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ABSTRACT

This paper presents a novel framework for IoT device fault
detection, combining meta-algorithmic decision logic with a
neural network classifier for efficient failure analysis.
Utilizing system-level data, the methodology employs a
multi-layered architecture to classify devices as either failed
or non-failed and identify the root cause, whether hardware,
software, or firmware. The first layer implements a meta-
classifier that integrates multiple lightweight algorithms
weighted by application-specific criteria such as accuracy or
recall. This ensemble approach enhances fault detection by
utilizing high-level system metrics. The second layer
introduces a neural network trained on subsystem-specific
features, such as power metrics and diagnostics, to infer the
most probable root cause. This structure enhances the
accuracy of failure prediction while improving the
interpretability of device failures and their potential root
causes. Demonstrated on real-world telematics devices
collecting GPS data, the framework addresses the need for
scalable diagnostic methods in high-volume environments.
By minimizing unnecessary returns and streamlining
workflows, this approach delivers practical value in field
operations. The modular two-tiered architecture allows for
adaptability to various device types and fault modes. Future
work will explore model generalization across different
deployments and enhance root cause analysis through
structured, data-driven methods to improve operational
reliability of the framework.

Ryan Aalund et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

As connected systems become more integral to critical
infrastructure, logistics, and operational automation, the
ability to reliably detect and diagnose device faults at scale
has emerged as a core requirement in system reliability
engineering (Leite, Andrade, Rativa, & Marciel, 2025).
Modern embedded and internet-of-things (IoT) systems,
often deployed in high-volume, distributed environments, are
expected to operate autonomously for extended periods of
time. Despite typically low failure rates, the operational and
economic cost of missed failures, or the unnecessary removal
of healthy devices, can be substantial (Stergiopoulos,
Kotzanikolaou, Theocharidou, Lykou, & Gritzalis, 2016).
This challenge is exacerbated by limited visibility into
subsystem-level degradation and the complexity of
interdependent failure mechanisms (Sinha & Lee, 2024).

Traditional approaches to fault detection have primarily
relied on either single-metric, rule-based heuristics or
monolithic classifiers trained on narrow feature sets (Gertler,
2017). These techniques often lack both the interpretability
and modularity required for deployment in evolving system
architectures. They frequently assume static behavior and fail
to consider the nuanced trade-offs between different
performance metrics, such as accuracy, precision, and recall,
which are crucial in real-world decision-making contexts.
That is, typical fault detection approaches lack applicability
in the era of extreme complexity and interdependency.

This paper presents a structured fault detection and diagnosis
(FDD) framework that integrates meta-algorithmic decision
logic with a neural network-based classifier to deliver robust
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and interpretable device health assessments. The
methodology employs a multi-layered classification
architecture rooted in systems thinking, where the first layer
determines the device failure status using system-level
metrics, and a second layer identifies the subsystem from
which the failure originates. This modular approach supports
both high-confidence failure detection and granular root
cause insights while remaining adaptable to data constraints
and deployment variability.

The first classification layer employs a custom-weighted
meta-classifier that integrates multiple lightweight
algorithms. These algorithms are weighted not solely by
accuracy, but by application-aligned metrics such as
precision or recall, depending on the business or safety
context. This enables the system to prioritize operational
objectives, such as minimizing false negatives in safety-
critical applications or false positives in return-sensitive
logistics.

The second layer introduces a neural classifier trained on
features extracted from subsystems, including battery
voltage, system-on-chip (SoC) diagnostics, and LTE module
behavior. In the current implementation, this classifier uses
time series metrics to capture interactions between
subsystems and support root cause inference. The
architecture is designed to be extendable, with future
iterations built on recurrent or convolutional neural networks
(RNN/CNN) to process raw time-series data directly and
utilize the complete available dataset, including partially
labeled data, thereby enhancing the system’s ability to detect
intermittent and dynamic failures (Jung, Han, & Choi, 2021).

This paper develops the approach and demonstrates its utility
on telematics devices used in vehicular environments.
However, the methodology is broadly applicable to any
system requiring fault detection and identification,
particularly those operating at scale with complex subsystem
interactions and limited access to labeled failure data. By
structuring failure detection into two stages and optimizing
each layer for interpretability, adaptability, and diagnostic
value, this framework enables a scalable path toward more
autonomous and data-driven reliability management.

The remainder of this paper is organized as follows: Section
2 reviews related work in fault detection, ensemble
classification, and neural diagnostic systems. Section 3
formulates the fault detection problem and outlines the
system constraints. Section 4 describes the layered
methodology and feature engineering process. Section 5
presents experimental results based on a real-world dataset.
Section 6 discusses model insights, unexpected findings, and
limitations. The paper concludes with Section 7.

2. RELATED WORKS

The application of Prognostics and Health Management
(PHM) and FDD techniques to 10T systems has become an
increasingly critical focus as connected devices proliferate
across  industrial, commercial, and infrastructure
environments. [oT systems present unique challenges for
PHM due to their distributed architecture, constrained
resources, variable data quality, and limited access to
physical inspection. These factors demand FDD strategies
that are robust, lightweight, and capable of operating under
partial observability and intermittent connectivity.

Several reviews have emphasized the need for tailored FDD
approaches in IoT-enabled environments. Leite et al. (2025)
and Abid, Khan, and Igbal (2021) outline the growing
complexity in deploying traditional FDD methods in modern
cyber-physical systems, highlighting that standard diagnostic
models often fail to generalize across the heterogeneous and
dynamic conditions seen in IoT deployments. Chi, Dong,
Wang, Yu, and Leung (2022) further note that many IoT
systems lack sufficient labeling or historical fault data,
making knowledge-based and unsupervised FDD more
attractive despite their limitations in interpretability and
domain portability.

The scale and variability of IoT deployments have led
researchers to explore distributed and hierarchical fault
identification architectures. Marino, Wisultschew, Otero,
Lanza-Gutierrez, Portilla, and de la Torre (2021) introduced
a distributed machine-learning system that adapts FDD
quality based on the context and resource constraints of edge
devices. Similarly, Aldaajeh, Harous, and Alrabaee (2021)
proposed FDD design tactics that optimize embedded system
efficiency, striking a balance between computational load
and diagnostic performance.

Al-enabled fault diagnosis has become a dominant trend in
IoT FDD, as explored in surveys by Nguyen, Medjaher, and
Tran (2023) and Lo, Flaus, and Adront (2019). However,
deployment remains challenging due to data sparsity and
system variability. Sinha and Lee (2024) argue that despite
significant advances in lab-scale model performance, field
deployment in IoT systems is hindered by unresolved issues
in lifecycle management, domain shift, and model
explainability. This is reinforced by real-world studies such
as that of Dzaferagic, Marchetti, and Macaluso (2022), who
address sensor dropout in industrial 10T (IIoT) through data
imputation using generative adversarial networks, enhancing
fault classification resilience under missing data conditions.

Edge-focused FDD strategies have also gained traction,
particularly in situations where cloud latency or data
bandwidth make centralized PHM impractical. Lu, Lu, An,
Wang, and He (2023) and Hadi, Hady, Hasan, Al-Jodah, and
Humaidi (2023) explore edge-deployable diagnostic
pipelines and AutoML techniques to reduce model
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development burden while enabling responsive diagnostics.
These strategies facilitate fault detection to be colocated with
the device, improving latency and reliability.

Other works have explored domain-specific FDD
implementations in IoT systems such as solar energy
(Balakrishnan, Raja, Sudhakar, & Janani, 2023), smart grids
(Al Mhdawi & Al-Raweshidy, 2020), marine equipment
(Orhan & Celik, 2024), and industrial robotics (Raouf,
Kumar, Lee, & Kim, 2023). These studies consistently
demonstrate that IoT system characteristics include limited
telemetry, physical inaccessibility, and variability in fault
expression. These characteristics challenge traditional FDD
approaches; therefore, applying FDD to [oT systems requires
rethinking how FDD models are trained, validated, and
deployed. Lavanya, Prasanth, Jayachitra, and Shenbagarajan
(2021) exemplify this by developing a tuned classification
method for FDD in wireless sensor network (WSN)-based
IoT systems that copes with signal heterogeneity and fault
ambiguity.

Recent literature also emphasizes that classification accuracy
alone is insufficient as a benchmark for PHM in IoT contexts.
Fault models must be tuned to prioritize specific error
tradeoffs depending on operational cost structures, for
instance, minimizing false positives in logistics (Seabra,
Costa, & Lucena, 2016) or false negatives in safety-critical
controls (Kim & Katipamula, 2017). Researchers have begun
adopting cost-sensitive or meta-learning models to manage
this, though generalized frameworks are still lacking.

Overall, the state of FDD for [oT systems reflects a field in
active transition. Early rule-based approaches and expert-
defined diagnostics are giving way to learning-based and
context-aware systems; however, new constraints imposed
by the loT environment, such as imbalanced data, missing
signals, and energy constraints, necessitate methodologies
that evolve beyond traditional assumptions. The existing
body of work has laid the basis for foundational approaches,
but few offer unified, modular architectures capable of
adapting across deployments, fault types, and operational
priorities.

3. PROBLEM FORMULATION

Fault detection in embedded and connected systems presents
a challenging trade-off between detection sensitivity and
operational precision (Aldaajeh, Harous, & Alrabaee, 2021).
While failures may occur infrequently, the consequences of
undetected faults or unnecessary field actions can be
significant (Smith, 2021). This is particularly true in large-
scale deployments where even a small failure rate translates
into thousands of potentially impacted devices, and where
operational decisions must be made with limited diagnostic
access to the physical system (Lwakatare, Raj, Crnkovic,
Bosch, & Olsson, 2020).

The classification task addressed in this work involves two
critical objectives:

1. Determining whether a device has failed, based on
system-level performance indicators.

2. Identifying the most probable root cause domain (e.g.,
hardware or software), based on observable subsystem
behaviors.

The motivating dataset for this study is drawn from
proprietary telematics devices deployed at scale. These
devices collect trip data via onboard GPS modules and
transmit information over LTE networks to cloud
infrastructure  (Ghaffarpasand, Burke, Osei, Ursell,
Chapman, & Pope, 2022). Although the annual observed
failure rate is low (less than 1% over three years), the volume
of deployed units yields sufficient labeled examples for
machine learning-based fault detection. However, the general
problem formulation applies to a wide range of IoT,
embedded, and cyber-physical systems where devices
operate autonomously and faults emerge through indirect
symptoms (Smart, Grimm, & Hartzog, 2021).

To address this classification problem, we adopt a multi-
layered approach. The first layer is responsible for high-
confidence failure detection, utilizing features that reflect
overall system functionality, such as signal acquisition
uptime or communication health. The second layer focuses
on failure classification, drawing on subsystem-level data
(e.g., battery metrics, processor diagnostics, communication
module behavior) to infer from which subsystem the failure
originates. In the current implementation, a limited number
of subsystems are included: power, physical, firmware, GPS,
and LTE connectivity. However, future work will aim to
include more subsystems.

This layered structure is motivated by practical
considerations. It is more critical to correctly identify that a
device has failed than to diagnose the underlying cause
immediately (Okes, 2019). Misclassifying a failed device as
functional could allow for continued degradation and
customer impact. Conversely, incorrectly labeling a
functional unit as failed incurs unnecessary return costs and
logistics overhead (Wilson & Goffnett, 2022). By decoupling
detection from diagnosis, the model is able to prioritize early,
conservative identification of failure while preserving
interpretability and adaptability in downstream classification.

Additionally, this structure facilitates scalability: as richer
telemetry or more granular tagging becomes available, the
diagnostic classifier can be retrained or replaced without
altering the upstream detection layer. This modularity
enables the deployment of the framework across various
system types, making it suitable for any operational
environment where low-visibility failures, high-volume field
data, and domain-specific performance constraints define the
fault detection challenge.
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4. METHODOLOGY

4.1. Framework Architecture and Design Philosophy

The proposed two-layer classification framework is designed
to strike a balance between fault detection sensitivity and
diagnostic resolution. The layered design is rooted in systems
thinking, separating fault detection (Layer 1) from fault
diagnosis (Layer 2) to address each task with appropriate
methods and data representations.

Layer 1 performs binary classification to determine if a
device has failed. It utilizes a lightweight, interpretable meta-
algorithmic decision engine that relies on system-level
indicators and derived metrics (Simske, 2013). Layer 2
focuses on identifying the most likely root cause domain —
power, connectivity, GPS, firmware, or hardware-related
issues — through a neural classifier trained on subsystem-
specific features.

This separation enhances scalability and interpretability. If a
new diagnostic signal becomes available or if the
classification priority changes (e.g., from minimizing false
positives to maximizing detection coverage), only the
corresponding layer needs to be adjusted. This separation
offers multiple advantages, as it decouples critical detection
sensitivity from the less reliable but still valuable diagnostic
inference; it improves modularity, allowing updates to one
layer without affecting the other; and it supports
interpretability, enabling Layer 1 to be tuned to minimize
high-cost misclassifications (e.g., false negatives), while
Layer 2 can evolve as richer features or labels become
available. The framework is designed to adapt across
deployments with different system architectures, failure
modes, datasets, and/or operational goals.

4.2. Data Sources and Preprocessing

Data is collected from deployed telematics devices,
comprising both system-level metrics, subsystem-specific
telemetry and user interactions:

e System-level metrics: LTE uptime (%) GPS successful
fixes (%), system reboots;

e Subsystem metrics: Battery voltage, SoC temperature,
connectivity statistics; and

e  User metrics: Total time in field, time since last activity,
and other user interactions like button presses, user
functional modes like frequency of check-ins.

To simplify the classification process and address constraints
in real-time systems, telemetry streams are transformed into
snapshot metrics (e.g., averages, uptime ratios, etc.). This
approach avoids the complexity of processing time-series
data and enhances the interpretability of any model built upon
it, although this tradeoff is discussed in Section 6. Converting
time-series telemetry data into snapshot metrics reduces the

dimensionality of the problem space. In this work, the
following transformations are applied for each device:

e Statistical aggregation: e.g., mean uptime over arolling
window;

e Derived features: ¢.g., battery voltage x SoC temp, LTE
uptime + GPS uptime;

o Normalization: Features are z-scaled or normalized
between [0, 1] as appropriate; and

e OQutlier filtering: Extreme values are removed based on
percentile or domain heuristics

Dataset Construction: Devices are labeled as failed, along
with a possible root cause based on customer complaints,
return analysis, and fault investigation. The failure
information is used in layer one, and the root cause is in Layer
2. While there are no clearly labeled devices as functional,
any device that has not failed is considered functional. While
this may introduce error in our dataset, where devices labeled
as functional have failed in the field, this is expected to be
very small, given the already low rate of failure. The dataset
was randomly partitioned into training (80%) and testing
(20%) sets.

System-level device performance metrics, subsystem
snapshot metrics, and user interaction metrics were used in
the model.

e LTE uptime (%) - percent of time connected to the
network

e GPS Fix — percent of GPS fixes that resulted in a valid
location

e Reboots — total number of power reboots the system
underwent, both initiated by a user and by the firmware
to reboot the system

e Total GPS check-ins attempted by the device
e Battery voltage levels
e Total time the device was active in the field

e Maximum number of button press reboots initiated by
the users in a day

e Functional mode of the device — check-in frequency

The model was initially trained using both the original and
normalized features. Eventually, features were selected based
on their accuracy in prediction and their significance in
determining the classification of labels. A total of 2916 failed
devices were used in the dataset, and 3000 functional devices
were randomly selected from the larger population of
220,000 devices to train the model. Note that the features on
functional devices exhibited very low variance (see results in
Figures 1 and 2), and any random selection of 3000 devices
was representative of the entire field population. While the
model is independent of the sample size of each class (if there
are enough to represent the field population), this sampling
was done to minimize the effect of failed devices that are
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mislabeled as functional. This was done instead of removing
outliers in the features, as a number of these outliers
represented actual functional or field failures.

4.3. Layer 1 — Device Failure Detection

Layer 1 is optimized to identify whether a device is exhibiting
failure symptoms by utilizing system-wide indicators. It uses
a lightweight, interpretable meta-algorithmic decision engine
(Simske, 2013) that identifies the critical point separating the
two classes in each feature. Each simple classifier finds a
critical point for each feature that divides the feature set into
values closer to the mean value of its corresponding class
label. These simple classifiers are weighted based on the
chosen classification metric, giving more importance to
critical point thresholds that contribute to a higher
classification metric. This results in the label for the
corresponding device being marked as either 'failed' or
'functional'. These indicators are both accessible and
interpretable in large-scale deployments, making the solution
deployable with minimal computation.

Classification Method: A meta-algorithmic decision model is
employed, which combines multiple lightweight classifiers
or decision rules, each evaluated based on its performance
with respect to selected classification metrics (see Section
4.5). The output is a binary classification:

e (Class A: Device has failed

e (lass B: Device is functional

4.4. Layer 2 — Root Cause Domain Classification

For devices classified as failed, Layer 2 attempts to infer the
subsystem at fault. The classifier used is a shallow neural
network, chosen for its ability to capture non-linear
interactions while remaining computationally light.

The feature set includes the same features as Layer 1, but
instead of a snapshot, it uses the last 10 days' time series for
each corresponding feature. The result of Layer 2 is to find
the subsystem at fault, given that Layer 1 resulted in a failure
classification. The result of this layer is one of the following
labels: power, physical, firmware, GPS, and LTE
connectivity.

4.5. Meta-Algorithmic Classifier Weighting

A novel contribution of this framework is the application-
driven weighting of classifiers in Layer 1. Instead of
optimizing solely on accuracy, the framework allows weights
to be tuned based on precision, recall, or F1-score, depending
on the operational consequences of each type of error. In
Table 1, examples of organizational impact are shown,
illustrating how each metric can be applied.

The meta-classifier calculates classifier influence using a
weighting vector derived from historical performance across

these metrics. For instance, in a high-precision deployment,
classifiers producing fewer false positives are weighted more
heavily, even if their overall accuracy is lower. This
adaptability enables the model to be re-optimized
dynamically in response to deployment changes, without
requiring retraining of the underlying classifiers.

Table 1. Rationale for Metric-Based Weighting

Metric Prioritized When... Example Contexts
All error types are General mgmtormg
Accuracy cqually cosil in non-critical
quatly y systems
False positives must be
. avoided (e.g., avoid Logistics/cost-
Precision . .. .
returning healthy sensitive operations
devices)
Eigscecleletg;gi:e(se are Vehicle control,
Recall aceeptabic (¢.g., healthcare, or safety
missing a failed safety- Svstems
critical device) Y
Balanced treatment of
both precision and recall Early-stage models
F1-Score with limited ground

when tradeoffs are

truth
unclear

The Benefits of this approach include operational alignment,
where model decisions reflect real-world impact. Modularity
is facilitated by allowing weights to be wupdated
independently of feature sets or classifier design.
Interpretability is built by tracing each classifier’s
contribution to a performance rationale.

4.6. Evaluation Strategy

Performance metrics for both layers include accuracy,
precision, recall, Fl-score, and a confusion matrix (a
multiclass version is used for Layer 2). Additional robustness
tests involve T-tests to assess distributional drift between
training and testing data.

5. RESULTS

5.1. Layer 1: Fault Detection Performance

All the features listed in Section 4.2, along with normalized
and derived metrics, were initially used in the model.
However, only four features were significant in classifying
the devices: (1) time of the last activity, (2) battery levels, (3)
total system reboots, and (4) the firmware version the device
was running. Figures 1 and 2 show the results on
classification metrics across multiple sample sets of 3,000
functional devices from a population of 220,000 devices. The
results discussed in this layer are based on 20 such samples.
The critical points for each classifier across these samples had
a difference of < 10% (weighted for each feature), confirming
that the samples were in fact representative of the field
population.
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As shown in Figure 1, the accuracy of the test data remained
high throughout. However, when weighted on accuracy, the
precision score is low. This may be due to failed devices
being incorrectly marked as functional, likely because no
failure signal was received from the field for those devices.
When weighted by precision, some improvements in
precision and F1 scores are observed, with minimal changes
in accuracy scores. This demonstrates how the model can be
tuned to achieve business-specific objectives. Note that the
recall is very high when weighted against accuracy, but
decreases when using precision, as shown in Figure 2. This is
because, as the focus is on reducing false positives, false
negatives also increase, leading to a reduced recall value.
This is likely due to the non-linear separability of classes on
these features. While the focus here is on creating a simple
and computationally inexpensive classifier, changing the
classification metrics used to weight the simple classifiers has
been shown to be sufficient for this purpose, and no
exploration of non-linear classification was conducted.

Test Results - Weighted on Accuracy
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5.2. Layer 2: Root Cause Classification Performance

A simple neural network was used for this layer, utilizing the
last 10 days of device data for each feature instead of
snapshot metrics. The multivariate time series data was
converted to a univariate stream of information and provided
as input to the neural network. Only devices that were known
failures were used to train this 4-layer model. The reduced
number of layers was picked to avoid overfitting the data. An
additional 108 devices were removed from this model due to
known rare failure modes. These removals would have
unnecessarily increased the model's complexity with
additional low-value classes. Although the data set is large
(2,809), it is somewhat limited due to the wide variety of
failures observed in the field. Each class in this model has a
distinct signature of failure. For example, “Battery” is a
general classification for all battery-related problems;
however, loss of battery capacity is only one of the many
ways that could result in this label. It could also be due to
repeated FW loops getting stuck or other subsystem
interactions. There is high confidence in the labels, since a
majority of these devices were physically screened to identify
the root cause. Despite this, the classification metrics are
likely low due to the limited data used to train the model and
the limited time series information incorporated into the
neural network. Devices experience cumulative degradation
of their hardware and software, which may result in failure.
Repeated exposure to stress is a significant cause of the
majority of device failures in the field. The 10-day data
provides a limited view of all the stressors to which the device
was exposed.

Table 2. Predicted versus actual performance (Confusion Matrix)

of Layer 2
Accuracy Precision Recall Fl Predicted
. . . . System | Water
Figure 1. Classifier results weighted on accuracy ACTUAL | Battery | Firmware | GPS P}:)wer Ingress Total
Test Results - Weighted on Precision Battery 270 7 0 189 5 471
o] = T T Firmware 0 1019 | 0 141 0| 1160
GPS 17 0 0 89 1 107
0.8 1
System 364 0 0 592 5 961
l Water 66 o] o 48 5| 119
0.6 1 Ingress
Total 717 1026 0 1059 16
0.4 4
The mean accuracy for this model was 66.7%. Although low,
02 1 the classified labels themselves provide several observations.
Precision and recall were highest for firmware issues,
whereas GPS classification performed the worst. This could
0.0 — ° © be because, while the most recent firmware information is

Accuracy Precision Recall Fl1

Figure 2. Classifier results weighted on precision

sufficient for detecting firmware issues, GPS issues are likely
intermittent, and a 10-day historical view is likely insufficient
to detect those issues. Water ingress issues are challenging to
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detect using data independent of model type, as water can
impact different subsystems based on installation location
and user function, resulting in both low precision and recall,
and potentially leading to high misclassification rates.

6. DISCUSSION

The final model metrics for the tuned Layer 1 were 94%
accuracy, 67% precision, and 84% recall across the test sets.
This model resulted in high values on all measure
classification metrics. However, the model is designed in a
way that, in the event of unbalanced values, tuning is simple
and computationally inexpensive. It also renders itself well in
cases where finding the result of each of these cases and
understanding the data distribution better is required.

Table 3. Layer Two Performance

Feature Precision | Recall
Battery 37.6 573
Firmware 99.2 87.8
GPS 0 0
System Power 55.5 61.2
Water Ingress 313 41.6

Having control over the tuning of these weights is beneficial
because it ensures that the outcome of the failure
classification is helpful for both the application and the
business use case. This approach also eliminates the
limitation of needing to identify the correct root cause before
realizing value. Future evaluations will benchmark stage-
level outputs and the end-to-end system to quantify both
incremental and overall value.

Layer 2 achieved only moderate performance, with 66%
accuracy. This is partly because identifying particular
subsystems that failed is complex, requiring a historical view
of time series data from different sensors on the device.
However, only 10 days of data were used in this work.
Furthermore, using RNNs or CNNs that possess temporal
memory and local pattern detection capabilities is expected
to significantly improve the performance of this layer. In
addition to architectural enhancements, Layer 2 will be
rigorously benchmarked against a linear classifier and a
prototype-based classifier on the same feature set to
substantiate its incremental value and delineate operating
regimes where it wins or loses.

These results suggest that although the subsystem metrics
used (battery voltage, SoC temperature, and LTE
performance) are directionally useful, they lack the necessary
granularity and separability to reliably assign failure domains
in all cases.

Additionally, models in both Layers 1 and 2 assume that
devices are either functional or failed. While there is a

reliable signal for failed devices in the field, such as customer
complaints, warranty exchanges, or complete inactivity of
devices, there are often unknown devices that are partially
functional, with some subsystems failing. While these are
assumed to be functional for these models in both layers,
considering data as partially labelled will significantly
improve the models, especially for Layer 2, which is expected
to detect failed subsystems.

Although the model showed no signs of overfitting,
expanding the dataset and refining the feature-label
alignment would likely improve the overall model's
generalization.

In summary, the experiment confirms that a multi-layered
classification structure, with system-level detection followed
by subsystem-guided diagnosis, offers a practical and
interpretable approach to fault identification. While Layer 1
is production-ready in its current form, Layer 2 reveals
several opportunities for refinement in labeling, feature
development, and evaluation strategy. These insights lay the
groundwork for the next phase of system improvement and
model generalization. Planned baselines for Layer 1 include
head-to-head comparisons with logistic regression and
XGBoost to contextualize performance. Results will be
reported at the layer level and for the whole pipeline, with
standardized win/loss analyses to demonstrate incremental
gains from each stage and the aggregate benefit of the overall
system.

7. CONCLUSION

This paper introduces a fault identification framework that
employs a multi-layered classification approach, grounded in
system-level metrics and subsystem insights. The design
decouples fault detection from diagnosis, allowing each to be
optimized independently and aligned with operational
priorities. The first classification layer focused on identifying
whether a device had failed, demonstrating high reliability
with 94% accuracy and substantial precision—recall balance.
This layer successfully leveraged lightweight features and
derived metrics to maximize separation between functional
and non-functional devices while minimizing false positives.

A core innovation in this framework is the use of application-
driven classifier weighting, where performance metrics such
as accuracy, precision, or recall are explicitly used to tune
classification behavior. This method supports operational
decision-making by aligning algorithmic decisions with the
cost structure and risk tolerance of the field environment.

While Layer 1 is suitable for deployment in systems requiring
high-confidence failure identification, Layer 2 offers
directional guidance but would benefit from additional
refinement. Future development will focus on several areas:

e Incorporating more granular failure categories, including
a distinct firmware class
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e Enhancing feature sets to capture diagnostic signals and
temporal context better

e  Addressing class imbalance through dataset expansion
or rebalancing techniques

e Improving label fidelity through deeper investigation of
failure progression and symptoms

Although the experimental results were derived from
telematics devices, the methodology is broadly applicable to
other connected systems, including industrial, infrastructure,
and embedded IoT environments. The framework's
modularity and interpretability make it suitable for scaling
across platforms and evolving with system complexity.
Ultimately, this work lays the foundation for data-driven,
system-aware fault identification that strikes a balance
between sensitivity, scalability, and actionable insights.
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