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ABSTRACT

Fault detection is essential for maintaining the safety and
reliability of industrial systems, particularly in critical
infrastructure such as nuclear power plants, where undetected
anomalies can lead to costly downtime or safety risks. This
paper evaluates three one-class learning methods—Principal
Component Analysis (PCA), Autoencoder (AE), and Deep
Centered Embedding (DCE)—for detecting pump screen
fouling in the circulating water system of the Hope Creek
nuclear power plant. Using real sensor data from two
distinct operational periods (2014 and 2018), we assess each
model’s ability to identify faults in the presence of significant
distributional changes. While all methods performed well on
in-sample data, only the DCE model successfully generalized
to previously unseen operational conditions. Feature
importance analyses further revealed alignment in key
fault-related signals across models, while DCE’s treatment of
less salient features contributed to its generalization strength.
These results demonstrate the potential of embedding-based
one-class models for robust, data-efficient fault detection
in safety-critical environments. Future work will explore
domain adaptation strategies to enhance model resilience
under changing operational regimes.

1. INTRODUCTION

Fault detection plays a critical role in maintaining the
reliability, efficiency, and safety of industrial systems,
particularly in the energy sector, where unplanned downtime
or undetected faults can result in substantial economic loss,
environmental hazards, and safety risks. From nuclear power
plants to renewable energy facilities, real-time monitoring
systems are increasingly tasked with identifying deviations
from normal operating behavior before they escalate into
failures. This underscores the growing need for robust
and generalizable anomaly detection frameworks that can
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operate effectively under varying conditions and system
configurations.

A key challenge in deploying such systems lies in the
scarcity of labeled fault data. In many industrial settings,
faults are rare, diverse, and context-dependent, making it
difficult to gather sufficient examples to train supervised
machine learning models. To address this, anomaly detection
approaches that rely solely on healthy data, commonly
referred to as one-class training, have gained significant
attention (Xu et al.,, 2024). These methods learn the
distribution of normal behavior and subsequently flag
deviations as potential anomalies. This approach is not
only practical but also better aligned with the realities of
industrial monitoring, where capturing the full spectrum of
potential faults during training is infeasible.

This paper explores the performance and generalization
capability of three data-driven one-class training methods
for fault detection. The first is Principal Component
Analysis (PCA), a linear dimensionality reduction method
that captures dominant modes of variation in healthy data.
The second is a classical Autoencoder (AE), which learns
to reconstruct healthy input data and uses reconstruction
error to signal anomalies. The third, referred to in this paper
as Deep Centered Embedding (DCE), leverages a neural
network-based encoder trained to map healthy data into a
compact latent space, where the distance from a learned
center serves as an anomaly score.

A central focus of this research is to evaluate how well
these one-class models generalize to previously unseen
distributions of healthy and faulty samples. In real-world
deployments, industrial systems often undergo operating
condition changes, upgrades, or environmental shifts.
Therefore, it is essential not only to detect known anomalies
but also to maintain high performance in the face of such
distributional changes. By systematically testing each
approach across both known and new operating scenarios,
this study aims to assess their robustness and suitability for
real-world applications.

In nuclear power plants with natural water sources, pump
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screen fouling is a significant operational concern due to
the intake of debris and particulate matter from the cooling
water source. Fouling commonly arises from biological
materials—including algae, seaweed, jellyfish, and fish—as
well as organic debris such as leaves and twigs. These are
especially prevalent in open-loop systems or those drawing
from natural water bodies or open basins. In addition,
inorganic materials like sediment, shells, and anthropogenic
waste may enter the system, particularly following heavy
rainfall or increased water turbulence. Internal sources, such
as corrosion products from aging infrastructure, can also
contribute to screen blockage. Over time, biofilm growth and
mineral scaling may further reduce the effective open area of
the screens (Venkatesan & Sriyutha Murthy, 2008).

Early detection of pump screen fouling is critical for
maintaining system performance and reliability. As screens
become obstructed, the reduced flow impairs the circulating
water system’s ability to effectively cool the condenser,
leading to degraded thermal efficiency and increased turbine
backpressure. This can result in reduced power output
and potential derating of the plant (Agarwal et al., 2022,
2021). Furthermore, fouling increases the risk of pump
cavitation due to inadequate suction flow, which can damage
pump components and elevate maintenance costs. Excessive
screen blockage also raises the hydraulic load on the pumps,
accelerating wear and energy consumption. In severe cases,
undetected fouling may trigger unplanned maintenance
outages or violate environmental discharge constraints due to
altered flow or temperature profiles at the outlet (Venkatesan
& Sriyutha Murthy, 2008). Therefore, timely identification
and mitigation of screen fouling are essential to ensure
efficient, safe, and compliant operation of the circulating
water system.

2. SYSTEM AND DATA

The Circulating Water System (CWS) plays a vital role
in nuclear power plant operations, particularly as a
non-safety-related system that supports thermal efficiency
and environmental compliance. At facilities like Hope Creek,
the CWS is essential for dissipating heat from the main steam
turbine and its auxiliary systems (Agarwal et al., 2021).
Its design focuses on maximizing the efficiency of the steam
power cycle while ensuring that environmental impacts on the
Delaware River remain within regulatory limits established
by the state of New Jersey. Functionally, the system is
responsible for filtering intake water before it flows through
the condenser and for cooling the exhaust steam from the
turbine.

The CWS is composed of several key components, including
vertical motor-driven pumps (referred to as circulators),
intake screens to remove debris and aquatic organisms, the
main condenser’s tube-side components, and support systems

for air removal, sampling, and screen washing. These
elements are integrated with control instrumentation, piping,
and valves that enable stable and efficient operation. At
the Hope Creek nuclear power plant, which operates a
single boiling water reactor, the CWS uses four circulators.
Unlike typical river-fed systems, Hope Creek draws its
cooling water from a cooling tower basin. As a result,
it does not rely on traveling screens; instead, each pump
is equipped with its own screen to prevent debris from
entering the condenser. The design features a shared header
that distributes water from the four pumps to six condenser
waterboxes—two for each of the plant’s three condensers
(Agarwal et al., 2021). This arrangement, illustrated in Fig. 1,
reflects a configuration optimized for both performance and
environmental compliance.

Delaware §& «Delaware
River River,

Figure 6. Schematic representation of the Hope Creek CWS.

Figure 1. The Hope Creek Circulating Water System

The Hope Creek CWS data comprises hourly measurements
spanning from January 1, 2010, to May 18, 2021, but for this
research, we extracted sample sequences of ten-day periods
(240 hours) for the first five months of 2014 and 2018 only.
This was because the exploration of the work order report of
the plant revealed that these periods of these two years had
the most occurrences of ‘fouling’ in ‘pump screen A’, the
fault mode of interest (Agarwal et al., 2021). The ten days
represent five days before and five days after the report of the
maintenance activity to clear the fouling. In other words, the
sequences are centered around the maintenance dates for the
faulty samples. The healthy samples, on the other hand, are
periods that do not have reports of any type of maintenance
activity within the dates of interest. In 2018, there were
4 faulty samples and 18 healthy samples, whereas in 2014,
there were 7 faulty samples and 23 healthy samples. The
scarcity of the faulty samples for both years is typical of a
nuclear power plant, driving the one-class training approach
employed in this work.

Overall plant status data include gross load in megawatts
and a 15-minute average of the ambient outside temperature.
Each of the four circulators or circulating water pumps
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(CWPs) measurements includes the ‘basin level’, ‘discharge
pressure (DP)’, ‘motor winding temperature’, and ‘outbound
and thrust bearing temperatures’. The temperatures at the
north and south ends of each condenser were also recorded,
with the total monitored signals being sixty-nine (69) for this
research. This means each sample has 240 timesteps and 69
features (shape 240 x 69).
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Figure 2. System Condition for the Different Years
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Figure 3. System Condition for the Different Years

However, variations in operating conditions across different
years lead to changes in system response, even under similar
fault modes. This is illustrated in Fig.2, which highlights
differences in the winding temperature of pump C across
several ten-day periods during similar seasons in different
years. To characterize these differences more formally,
kernel density estimation (KDE) is employed to estimate
the probability density function (PDF) of the variable in a
non-parametric manner (Chen, 2017). Fig.3 shows KDE
representations using Gaussian kernels for one monitored
system variable, further emphasizing the divergence in data
distributions between the two years. These distributional
shifts present challenges for developing detection models that
generalize well to similar faults across multiple years.

3. METHODOLOGY

Fig. 4 highlights our overall approach, where we train
different models to detect pump screen fouling faults by

processing the raw signals of the sensors in the plant.
We train the model with healthy and faulty samples from
a particular year and test the predictive performance of
the trained models for the same year, along with their
abilities to generalize to a different year. The three tested
models are PCA, AE, and DCE as mentioned in section 1.
We also attempted to explain the observed performances
of the neural network-based approaches using different
suitable techniques for each model. The AE reconstructs the
multivariate timeseries as explained in section 3.2. Since the
highly recognized explainaility tool, SHAP, is not currently
applicable to timeseries outputs, the highest contributors
to the high reconstruction errors of the faulty samples
can be regarded as the most useful features for detection
(A. O. Ifeanyi et al., 2024). Shapley values calculated with
SHAP (A. Ifeanyi et al., 2025; Ghorbani & Zou, 2019) are
then used to rank feature importance for the DCE since
its outputs are vectors of embeddings. The subsequent
subsections dive into workings of the tested models.
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Figure 4. Summary of Approach

3.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear
dimensionality reduction technique that identifies the
directions of maximum variance in high-dimensional data.
In the context of one-class anomaly detection, PCA is
trained using only healthy (non-faulty) data to learn a
compact subspace. Anomalies are detected by measuring
reconstruction error—how far a test sample deviates from
this learned subspace (A. Ifeanyi et al., 2023).

3.1.1. Training Phase (One-Class Learning)

Let the input dataset be represented by the matrix X € R"*4,
where n is the number of healthy training samples and d is the
number of features (e.g., flattened sensor sequences).

The data is mean-centered as:

X:X_]-nll/—r7 (1)

where the mean vector p is given by:

1 n
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Next, PCA computes the empirical covariance matrix of the
centered data:

¥ =_XTX. 3)

We then compute the top-k eigenvectors of 3, which form the
matrix V), € R4¥*_ These eigenvectors span the principal
subspace with number of principal components which retain
95% of the variance in the original data (Mackiewicz &
Ratajczak, 1993).

3.1.2. Reconstruction and Anomaly Scoring

A data point x; € R is projected onto the principal subspace
as:
z; = Vi (x; — ), “

and reconstructed as:

X, =Viz; + p= VkV;—(XZ - N) + p. )

The reconstruction error, used as the anomaly score, is
computed as:

e; = |lxi — %3 (6)

A high reconstruction error indicates that the test sample
lies far from the healthy subspace and is likely anomalous
(A. Ifeanyi et al., 2023).

3.1.3. Thresholding

To classify a test sample x;, the anomaly score e; is compared
against a threshold 6. Our approach was to set 6 based on
a high percentile (98%) of the reconstruction errors from
healthy validation data:

1 ife; <0

Anomaly(x;) = normat, 1 = (7
anomalous, ife; > 0

PCA-based reconstruction provides a lightweight,

interpretable method for modeling healthy system behavior.
Its primary limitation lies in its assumption of linearity,
which may not capture nonlinear dependencies common in
complex industrial time-series data. Nevertheless, it serves
as a strong baseline for one-class training, especially in
applications where fault examples are unavailable or rare.
Since temporal dependencies are not captured by PCA, the
following approaches were investigated.

3.2. 1D-CNN Autoencoder for One-Class Anomaly
Detection

A 1D-Convolutional Neural Network (1D-CNN) based
autoencoder is a powerful architecture for learning
compressed representations of time-series data. In our
context of one-class anomaly detection, the model is trained
solely on healthy samples to reconstruct the input sequences
as accurately as possible. The underlying assumption is
that the model will struggle to reconstruct anomalous data,
leading to larger reconstruction errors, which can be used as
indicators of faults (A. O. Ifeanyi et al., 2024).

3.2.1. Model Architecture

The 1D-CNN autoencoder consists
components:

of two primary

e Encoder: Applies 1D convolutional layers to the input
sequence to extract high-level temporal features and
compress the sequence into a lower-dimensional latent
representation.

e Decoder: Uses upsampling followed by convolution
to reconstruct the original input from the latent
representation.

Given an input sequence

)(:{Xl,XQ,...,XT}7 XtG]Rd,

the autoencoder learns a function JFp that attempts to
reproduce the input sequence:

X = Fy(X), ®)
where X is the reconstructed sequence, and 6 represents the
learnable parameters of the encoder and decoder networks.
3.2.2. Training Objective

The model is trained using a reconstruction loss, typically the
mean squared error (MSE) between the original input and the
reconstruction:

T
1 .
['rec = T ;71 ||Xt - XtH2 : (9)

The goal is to minimize L, over healthy data samples so that
the model effectively captures the normal patterns present in
the time-series.

3.2.3. Anomaly Detection

After training, the reconstruction error for unseen sequences
is used as an anomaly score.  Sequences with high
reconstruction errors are flagged as potentially anomalous
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(A. O. Ifeanyi et al., 2024). The anomaly score for a sequence
X is computed as:

Score(X

1 T
:Tzﬂﬁ—mﬁ (10)
t=1

A detection threshold 7 is determined as > 98th percentile
using the distribution of scores on the healthy validation set.
If Score(X) > 7, then X is considered anomalous.

This method is particularly effective in capturing spatial
(or temporal) local patterns in time-series data due to the
convolutional nature of the encoder. Moreover, its reliance
only on healthy data makes it attractive for industrial
applications where fault examples are rare or unavailable.
The convolutional layers also enable efficient processing and
robustness to local shifts and noise in the signal (A. O. Ifeanyi
et al., 2024).

3.3. Deep Center Encoding (DCE) for One-Class
Anomaly Detection

The Deep Center Encoding (DCE) method is a neural
network-based approach for one-class anomaly detection that
learns a compact representation of healthy data in a latent
space. Unlike traditional reconstruction-based methods,
DCE explicitly optimizes a loss function that minimizes
the distance between the learned embeddings of healthy
samples and a central reference point (or center) in the latent
space. This method is inspired by the Deep Support Vector
Data Description (Deep SVDD) paradigm (Kim et al., 2015;
Han et al., 2025), but adapted to time-series data through
1-dimensional convolutional encoders.

3.3.1. Model Overview

Given an input sequence

X:{X17X27"'7XT}5 XteRda

a neural network encoder £ maps the sequence to a latent
representation z:

z=E&(X), zecRN (11)
The goal of the DCE approach is to ensure that all
embeddings z corresponding to healthy sequences lie close
to a central point ¢ € R in the latent space similar to the
subspace of the PCA.

3.3.2. Center Initialization and Loss Function

To ensure stable training, the center c is computed after
an initial warm-up phase. After training the encoder for a

few epochs, the embeddings of the healthy data are used to
estimate the center:

1Y .
::NE:&QG%. (12)
1=1

This computed center is then fixed, and training continues
using the loss in Equation (13).

The network is trained by minimizing the average squared
Euclidean distance between the embeddings of the healthy
samples and the center c:

N 2
Loce = NZH&; (XD~ (13)

where X(*) denotes the i-th healthy input sequence and N
is the number of training samples. This loss encourages
the encoder to map all healthy samples to a compact region
around c in the latent space.

3.3.3. Anomaly Detection

At inference time, sequences are encoded using the trained
encoder, and their distance to the center c¢ is used as the
anomaly score:

Score(X) = [|E(X) — c||*. (14)

A threshold 7 is set using the 98thpercentile of the error
from a validation set. A sample is flagged as anomalous if
Score(X) > 7.

DCE combines the strengths of both PCA and AE. Like
PCA, it maps raw input data into a lower-dimensional
embedding space that captures the essential characteristics of
the samples. Like AE, it can model complex nonlinear
relationships, but it avoids the added complexity of a
decoder by directly using the embedding distance from a
learned center for anomaly detection. This makes DCE both
expressive and computationally efficient.

4. RESULTS
4.1. Predictive Performance

This section presents the performances of the investigated
models when tested on unseen samples from the same year
of training. As seen in Fig. 5, Fig. 6, and Fig. 7, all models
performed excellently when trained and tested on only 2014
and 2018 samples, respectively. When samples from both
years are combined for training and testing of the models,
PCA misclassified one sample in each class whereas the
neural network-based models maintained their excellence.



This superiority of the neural network-based models is not
unexpected as they have been shown to capture complex
relationships better than PCA in different application areas
including anomaly detection for nuclear systems.
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4.2. Generalization

Here, we test how well the models can detect the same
fault type in a similar season but in a different operational
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DCE (2014) classification. The AE model correctly classified most of the
7 healthy samples but struggled to detect the faulty ones. PCA
& was the worst overall performer for this test of generalization.
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As can be deduced from the explanations in section 3.3
and the results in Fig. 8, DCE provides several potential
advantages:

e Compact Latent Representations: By directly
enforcing proximity to a center, DCE avoids the need for
reconstruction, reducing overfitting to healthy patterns.

* Robust to Unseen Faults: Since it only learns the
compact structure of normal data, it can generalize well
to a wide range of faults without prior exposure.

* Low Computational Overhead: The approach requires
only forward passes through the encoder and a simple
distance computation for detection.

Overall, DCE is a an efficient and potentially generalizable
method for fault detection in settings where faulty examples
are scarce or unavailable, which is often the case in critical
industrial domains such as power generation and process
monitoring.
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4.3. Explanations for Autoencoder and DCE

This section compares the performance of the AE and DCE
models trained on 2014 data, as these models were used
to evaluate generalization capability. Despite employing
different explainability techniques, both models identified
eight of the same features among their top ten most important,
with complete agreement in the rankings of the top five
features (see Fig. 9). This consistency suggests that these
top eight features are likely central to fault detection within
the 2014 dataset, particularly since both models demonstrated
similar performance in this test scenario.

However, this also implies that the features enabling the DCE
model to generalize to data from different distributions may
lie beyond these top eight. The divergence between the
models becomes more apparent when examining the least
important features (see Fig. 10), where there is no overlap
in feature rankings. This highlights a significant difference
in how each model interprets and utilizes the remaining input
features beyond those critical for in-sample fault detection.
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5. CONCLUSION

This study evaluated the performance and generalization
capability of three one-class fault detection models—PCA,
Autoencoder (AE), and Deep Centered Embedding
(DCE)—applied to pump screen fouling detection in a
nuclear power plant’s circulating water system. Using
real operational data from Hope Creek, we demonstrated
that while all models performed well when tested on data
from the same year as training, only DCE maintained high
accuracy when generalizing to samples from a different
year with distinct operating conditions. DCE’s ability to
embed healthy samples in a compact latent space and classify
faults based on distance from a learned center allowed it to
overcome the challenges posed by distributional shifts across
years, making it particularly suitable for fault detection in
settings with limited or unavailable faulty data.

Analysis of feature importance further revealed that both
AE and DCE models consistently identified the most critical
features for fault detection within the training year, but
diverged in how they treated less important features. This
divergence likely contributed to DCE’s superior ability to
generalize across different data distributions. These findings
highlight the advantages of embedding-based one-class
models like DCE in industrial environments where labeled
fault data are scarce or evolving conditions are common.

As a direction for future work, we propose integrating
domain adaptation techniques or adversarial training to
further enhance the model’s robustness to distributional shifts
caused by changes in system configuration, environmental
conditions, or sensor calibration. Such methods could
improve performance in long-term deployments by enabling
the model to adapt continuously to new operating regimes
without requiring labeled fault data.
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