applied via an electrohydraulic actuator. Multi-
ple types of signals were collected during the test, including
vibration signals from accelerometers, strain signals from op-
tical fibers, speed signals from an encoder, and force signals
from a force cell. In this study, the acceleration signals mea-
sured by the accelerometer mounted on the test bearing hous-
ing along the radial (force) direction were specifically used
for analysis. The test bearing is an SKF 2208 E-2RS1KTN9,
which contains two rows of balls. Its ball pass order of the
outer race (BPOO) is around 7.7.

The measurements were conducted under varying speed and
load conditions. The corresponding speed and load profiles
are illustrated in Figure 5. This load profile encompasses a
wide range of speed and load combinations, enabling a com-
prehensive assessment of system dynamics and fatigue be-
havior, making it especially appropriate for bearing fatigue
studies. The load profile was converted into analog voltage
signals and transmitted to the motor and the electrohydraulic
actuator drives via an MCC USB DAQ device. Data acqui-
sition was performed using a Siemens Simcenter SCADAS
Mobile system, with signals recorded for 1 minute every 6
minutes. A sampling rate of 51.2 kHz was selected to bal-
ance storage requirements and computational efficiency. The
at the end failed bearing is shown in Figure 6. The expected
L10 life of the bearing under this profile is around 70 hours.
The bearing’s lifetime was approximately 400 hours, corre-
sponding to 4023 acquisitions (i.e., 4023× 6 minutes).

Besides, in this study, the sum of the first 3 harmonics of the

Ball Pass Order of the Outer race (BPOO) are selected for
constructing the HIs as shown in Equations 3–5. This choice
is motivated by the fact that the test bearing used in this paper
is a self-aligning ball bearing, in which outer race faults are
more likely to occur under fatigue loading. This is because
the outer race in such bearings lacks a guiding groove and
has significantly less contact area compared to the inner race,
leading to higher localized contact stresses and an increased
likelihood of fatigue-induced damage.

4. EXPERIMENTAL RESULTS

In this section, the proposed method is applied, tested, vali-
dated and evaluated using the experimental bearing degrada-
tion dataset mentioned above.

4.1. HI extraction and comparison

Firstly, the vibration signal of each acquisition is converted
into the angle domain as described in Section 2.1. The sig-
nals from acquisition No. 4000 are shown in Figure 7. Clear
modulation behavior can be observed in Figure 7 (d), where
the BPOO and its harmonics (e.g., 2×BPOO, 3×BPOO)
are indicated by red dashed lines.

Additionally, two order regions, marked by blue dashed lines
in Figure 7 (d), can be observed where the BPOO modulates
resonance-related components in the order domain. These
sidebands indicate that high-order components are modulated
by fault-related orders such as the BPOO. This phenomenon
can also be observed in the frequency domain.

For the order band selection of IESCohOO, the IESFOgram,
a bearing diagnostics tool, is used. Figure 8 illustrates the
optimal bands identified by the IESFOgram (Mauricio et al.,
2020; Mauricio & Gryllias, 2021) over the last 400 acquisi-
tions. It can be observed that after acquisition No. 3830, the
selected optimal band changes. Moreover, most of the op-
timal bands are concentrated in the range of [42, 64] order
during the final period. Consequently, this band is fixed for
the computation of IESCohOO in all acquisitions to enable
consistent tracking of the health state changes.

In this section, several HIs are presented and their perfor-
mance is discussed. As shown in Figure 9, different HIs
are calculated based on the sum of the amplitude of the first
three harmonics from different spectral representations in-
cluding FFT, SES, EESCoh, EESCor, and IESFOgram-based
IESCoh, and are presented covering the full degradation pro-
cess at the left column, while a zoomed-in view of the final
stage is presented on the right column.

Among them, the HI derived from the EESCor (Figure 9 (g)
and (h)) exhibits the most favorable monotonic trend, with a
stable baseline and a sharp, consistent rise near failure. The
IESFOgram-based IESCoh (Figure 9 (i) and (j)) further im-
proves early sensitivity. In contrast, the HIs based on tra-
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Figure 4. KU Leuven Bearing Prognostics Setup.

Load & Speed Profiles

Figure 5. Operating conditions during the measurements.

Figure 6. The defect on the outer race of the bearing at the
end of the test.

ditional FFT and SES (Figure 9 (a)-(d)) display more fluc-
tuations and less clear trends, particularly during the early
and middle stages of degradation. Meanwhile, the EESCoh-
based HI (Figure 9 (e) and (f)) shows good response in the
early stage but tends to be unchanged before reaching the
failure point. This makes it less suitable for tracking fault
severity near the end of life. Overall, the proposed EESCor
and IESFOgram-based IESCoh offer superior performance in

terms of monotonicity and sensitivity, which are critical for
both fault detection and RUL prediction.

In the following subsections, BPOOEESCor, BPOOEESCoh,
and BPOOIESCoh will be jointly used for fault detection.
After the fault onset time is determined, BPOOEESCor will
be used for RUL estimation.

4.2. Fault detection using different HIs

As illustrated in Section 2.2, the healthy stage of the bearing
is defined as the initial 1000 acquisitions. The distributions
of the selected HIs during this period, along with their best-
fit models, are shown in Figure 10. Additionally, the fault
onset times identified by the three indicators are summarized
in Table 1.

Several observations can be drawn from Figure 10:

(1) Both BPOOEESCor (Figure 10 (d)) and BPOOEESCoh

(Figure 10 (f)) exhibit similar fluctuations during the healthy
stage, which makes the distinction between healthy and faulty
conditions less clear. These indicators integrate spectral com-
ponents over a wide frequency range and may be influenced
by unrelated frequency content. In contrast, BPOOIESCoh

(Figure 10 (b)) shows a more stable and distinguishable trend,
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(a) (b)

(c) (d)

Figure 7. Acquisition No. 4000: (a) Raw vibration signal; (b) Resampled signal based on the encoder signal; (c) The spectrum
of the resampled signal in the order domain; (d) The enlarged figure of (c) up to order 150.

3650 3700 3750 3800 3850 3900 3950 4000
Time (x 6 mins)

0

200

400

600

O
rd

er

Optimal bands versus time

Optimal band: [42, 64]

Figure 8. Optimal band selected by the IESFOgram in the last
200 acquisitions.

as it specifically focuses on the band containing fault-related
modulation, thereby improving fault stage identification.

(2) As shown in Figure 10, numerous isolated points (marked
as red dots) exceed the anomaly thresholds across all HIs.
This suggests that using isolated points for fault determi-
nation may lead to false alarms. Hence, a consecutive
detection strategy, requiring multiple consecutive threshold
exceedances, provides more robustness and reduces false
alarms.

(3) Relying on a single HI to determine the fault onset time
may be unreliable, especially when the initial degradation
trend is weak or ambiguous. Therefore, a conservative fault
onset at acquisition 3832 is selected based on the combined
behavior of all three HIs, serving as a robust baseline for RUL
estimation.

(4) Among the three indicators, BPOOEESCor demon-
strates the most distinct and consistent degradation trend after
fault initiation. Therefore, it is chosen for subsequent prog-
nostic modeling and RUL prediction.

(e) (f)

(a) (b)

(c) (d)

(g) (h)

(i) (j)

Figure 9. HIs calculated on (a) the raw spectrum and (b)
zoom; (c) SES and (d) zoom; (e) the EESCoh and (f) zoom;
(g) the EESCor and (h) zoom; (i) the IESCoh based on the
band selected by the IESFOgram and (j) zoom.

4.3. RUL estimation using different estimators

In this section, a single exponential model is used for RUL
estimation combined with different estimators. It is cast into
a discrete-time state-space form so that it can be processed by
various filters (EKF, AKKF, and MHE). Table 2 illustrates the
formulation: the state vector comprises the current degrada-
tion level and the rate parameter, which evolve according to a
nonlinear transition function with additive process noise un,
while the measurement equation includes observation noise
vn. The noise terms are assumed to follow Gaussian distri-
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 10. Fault detection using different HIs: (a) The
histogram of the BPOOIESCoh; (b) The BPOOIESCoh;
(c) The histogram of the BPOOEESCor; (d) The
BPOOEESCor; (e) The histogram of the BPOOEESCoh;
(f) The BPOOEESCoh.

Table 1. Fault onset time determined by HIs.

Indicators Best distribution (BIC) Fault onset time
BPOOEESCor Lognormal 3832
BPOOEESCoh Lognormal 1815
BPOOIESCoh Lognormal 3829

butions, where un ∼ N (0, Qp) and vn ∼ N (0, Rm), with
Qp and Rm determined using the methodology described in
Section 2.3.

4.3.1. Determination of the noise matrices

In this section, the noise matrices determination method pro-
posed in Section 2 is applied. The hyper-parameters are se-
lected as follows: (1) To allow for longer analysis, the failure
threshold is set to 0.1, corresponding to the 4022nd acquisi-
tion. In addition, BPOOEESCor is normalized using 0.1 to
avoid numerical issues in the Kalman filter. (2) Rm is de-
termined as the variance of the HI during the healthy period.
(3) A set of 30 acquisitions after fault onset is selected as the
training set for Qp optimization. (4) The search grid for Qp

is defined as 100 logarithmically spaced values from 10−10

to 10−4. (5) The weights λ1 = 0.7 and λ2 = 0.3 are used
to balance smoothness and consistency. This choice reflects
the need for robust trend tracking under non-stationary and
noisy conditions, where overfitting to short-term fluctuations
may compromise RUL stability and reliability. Finally, all
estimators, i.e., EKF, AKKF and MHE, are employed in the
optimization procedure.

The measurement noise, Rn, is calculated as 3.9713× 10−6.
Figure 11 illustrates the total weighted loss Jtotal(Q) with
respect to the logarithm of the process noise level for the

Table 2. The degradation function used in this paper.

Functions Arrangement
Single exponential (EXP1),

y = aeb t

xn =

[
xn−1,1 e

xn−1,2

xn−1,2

]
+ un,

yn = xn,1 + vn.
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Total weighted loss versus process noise level

EKF
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MHE

Figure 11. Optimal process noise

three estimators. All three estimators exhibit a consistent U-
shaped trend in the total weighted loss as the process noise
level q varies on a logarithmic scale. When q is too small,
the estimators tend to over-rely on the model prediction, re-
sulting in overly smooth trajectories that deviate from the ob-
served data. Conversely, a large q value causes the estimators
to rely excessively on the noisy observations, thereby reduc-
ing the smoothness of the estimated degradation curve. Be-
tween these two extremes, each method achieves a minimum
loss at a specific q, indicating an optimal balance between
smoothness and consistency. This trend validates the effec-
tiveness of the proposed multi-objective loss formulation in
guiding noise level selection. The optimal q values identified
for EKF, AKKF, and MHE are approximately 5.3367×10−8,
1.4175×10−9, and 7.5646×10−9 respectively. Furthermore,
the parameters used in this paper are summarized in Table 3.

4.3.2. RUL estimation results and analysis

In this section, different estimators are used for RUL estima-
tion based on the BPOOEESCor.

The performance of RUL estimation is illustrated in Fig-
ure 12, which presents both the estimated HI trajectories
and the corresponding RUL prediction results obtained us-
ing three estimators: EKF, AKKF, and MHE. To quantita-
tively assess the accuracy of these estimators, several eval-
uation metrics are introduced below. The effectiveness of a
prognostic model can be assessed using various evaluation
criteria, as discussed in (Saxena, Goebel, Simon, & Eklund,
2010; Liu, Pluymers, Desmet, & Gryllias, 2022). Among
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Table 3. Parameter list.

Parameters Value
Failure threshold 0.1
Training set 30
λ1 0.7
λ2 0.3
Search range of q [10−10, 10−4]
Measurement Noise Rn 3.9713× 10−6

Process Noise Level qn
5.3367× 10−8 (EKF)
1.4175× 10−9 (AKKF)
7.5646× 10−9 (MHE)

them, two widely used error-based indicators are the Root
Mean Squared Error (RMSE) and the Mean Absolute Error
(MAE), which quantify the discrepancy between the actual
Remaining Useful Life (RULact) and the predicted Remain-
ing Useful Life (RULpred). Given a total of N samples, these
two metrics are defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(
RULi

act −RULi
pred

)2

(15)

MAE =
1

N

N∑
i=1

∣∣RULi
act −RULi

pred

∣∣ (16)

Besides, from a practical standpoint, achieving higher pre-
diction precision near the end of life is often more critical for
decision-making than at earlier degradation stages. To em-
phasize this, the Cumulative Relative Accuracy (CRA) met-
ric has been proposed, which assigns increasing importance
to later time steps. CRA is calculated as:

CRA =

N∑
i=1

ωiRAi (17)

Here, RAi denotes the relative accuracy at the i-th time step,
while ωi is the corresponding weighting factor. These quan-
tities are defined by:

RAi = 1−

∣∣∣RULi
act −RULi

pred

∣∣∣
RULact

(18)

ωi =
i∑N
i=1 i

(19)

A higher value of CRA (closer to 1) suggests better prog-
nostic capability. The matrices for the estimation results of
three estimators are listed in Table 4. It shows that the AKKF
estimator obtains the best performance among these three es-
timators.

Table 4. Performance comparison of different estimators.

Metric EKF AKKF MHE
RMSE (x 6 mins) 3598.5 234.19 2927.5
MAE (x 6 mins) 659.25 108.25 399.39
CRA -1.9231 -0.048602 -1.1902

In Figure 12 (a), all three methods successfully track the
observed HI trajectory while maintaining relatively smooth
trends. This consistency in HI estimation is crucial, as the
RUL predictions shown in Figure 12 (b) are directly derived
from these estimated HI values. The RUL estimates exhibit
varying degrees of stability and accuracy across the different
methods.

The EKF results show significant fluctuations, with frequent
overestimation and underestimation of the RUL. These erratic
behaviors suggest that EKF is more susceptible to noise and
abrupt changes in the HI.

In contrast, the AKKF yields the most stable and accurate
RUL predictions, closely following the ideal linear degrada-
tion trend with a slope of -1. This demonstrates the advantage
of adaptive kernel-based method in handling nonlinear degra-
dation patterns and suppressing stochastic disturbances.

The MHE also produces smooth RUL estimates comparable
to those from the AKKF, but it occasionally shows a delayed
response to changes in the HI. This lag is likely due to the
inherent nature of the moving window used in MHE, which
may introduce slight latency in prediction updates.

Importantly, all three methods generally preserve the ex-
pected inverse relationship between the HI and RUL: lower
HI values correspond to higher remaining life. However, the
HI is not strictly monotonic — fluctuations may occur due to
physical effects such as surface polishing or changes in ball-
to-race contact conditions as the fault develops. Despite these
irregularities, both AKKF and MHE maintain reliable long-
term degradation tracking, highlighting their robustness and
suitability for real-world applications where such HI varia-
tions are common. These observations suggest that both the
construction and selection of HIs, as well as the incorpora-
tion of physical constraints on RUL, remain critical areas for
future investigation to further improve prognostic accuracy.

5. CONCLUSION

This paper presents a Kalman-based framework for RUL
prognostics of rolling element bearings under time-varying
operating conditions. By extracting order-domain features
that capture cyclostationary behavior, the framework effec-
tively handled non-stationary vibration signals caused by
variable speed. A probabilistic fault detection strategy based
on multiple HIs improved fault onset identification and re-
duced false alarms, as experimental results showed that re-
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(a)

(b)

Figure 12. HI estimation and the estimated RULs: (a) HI
estimation; (b) RUL estimation

lying on a single HI can lead to early or missed detections.
Furthermore, a data-driven approach, to optimize the pro-
cess and the measurement noise covariances, enhanced the
stability and the prediction accuracy of the Kalman-based es-
timators. The final RUL estimation results indicate that the
AKKF-based estimator achieves the best results.

While the current framework successfully addresses speed
variation and multi-indicator fusion, several opportunities re-
main for further improvement. First, explicit segmentation
and modeling of load variations should be considered to bet-
ter capture their influence on degradation. Second, incorpo-
rating additional data sources—such as temperature, torque,
or strain—may enhance the robustness and informativeness
of the prognostic model. Finally, future work will explore
extending the proposed noise covariance optimization strat-
egy to online or adaptive settings, enabling real-time tuning
of the Kalman filter under dynamically changing operating
conditions.
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