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ABSTRACT 

This paper presents a novel framework for IoT device fault 

detection, combining meta-algorithmic decision logic with a 

neural network classifier for efficient failure analysis. 

Utilizing system-level data, the methodology employs a 

multi-layered architecture to classify devices as either failed 

or non-failed and identify the root cause, whether hardware, 

software, or firmware. The first layer implements a meta-

classifier that integrates multiple lightweight algorithms 

weighted by application-specific criteria such as accuracy or 

recall. This ensemble approach enhances fault detection by 

utilizing high-level system metrics. The second layer 

introduces a neural network trained on subsystem-specific 

features, such as power metrics and diagnostics, to infer the 

most probable root cause. This structure enhances the 

accuracy of failure prediction while improving the 

interpretability of device failures and their potential root 

causes. Demonstrated on real-world telematics devices 

collecting GPS data, the framework addresses the need for 

scalable diagnostic methods in high-volume environments. 

By minimizing unnecessary returns and streamlining 

workflows, this approach delivers practical value in field 

operations. The modular two-tiered architecture allows for 

adaptability to various device types and fault modes. Future 

work will explore model generalization across different 

deployments and enhance root cause analysis through 

structured, data-driven methods to improve operational 

reliability of the framework. 

1. INTRODUCTION 

As connected systems become more integral to critical 

infrastructure, logistics, and operational automation, the 

ability to reliably detect and diagnose device faults at scale 

has emerged as a core requirement in system reliability 

engineering (Leite, Andrade, Rativa, & Marciel, 2025). 

Modern embedded and internet-of-things (IoT) systems, 

often deployed in high-volume, distributed environments, are 

expected to operate autonomously for extended periods of 

time. Despite typically low failure rates, the operational and 

economic cost of missed failures, or the unnecessary removal 

of healthy devices, can be substantial (Stergiopoulos, 

Kotzanikolaou, Theocharidou, Lykou, & Gritzalis, 2016). 

This challenge is exacerbated by limited visibility into 

subsystem-level degradation and the complexity of 

interdependent failure mechanisms (Sinha & Lee, 2024). 

Traditional approaches to fault detection have primarily 

relied on either single-metric, rule-based heuristics or 

monolithic classifiers trained on narrow feature sets (Gertler, 

2017). These techniques often lack both the interpretability 

and modularity required for deployment in evolving system 

architectures. They frequently assume static behavior and fail 

to consider the nuanced trade-offs between different 

performance metrics, such as accuracy, precision, and recall, 

which are crucial in real-world decision-making contexts. 

That is, typical fault detection approaches lack applicability 

in the era of extreme complexity and interdependency. 

This paper presents a structured fault detection and diagnosis 

(FDD) framework that integrates meta-algorithmic decision 

logic with a neural network-based classifier to deliver robust 
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and interpretable device health assessments. The 

methodology employs a multi-layered classification 

architecture rooted in systems thinking, where the first layer 

determines the device failure status using system-level 

metrics, and a second layer identifies the subsystem from 

which the failure originates. This modular approach supports 

both high-confidence failure detection and granular root 

cause insights while remaining adaptable to data constraints 

and deployment variability. 

The first classification layer employs a custom-weighted 

meta-classifier that integrates multiple lightweight 

algorithms. These algorithms are weighted not solely by 

accuracy, but by application-aligned metrics such as 

precision or recall, depending on the business or safety 

context. This enables the system to prioritize operational 

objectives, such as minimizing false negatives in safety-

critical applications or false positives in return-sensitive 

logistics. 

The second layer introduces a neural classifier trained on 

features extracted from subsystems, including battery 

voltage, system-on-chip (SoC) diagnostics, and LTE module 

behavior. In the current implementation, this classifier uses 

time series metrics to capture interactions between 

subsystems and support root cause inference. The 

architecture is designed to be extendable, with future 

iterations built on recurrent or convolutional neural networks 

(RNN/CNN) to process raw time-series data directly and 

utilize the complete available dataset, including partially 

labeled data, thereby enhancing the system’s ability to detect 

intermittent and dynamic failures (Jung, Han, & Choi, 2021). 

This paper develops the approach and demonstrates its utility 

on telematics devices used in vehicular environments. 

However, the methodology is broadly applicable to any 

system requiring fault detection and identification, 

particularly those operating at scale with complex subsystem 

interactions and limited access to labeled failure data. By 

structuring failure detection into two stages and optimizing 

each layer for interpretability, adaptability, and diagnostic 

value, this framework enables a scalable path toward more 

autonomous and data-driven reliability management. 

The remainder of this paper is organized as follows: Section 

2 reviews related work in fault detection, ensemble 

classification, and neural diagnostic systems. Section 3 

formulates the fault detection problem and outlines the 

system constraints. Section 4 describes the layered 

methodology and feature engineering process. Section 5 

presents experimental results based on a real-world dataset. 

Section 6 discusses model insights, unexpected findings, and 

limitations. The paper concludes with Section 7. 

2. RELATED WORKS 

The application of Prognostics and Health Management 

(PHM) and FDD techniques to IoT systems has become an 

increasingly critical focus as connected devices proliferate 

across industrial, commercial, and infrastructure 

environments. IoT systems present unique challenges for 

PHM due to their distributed architecture, constrained 

resources, variable data quality, and limited access to 

physical inspection. These factors demand FDD strategies 

that are robust, lightweight, and capable of operating under 

partial observability and intermittent connectivity. 

Several reviews have emphasized the need for tailored FDD 

approaches in IoT-enabled environments. Leite et al. (2025) 

and Abid, Khan, and Iqbal (2021) outline the growing 

complexity in deploying traditional FDD methods in modern 

cyber-physical systems, highlighting that standard diagnostic 

models often fail to generalize across the heterogeneous and 

dynamic conditions seen in IoT deployments. Chi, Dong, 

Wang, Yu, and Leung (2022) further note that many IoT 

systems lack sufficient labeling or historical fault data, 

making knowledge-based and unsupervised FDD more 

attractive despite their limitations in interpretability and 

domain portability. 

The scale and variability of IoT deployments have led 

researchers to explore distributed and hierarchical fault 

identification architectures. Marino, Wisultschew, Otero, 

Lanza-Gutierrez, Portilla, and de la Torre (2021) introduced 

a distributed machine-learning system that adapts FDD 

quality based on the context and resource constraints of edge 

devices. Similarly, Aldaajeh, Harous, and Alrabaee (2021) 

proposed FDD design tactics that optimize embedded system 

efficiency, striking a balance between computational load 

and diagnostic performance. 

AI-enabled fault diagnosis has become a dominant trend in 

IoT FDD, as explored in surveys by Nguyen, Medjaher, and 

Tran (2023) and Lo, Flaus, and Adront (2019). However, 

deployment remains challenging due to data sparsity and 

system variability. Sinha and Lee (2024) argue that despite 

significant advances in lab-scale model performance, field 

deployment in IoT systems is hindered by unresolved issues 

in lifecycle management, domain shift, and model 

explainability. This is reinforced by real-world studies such 

as that of Dzaferagic, Marchetti, and Macaluso (2022), who 

address sensor dropout in industrial IoT (IIoT) through data 

imputation using generative adversarial networks, enhancing 

fault classification resilience under missing data conditions. 

Edge-focused FDD strategies have also gained traction, 

particularly in situations where cloud latency or data 

bandwidth make centralized PHM impractical. Lu, Lu, An, 

Wang, and He (2023) and Hadi, Hady, Hasan, Al-Jodah, and 

Humaidi (2023) explore edge-deployable diagnostic 

pipelines and AutoML techniques to reduce model 
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development burden while enabling responsive diagnostics. 

These strategies facilitate fault detection to be colocated with 

the device, improving latency and reliability. 

Other works have explored domain-specific FDD 

implementations in IoT systems such as solar energy 

(Balakrishnan, Raja, Sudhakar, & Janani, 2023), smart grids 

(Al Mhdawi & Al-Raweshidy, 2020), marine equipment 

(Orhan & Celik, 2024), and industrial robotics (Raouf, 

Kumar, Lee, & Kim, 2023). These studies consistently 

demonstrate that IoT system characteristics include limited 

telemetry, physical inaccessibility, and variability in fault 

expression. These characteristics challenge traditional FDD 

approaches; therefore, applying FDD to IoT systems requires 

rethinking how FDD models are trained, validated, and 

deployed. Lavanya, Prasanth, Jayachitra, and Shenbagarajan 

(2021) exemplify this by developing a tuned classification 

method for FDD in wireless sensor network (WSN)-based 

IoT systems that copes with signal heterogeneity and fault 

ambiguity. 

Recent literature also emphasizes that classification accuracy 

alone is insufficient as a benchmark for PHM in IoT contexts. 

Fault models must be tuned to prioritize specific error 

tradeoffs depending on operational cost structures, for 

instance, minimizing false positives in logistics (Seabra, 

Costa, & Lucena, 2016) or false negatives in safety-critical 

controls (Kim & Katipamula, 2017). Researchers have begun 

adopting cost-sensitive or meta-learning models to manage 

this, though generalized frameworks are still lacking. 

Overall, the state of FDD for IoT systems reflects a field in 

active transition. Early rule-based approaches and expert-

defined diagnostics are giving way to learning-based and 

context-aware systems; however, new constraints imposed 

by the IoT environment, such as imbalanced data, missing 

signals, and energy constraints, necessitate methodologies 

that evolve beyond traditional assumptions. The existing 

body of work has laid the basis for foundational approaches, 

but few offer unified, modular architectures capable of 

adapting across deployments, fault types, and operational 

priorities. 

3. PROBLEM FORMULATION 

Fault detection in embedded and connected systems presents 

a challenging trade-off between detection sensitivity and 

operational precision (Aldaajeh, Harous, & Alrabaee, 2021). 

While failures may occur infrequently, the consequences of 

undetected faults or unnecessary field actions can be 

significant (Smith, 2021). This is particularly true in large-

scale deployments where even a small failure rate translates 

into thousands of potentially impacted devices, and where 

operational decisions must be made with limited diagnostic 

access to the physical system (Lwakatare, Raj, Crnkovic, 

Bosch, & Olsson, 2020). 

The classification task addressed in this work involves two 

critical objectives: 

1. Determining whether a device has failed, based on 

system-level performance indicators. 

2. Identifying the most probable root cause domain (e.g., 

hardware or software), based on observable subsystem 

behaviors. 

The motivating dataset for this study is drawn from 

proprietary telematics devices deployed at scale. These 

devices collect trip data via onboard GPS modules and 

transmit information over LTE networks to cloud 

infrastructure (Ghaffarpasand, Burke, Osei, Ursell, 

Chapman, & Pope, 2022). Although the annual observed 

failure rate is low (less than 1% over three years), the volume 

of deployed units yields sufficient labeled examples for 

machine learning-based fault detection. However, the general 

problem formulation applies to a wide range of IoT, 

embedded, and cyber-physical systems where devices 

operate autonomously and faults emerge through indirect 

symptoms (Smart, Grimm, & Hartzog, 2021). 

To address this classification problem, we adopt a multi-

layered approach. The first layer is responsible for high-

confidence failure detection, utilizing features that reflect 

overall system functionality, such as signal acquisition 

uptime or communication health. The second layer focuses 

on failure classification, drawing on subsystem-level data 

(e.g., battery metrics, processor diagnostics, communication 

module behavior) to infer from which subsystem the failure 

originates. In the current implementation, a limited number 

of subsystems are included: power, physical, firmware, GPS, 

and LTE connectivity. However, future work will aim to 

include more subsystems. 

This layered structure is motivated by practical 

considerations. It is more critical to correctly identify that a 

device has failed than to diagnose the underlying cause 

immediately (Okes, 2019). Misclassifying a failed device as 

functional could allow for continued degradation and 

customer impact. Conversely, incorrectly labeling a 

functional unit as failed incurs unnecessary return costs and 

logistics overhead (Wilson & Goffnett, 2022). By decoupling 

detection from diagnosis, the model is able to prioritize early, 

conservative identification of failure while preserving 

interpretability and adaptability in downstream classification. 

Additionally, this structure facilitates scalability: as richer 

telemetry or more granular tagging becomes available, the 

diagnostic classifier can be retrained or replaced without 

altering the upstream detection layer. This modularity 

enables the deployment of the framework across various 

system types, making it suitable for any operational 

environment where low-visibility failures, high-volume field 

data, and domain-specific performance constraints define the 

fault detection challenge. 
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4. METHODOLOGY  

4.1. Framework Architecture and Design Philosophy 

The proposed two-layer classification framework is designed 

to strike a balance between fault detection sensitivity and 

diagnostic resolution. The layered design is rooted in systems 

thinking, separating fault detection (Layer 1) from fault 

diagnosis (Layer 2) to address each task with appropriate 

methods and data representations. 

Layer 1 performs binary classification to determine if a 

device has failed. It utilizes a lightweight, interpretable meta-

algorithmic decision engine that relies on system-level 

indicators and derived metrics (Simske, 2013). Layer 2 

focuses on identifying the most likely root cause domain —

power, connectivity, GPS, firmware, or hardware-related 

issues — through a neural classifier trained on subsystem-

specific features. 

This separation enhances scalability and interpretability. If a 

new diagnostic signal becomes available or if the 

classification priority changes (e.g., from minimizing false 

positives to maximizing detection coverage), only the 

corresponding layer needs to be adjusted. This separation 

offers multiple advantages, as it decouples critical detection 

sensitivity from the less reliable but still valuable diagnostic 

inference; it improves modularity, allowing updates to one 

layer without affecting the other; and it supports 

interpretability, enabling Layer 1 to be tuned to minimize 

high-cost misclassifications (e.g., false negatives), while 

Layer 2 can evolve as richer features or labels become 

available. The framework is designed to adapt across 

deployments with different system architectures, failure 

modes, datasets, and/or operational goals. 

4.2. Data Sources and Preprocessing 

Data is collected from deployed telematics devices, 

comprising both system-level metrics, subsystem-specific 

telemetry and user interactions: 

• System-level metrics: LTE uptime (%) GPS successful 

fixes (%), system reboots; 

• Subsystem metrics: Battery voltage, SoC temperature, 

connectivity statistics; and 

• User metrics: Total time in field, time since last activity, 

and other user interactions like button presses, user 

functional modes like frequency of check-ins. 

To simplify the classification process and address constraints 

in real-time systems, telemetry streams are transformed into 

snapshot metrics (e.g., averages, uptime ratios, etc.). This 

approach avoids the complexity of processing time-series 

data and enhances the interpretability of any model built upon 

it, although this tradeoff is discussed in Section 6. Converting 

time-series telemetry data into snapshot metrics reduces the 

dimensionality of the problem space. In this work, the 

following transformations are applied for each device: 

• Statistical aggregation: e.g., mean uptime over a rolling 

window; 

• Derived features: e.g., battery voltage × SoC temp, LTE 

uptime ÷ GPS uptime; 

• Normalization: Features are z-scaled or normalized 

between [0, 1] as appropriate; and 

• Outlier filtering: Extreme values are removed based on 

percentile or domain heuristics 

Dataset Construction: Devices are labeled as failed, along 

with a possible root cause based on customer complaints, 

return analysis, and fault investigation. The failure 

information is used in layer one, and the root cause is in Layer 

2. While there are no clearly labeled devices as functional, 

any device that has not failed is considered functional. While 

this may introduce error in our dataset, where devices labeled 

as functional have failed in the field, this is expected to be 

very small, given the already low rate of failure. The dataset 

was randomly partitioned into training (80%) and testing 

(20%) sets.  

System-level device performance metrics, subsystem 

snapshot metrics, and user interaction metrics were used in 

the model. 

• LTE uptime (%) - percent of time connected to the 

network 

• GPS Fix – percent of GPS fixes that resulted in a valid 

location 

• Reboots – total number of power reboots the system 

underwent, both initiated by a user and by the firmware 

to reboot the system 

• Total GPS check-ins attempted by the device 

• Battery voltage levels 

• Total time the device was active in the field 

• Maximum number of button press reboots initiated by 

the users in a day 

• Functional mode of the device – check-in frequency 

The model was initially trained using both the original and 

normalized features. Eventually, features were selected based 

on their accuracy in prediction and their significance in 

determining the classification of labels. A total of 2916 failed 

devices were used in the dataset, and 3000 functional devices 

were randomly selected from the larger population of 

220,000 devices to train the model. Note that the features on 

functional devices exhibited very low variance (see results in 

Figures 1 and 2), and any random selection of 3000 devices 

was representative of the entire field population. While the 

model is independent of the sample size of each class (if there 

are enough to represent the field population), this sampling 

was done to minimize the effect of failed devices that are 
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mislabeled as functional. This was done instead of removing 

outliers in the features, as a number of these outliers 

represented actual functional or field failures. 

4.3. Layer 1 – Device Failure Detection 

Layer 1 is optimized to identify whether a device is exhibiting 

failure symptoms by utilizing system-wide indicators. It uses 

a lightweight, interpretable meta-algorithmic decision engine 

(Simske, 2013) that identifies the critical point separating the 

two classes in each feature. Each simple classifier finds a 

critical point for each feature that divides the feature set into 

values closer to the mean value of its corresponding class 

label. These simple classifiers are weighted based on the 

chosen classification metric, giving more importance to 

critical point thresholds that contribute to a higher 

classification metric. This results in the label for the 

corresponding device being marked as either 'failed' or 

'functional'. These indicators are both accessible and 

interpretable in large-scale deployments, making the solution 

deployable with minimal computation. 

Classification Method: A meta-algorithmic decision model is 

employed, which combines multiple lightweight classifiers 

or decision rules, each evaluated based on its performance 

with respect to selected classification metrics (see Section 

4.5). The output is a binary classification: 

• Class A: Device has failed 

• Class B: Device is functional 

4.4. Layer 2 – Root Cause Domain Classification 

For devices classified as failed, Layer 2 attempts to infer the 

subsystem at fault. The classifier used is a shallow neural 

network, chosen for its ability to capture non-linear 

interactions while remaining computationally light. 

The feature set includes the same features as Layer 1, but 

instead of a snapshot, it uses the last 10 days' time series for 

each corresponding feature. The result of Layer 2 is to find 

the subsystem at fault, given that Layer 1 resulted in a failure 

classification. The result of this layer is one of the following 

labels: power, physical, firmware, GPS, and LTE 

connectivity.  

4.5. Meta-Algorithmic Classifier Weighting 

A novel contribution of this framework is the application-

driven weighting of classifiers in Layer 1. Instead of 

optimizing solely on accuracy, the framework allows weights 

to be tuned based on precision, recall, or F1-score, depending 

on the operational consequences of each type of error. In 

Table 1, examples of organizational impact are shown, 

illustrating how each metric can be applied.  

The meta-classifier calculates classifier influence using a 

weighting vector derived from historical performance across 

these metrics. For instance, in a high-precision deployment, 

classifiers producing fewer false positives are weighted more 

heavily, even if their overall accuracy is lower. This 

adaptability enables the model to be re-optimized 

dynamically in response to deployment changes, without 

requiring retraining of the underlying classifiers. 

Table 1. Rationale for Metric-Based Weighting 
Metric Prioritized When... Example Contexts 

Accuracy 
All error types are 

equally costly 

General monitoring 

in non-critical 
systems 

Precision 

False positives must be 
avoided (e.g., avoid 

returning healthy 

devices) 

Logistics/cost-

sensitive operations 

Recall 

False negatives are 

unacceptable (e.g., 

missing a failed safety-
critical device) 

Vehicle control, 

healthcare, or safety 

systems 

F1-Score 

Balanced treatment of 
both precision and recall 

when tradeoffs are 

unclear 

Early-stage models 
with limited ground 

truth 

 

The Benefits of this approach include operational alignment, 

where model decisions reflect real-world impact. Modularity 

is facilitated by allowing weights to be updated 

independently of feature sets or classifier design. 

Interpretability is built by tracing each classifier’s 

contribution to a performance rationale. 

4.6. Evaluation Strategy 

Performance metrics for both layers include accuracy, 

precision, recall, F1-score, and a confusion matrix (a 

multiclass version is used for Layer 2). Additional robustness 

tests involve T-tests to assess distributional drift between 

training and testing data. 

5. RESULTS 

5.1. Layer 1: Fault Detection Performance 

All the features listed in Section 4.2, along with normalized 

and derived metrics, were initially used in the model. 

However, only four features were significant in classifying 

the devices: (1) time of the last activity, (2) battery levels, (3) 

total system reboots, and (4) the firmware version the device 

was running. Figures 1 and 2 show the results on 

classification metrics across multiple sample sets of 3,000 

functional devices from a population of 220,000 devices. The 

results discussed in this layer are based on 20 such samples. 

The critical points for each classifier across these samples had 

a difference of < 10% (weighted for each feature), confirming 

that the samples were in fact representative of the field 

population.  
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As shown in Figure 1, the accuracy of the test data remained 

high throughout. However, when weighted on accuracy, the 

precision score is low. This may be due to failed devices 

being incorrectly marked as functional, likely because no 

failure signal was received from the field for those devices. 

When weighted by precision, some improvements in 

precision and F1 scores are observed, with minimal changes 

in accuracy scores. This demonstrates how the model can be 

tuned to achieve business-specific objectives. Note that the 

recall is very high when weighted against accuracy, but 

decreases when using precision, as shown in Figure 2. This is 

because, as the focus is on reducing false positives, false 

negatives also increase, leading to a reduced recall value. 

This is likely due to the non-linear separability of classes on 

these features. While the focus here is on creating a simple 

and computationally inexpensive classifier, changing the 

classification metrics used to weight the simple classifiers has 

been shown to be sufficient for this purpose, and no 

exploration of non-linear classification was conducted.  

 

Figure 1. Classifier results weighted on accuracy 

 
Figure 2. Classifier results weighted on precision 

5.2.  Layer 2: Root Cause Classification Performance 

A simple neural network was used for this layer, utilizing the 

last 10 days of device data for each feature instead of 

snapshot metrics. The multivariate time series data was 

converted to a univariate stream of information and provided 

as input to the neural network. Only devices that were known 

failures were used to train this 4-layer model. The reduced 

number of layers was picked to avoid overfitting the data. An 

additional 108 devices were removed from this model due to 

known rare failure modes. These removals would have 

unnecessarily increased the model's complexity with 

additional low-value classes. Although the data set is large 

(2,809), it is somewhat limited due to the wide variety of 

failures observed in the field. Each class in this model has a 

distinct signature of failure. For example, “Battery” is a 

general classification for all battery-related problems; 

however, loss of battery capacity is only one of the many 

ways that could result in this label. It could also be due to 

repeated FW loops getting stuck or other subsystem 

interactions. There is high confidence in the labels, since a 

majority of these devices were physically screened to identify 

the root cause. Despite this, the classification metrics are 

likely low due to the limited data used to train the model and 

the limited time series information incorporated into the 

neural network. Devices experience cumulative degradation 

of their hardware and software, which may result in failure. 

Repeated exposure to stress is a significant cause of the 

majority of device failures in the field. The 10-day data 

provides a limited view of all the stressors to which the device 

was exposed. 

Table 2. Predicted versus actual performance (Confusion Matrix) 
of Layer 2 

 Predicted  

ACTUAL Battery Firmware GPS 
System 

Power 

Water 

Ingress 
Total 

Battery 270 7 0 189 5 471 

Firmware 0 1019 0 141 0 1160 

GPS 17 0 0 89 1 107 

System 364 0 0 592 5 961 

Water 

Ingress 
66 0 0 48 5 119 

Total 717 1026 0 1059 16  

 

The mean accuracy for this model was 66.7%. Although low, 

the classified labels themselves provide several observations. 

Precision and recall were highest for firmware issues, 

whereas GPS classification performed the worst. This could 

be because, while the most recent firmware information is 

sufficient for detecting firmware issues, GPS issues are likely 

intermittent, and a 10-day historical view is likely insufficient 

to detect those issues. Water ingress issues are challenging to 
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detect using data independent of model type, as water can 

impact different subsystems based on installation location 

and user function, resulting in both low precision and recall, 

and potentially leading to high misclassification rates.  

6. DISCUSSION 

The final model metrics for the tuned Layer 1 were 94% 

accuracy, 67% precision, and 84% recall across the test sets. 

This model resulted in high values on all measure 

classification metrics. However, the model is designed in a 

way that, in the event of unbalanced values, tuning is simple 

and computationally inexpensive. It also renders itself well in 

cases where finding the result of each of these cases and 

understanding the data distribution better is required. 

Table 3. Layer Two Performance 

Feature Precision Recall 

Battery 37.6 57.3 

Firmware 99.2 87.8 

GPS 0 0 

System Power 55.5 61.2 

Water Ingress 31.3 41.6 

 

Having control over the tuning of these weights is beneficial 

because it ensures that the outcome of the failure 

classification is helpful for both the application and the 

business use case. This approach also eliminates the 

limitation of needing to identify the correct root cause before 

realizing value. Future evaluations will benchmark stage-

level outputs and the end-to-end system to quantify both 

incremental and overall value. 

Layer 2 achieved only moderate performance, with 66% 

accuracy. This is partly because identifying particular 

subsystems that failed is complex, requiring a historical view 

of time series data from different sensors on the device. 

However, only 10 days of data were used in this work. 

Furthermore, using RNNs or CNNs that possess temporal 

memory and local pattern detection capabilities is expected 

to significantly improve the performance of this layer. In 

addition to architectural enhancements, Layer 2 will be 

rigorously benchmarked against a linear classifier and a 

prototype-based classifier on the same feature set to 

substantiate its incremental value and delineate operating 

regimes where it wins or loses. 

These results suggest that although the subsystem metrics 

used (battery voltage, SoC temperature, and LTE 

performance) are directionally useful, they lack the necessary 

granularity and separability to reliably assign failure domains 

in all cases. 

Additionally, models in both Layers 1 and 2 assume that 

devices are either functional or failed. While there is a 

reliable signal for failed devices in the field, such as customer 

complaints, warranty exchanges, or complete inactivity of 

devices, there are often unknown devices that are partially 

functional, with some subsystems failing. While these are 

assumed to be functional for these models in both layers, 

considering data as partially labelled will significantly 

improve the models, especially for Layer 2, which is expected 

to detect failed subsystems. 

Although the model showed no signs of overfitting, 

expanding the dataset and refining the feature-label 

alignment would likely improve the overall model's 

generalization. 

In summary, the experiment confirms that a multi-layered 

classification structure, with system-level detection followed 

by subsystem-guided diagnosis, offers a practical and 

interpretable approach to fault identification. While Layer 1 

is production-ready in its current form, Layer 2 reveals 

several opportunities for refinement in labeling, feature 

development, and evaluation strategy. These insights lay the 

groundwork for the next phase of system improvement and 

model generalization. Planned baselines for Layer 1 include 

head-to-head comparisons with logistic regression and 

XGBoost to contextualize performance. Results will be 

reported at the layer level and for the whole pipeline, with 

standardized win/loss analyses to demonstrate incremental 

gains from each stage and the aggregate benefit of the overall 

system. 

7. CONCLUSION 

This paper introduces a fault identification framework that 

employs a multi-layered classification approach, grounded in 

system-level metrics and subsystem insights. The design 

decouples fault detection from diagnosis, allowing each to be 

optimized independently and aligned with operational 

priorities. The first classification layer focused on identifying 

whether a device had failed, demonstrating high reliability 

with 94% accuracy and substantial precision–recall balance. 

This layer successfully leveraged lightweight features and 

derived metrics to maximize separation between functional 

and non-functional devices while minimizing false positives. 

A core innovation in this framework is the use of application-

driven classifier weighting, where performance metrics such 

as accuracy, precision, or recall are explicitly used to tune 

classification behavior. This method supports operational 

decision-making by aligning algorithmic decisions with the 

cost structure and risk tolerance of the field environment. 

While Layer 1 is suitable for deployment in systems requiring 

high-confidence failure identification, Layer 2 offers 

directional guidance but would benefit from additional 

refinement. Future development will focus on several areas: 

• Incorporating more granular failure categories, including 

a distinct firmware class 
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• Enhancing feature sets to capture diagnostic signals and 

temporal context better 

• Addressing class imbalance through dataset expansion 

or rebalancing techniques 

• Improving label fidelity through deeper investigation of 

failure progression and symptoms 

Although the experimental results were derived from 

telematics devices, the methodology is broadly applicable to 

other connected systems, including industrial, infrastructure, 

and embedded IoT environments. The framework's 

modularity and interpretability make it suitable for scaling 

across platforms and evolving with system complexity. 

Ultimately, this work lays the foundation for data-driven, 

system-aware fault identification that strikes a balance 

between sensitivity, scalability, and actionable insights. 
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