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ABSTRACT 

As airplane components degrade over time, airplane service 

organization and airline maintenance team need to 

collaborate on performing component failure prognostics to 

improve operation efficiency. In particular, the airplane 

service organization analyzes flight/sensor data and sends 

alerts to the airline maintenance team upon identifying a 

potential failure. In response, the airline maintenance team 

conducts inspections and replaces the component if 

necessary. In this procedure, it is crucial to determine the 

timing for sending alerts: late alerts leave operators no time 

to avoid schedule interruptions with huge operation costs, 

while early alerts lead to unnecessary inspections and 

significant maintenance burden. Current solutions rely on 

heuristics and/or manual engineering reviews to make 

decisions on whether and when to send alerts, which is 

difficult to scale and adapt. To address this limitation, we 

developed a deep reinforcement learning-based approach to 

automate the prognostics procedure and enhance accuracy of 

alert timing. A case study on Air Cycle Machine (ACM) 

prognostics was conducted to demonstrate the feasibility and 

effectiveness of our approach. 

1. INTRODUCTION 

 As airplane components degrade over time, airplane service 

organizations (e.g., Boeing Global Services (BGS)) and their 

airline customers need to collaborate on airplane components 

failure prognostics to replace/maintain components 

proactively to improve operation efficiency and reduce 

maintenance cost. In particular, airplane components are 

often mounted with sensors to monitor their operational 

states, the airline maintenance team sends flight records that 

include sensor information and service records that include 

maintenance history to the airplane service organization. By 

analyzing these flight and service records, the airplane 

service organization predicts possible component failures. 

Upon identifying an impending component failure, the 

airplane service organization promptly sends alerts to the 

airline maintenance team. In response, the airline 

maintenance team conducts inspections and maintenance on 

the component and replaces it if necessary. This airplane 

component failure prognostics procedure is illustrated in 

Figure 1.  

 

Figure 1. Airplane components failure prognostics. 

 

In this airplane components failure prognostics procedure, 

machine learning or engineering-based models can be used to 

make a prediction of airplane component failure. However, it 

is crucial for the airplane service organization to determine 

when to send alerts to airlines given the failure predictions. 

Late alerts may cause schedule interruptions or even 

grounding of the airplane waiting for parts. Early alerts can 
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bring unnecessary inspections that lead to significant 

maintenance burden.  

In the research literature, most airplane component failure 

prognostics methods predict the status of the airplane 

components based on the sensor or flight data using data 

driven model, e.g., machine learning or probabilistic models. 

Alerts will be sent upon a potential component failure 

prediction. These methods ignore the interactions between 

the airplane service organization and their airline customers 

such as historical alert timings, inspection results which 

include important information about airplane component 

operation states as well as the prognostics procedure status. 

The industry solutions rely on heuristic rules and engineering 

reviews, which require significant manual efforts and are 

difficult to scale or adapt.  

To improve the efficiency of airplane components failure 

prognostics, we developed a deep reinforcement learning-

based approach that automates the full cycle of prognostics 

procedure and enhances accuracy of alert timing. 

Specifically, we first built probabilistic models from real 

flight and service records to simulate airline responses to 

alerts and component state transitions, thereby enabling a 

full-cycle prognostics simulation. We then used a Long 

Short-Term Memory (LSTM) neural network model to 

represent the alert policy that outputs alerts decisions based 

on flight records and service records. By running the alert 

policy in simulated prognostics procedure, the policy is 

trained by policy learning algorithms based on feedback 

received from the simulation. We investigated two policy 

learning algorithms including Deep Q Network (DQN) 

algorithm and its variant Double Deep Q Network (DDQN) 

with Prioritized Replay Buffer (PRB) to learn the alert policy. 

Once trained, the policy can be deployed to automatically 

make alert decisions by processing incoming flight records 

and service records. Additionally, the alert policy parameters 

can be fine-tuned to adapt to new airplane component 

features and evolving airline operations. We conducted a case 

study on ACM prognostics using data from 17 airlines by 

comparing our approach to the currently deployed heuristic 

approach, which demonstrated the feasibility and 

effectiveness of our approach. 

Our main contributions are: 1) Development of a deep 

reinforcement learning-based approach to automate full cycle 

prognostic procedure and enhance alert timing accuracy. Our 

approach leverages probabilistic data modeling derived from 

real flight and service records to simulate the prognostics 

process. The approach adopts an LSTM neural network to 

represent the alert policy, which effectively captures the 

temporal features in time-series records. 2) A case study on 

ACM prognostics that validates our approach by comparing 

our approach to the currently deployed heuristic prognostics 

approach. Using real data from 17 airlines, the study provides 

valuable insights into the practical deployment of the alert 

policy and guides parameter tuning to align with operational 

requirements.  

In the rest of the paper, Section 2 reviews related work on 

airplane component prognostic and health management. 

Section 3 formulates the airplane components failure 

prognostic problem considered in this paper. A reinforcement 

learning formulation for prognostics procedure is provided in 

Section 4. Section 5 and 6 discuss alert policy learning 

algorithms, and alert policy deployment and evaluation, 

respectively. Section 7 presents the case study on ACM to 

evaluate our approach. Section 8 concludes the paper. All 

mathematical symbols used in this paper are defined in the 

Nomenclature.  

2. RELATED WORK 

The airplane component prognostic procedure typically 

consists of two stages. The first stage is to build a model to 

capture the state of airplane components and the second is to 

make failure predictions based on the model. The model used 

in the first stage can be categorized into three types including 

knowledge-based model, physical model, and data-driven 

model. The knowledge-based model uses the domain 

knowledge of the airplane component and empirical 

experience to get knowledge of airplane component 

operation state. This model requires expert knowledge or 

engineering experience and thus is inefficient and hard to 

scale. 

In the physical model-based approach, a physical model is 

built through system identification and parameter estimation 

that includes dynamics of airplane components to capture the 

state transition of airplane components. For example, 

Kulkarni, Schumann, and Roychoudhury (2018) built an 

electrochemical battery model combined with Unscented 

Kalman Filter for onboard battery monitoring and 

prognostics in electric-propulsion aircraft. The physical 

model can provide physics interpretation of the airplane 

component state transitions. However, it is hard to develop 

high-fidelity physical models for complex airplane 

components such as engines.  

Data-driven models are more favorable that allows modeling 

system transitions using data only without physics 

knowledge. Typical data-driven models include probabilistic 

models, machine learning models, reinforcement learning 

models. For example, Pidaparthi, Jacobs, Ghosh, Ravi,  

Amer, Luan, and Wang (2024) built a component level-

probabilistic model to forecast damage growth for aircraft 

engines. Dangut, Skaf, and Jennions (2021) developed a 

hybrid machine learning approach combining natural 

language processing and ensemble learning for predicting 

aircraft component failures. Hu, Miao, Zhang, Liu, and Pan 

(2021) designed a reinforcement learning driven maintenance 

strategy for airplane maintenance decision optimization 

considering future mission requirements, repair cost, etc. In 

most existing data-driven models, the model is used to make 
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predictions on the failure of airplane components or 

maintenance decisions relying on airplane component data. 

But they ignore other context information of prognostics 

procedure such as prognostics service records that include 

historical alerts, inspection time and results. In practice, 

engineers and data analysts often rely on complete context 

information including component sensor data, flight records 

and service records to make decisions on sending alerts on 

potential airplane component failure. Unlike existing data-

driven models, our deep reinforcement learning-based 

approach integrates the full-cycle context information for 

airplane component prognostics which leads to more accurate 

alert timings. 

3. AIRPLANE COMPONENT FAILURE 

PROGNOSTICS PROBLEM FORMULATION 

In this section, we describe the full cycle of airplane 

component failure prognostics and formulate the problem 

considered in this paper.  

In airplane component failure prognostics procedure, there 

are sensors mounted on airplane components such as 

accelerometers, thermocouples and so on, to monitor the 

operational status of airplane components. In addition to the 

sensor data, there are flight logs associated with airplane 

components such as registry id, number of days since the last 

removal, etc. The sensor data and flight logs are concatenated 

into flight records denoted by 𝐹(𝑡) , which are sent from 

airlines to airplane service organization. Moreover, airlines 

also share service records with the airplane service 

organization. The service records denoted by 𝑆(𝑡)  include 

maintenance history in the life cycle of an airplane 

component such as alert times, inspection times and 

corresponding inspection results.  

By analyzing flight records 𝐹(𝑡) and service records 𝑆(𝑡) at 

certain time step 𝑡 , the airplane service organization 

determines whether to send an alert to its airline customers to 

remind them of impeding component failure. More formally, 

we aim to create a model that takes flight records 𝐹(𝑡) and 

service records 𝑆(𝑡)  as inputs and outputs action 𝑎(𝑡)  ∈
{0, 1}, where 1 means sending an alert, represented as 

𝑎(𝑡)  =  𝑓(𝑆(𝑡), 𝐹(𝑡))                        (1) 

Upon receiving an alert, airlines may either ignore it or 

schedule an inspection. The probability of scheduling an 

inspection, given the current alert, flight and service records 

is modeled as 𝑃(𝑋|𝑆(𝑡), 𝐹(𝑡), 𝑎(𝑡) = 1),  where 𝑋  is a 

Bernoulli random variable to denote if an inspection is 

scheduled (X=1) or not (X=0). Due to the operational 

constraints, there is typically a delay between alert and 

inspection, represented by a continuous random variable 𝑌. 

The inspection result can be Failed or Passed. A Failed result 

indicates that the airplane component requires maintenance 

or replacement, while Passed means it is functioning 

properly. We model the inspection result as a Bernoulli 

random variable Z with failure probability P(Z∣S(t), F(t)). 

Depending on airlines’ responses upon receiving alerts and 

their following actions, there is a reward associated with the 

prognostic’s procedure. Since the flight records and service 

records capture the whole contextual information, we 

designed a reward function captured by  𝑟(𝑆(𝑡), 𝐹(𝑡), 𝑎(𝑡)). 
Our goal is to obtain an alert model that maximizes the 

accumulated reward for the life cycle of an airplane 

component, i.e., 

                        𝑚𝑎𝑥𝑓  ∑ 𝑟(𝑆(𝑡), 𝐹(𝑡), 𝑎(𝑡))𝑇
𝑡=0                  (2) 

where T is the terminal time of the life cycle of the airplane 

component. 

4. REINFORCEMENT LEARNING FORMULATION 

In this paper, we present a deep reinforcement learning-based 

approach to solving the formulated airplane component 

failure prognostics problem. We first provide a reinforcement 

learning formulation over the original problem, using a 

Markov Decision Process (MDP). In particular, MDP is 

mainly characterized by five components including state, 

action, environment transition, reward, policy, which are 

described as follows. 

4.1. State and Action 

State 𝑠(𝑡)  is the contextual information of the failure 

prognostics procedure. In our case, we define the state to be 

a time sequence of flight records and service records, denoted 

by 𝑠(𝑡)  =  [𝑆(𝑡), 𝐹(𝑡), … , 𝑆(𝑡 − 𝑁 + 1), 𝐹(𝑡 − 𝑁 + 1)], 
where 𝑁 is number of time steps of time sequence records 

and is determined based on empirical experience. As 

discussed in problem formulation, Action 𝑎(𝑡) ∈ {0, 1}   is 

whether to send an alert to airline customers at time step t. 

The airplane service organization (or Agent) uses an alert 

policy (or Policy) represented by 𝑢(𝑠(𝑡)) to output the action 

𝑎(𝑡) = 𝑢(𝑠(𝑡)). 

4.2. Policy Model 

The alert policy plays a critical role in effectively utilizing 

prognostic contextual information to generate alert decisions. 

The contextual information includes service records and 

flight records, which may contain out-of-sequence data. To 

address this complexity, we utilize an LSTM neural network 

model (Graves, Fernández, Gomez, & Schmidhuber, 2006) 

with fully connected layers to represent the policy. The 

LSTM is particularly good at capturing patterns within time-

sequence data. It takes as input a state represented by a 

sequence of time-consecutive service and flight records. The 

outputs from the LSTM model are subsequently processed by 

fully connected layers, which allow for additional processing 
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and analysis of the information extracted by the LSTM 

model. By combining the capabilities of the LSTM model 

with the fully connected layers, we can generate accurate and 

informed alert decisions based on the contextual information 

provided. Moreover, LSTM allows variable sequence lengths 

for input simply by applying zero-padding techniques to 

make input length consistent. This capability enables the 

model to effectively handle out-of-sequence records by 

reordering and zero-padding the input as needed. 

4.3. Environment Transition Model 

Environment transition model simulates the prognostics 

procedure by defining the next state based on current state 

and action. By running the agent in the simulated prognostics 

procedure, we can collect a sequence of states, actions and 

calculate a sequence of rewards. These experiences enable 

the agent to optimize its decision-making behavior. Based on 

our airplane component failure prognostics problem 

formulation, we built environment transition model of failure 

prognostics by modeling airline’s response to alerts, 

inspection delay, inspection result and transitions of airplane 

component states. 

4.3.1. Airline Response Model 

We estimate the probability of airlines performing inspection 

when they receive alerts using service records that contain 

interaction history between airlines and the airplane service 

organization. The service records include historical alert 

times, inspection times, and inspection results from each 

airline regarding an airplane component. Since each airline 

has its own operation policies and processes, their responses 

can vary. We estimate the probability of scheduling an 

inspection upon receiving an alert for each airline using 

frequentist approach. Particularly, we estimate the 

probability by calculating the proportion of alerts that have 

inspections scheduled among all alerts, which is represented 

by the following equation, 

𝑃(𝑋|𝑆(𝑡), 𝐹(𝑡), 𝑎(𝑡) = 1) 

              ≈
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑒𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑒𝑟𝑡𝑠
              (3) 

4.3.2. Inspection Delay Model 

Once airlines decide to schedule an inspection, they will 

choose a date for inspection. Due to operation schedule, 

airlines won’t inspect immediately when they decide to 

inspect component upon getting alerts. There is usually a 

delay from alert time to inspection time. We use an 

exponential distribution to fit the cumulative distribution 

function (CDF) of inspection delay Y. Particularly, 

𝑃(𝑌 <  𝑦) =  1 − exp(−𝜆𝑦)                        (4) 

where 𝜆 is the parameter of exponential distribution and is 

estimated through Maximum Likelihood Estimation by 

using the sample mean of inspection delays, 

 1

𝜆
≈  

∑ 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠
              (5) 

where delay of each inspection and number of inspections 

can be obtained from service records. 

4.3.3. Inspection Result Model 

In airplane component failure prognostics, we model the 

inspection result to depend on two factors including the 

number of days from the inspection time to the component’s 

next removal time and inspection delay, which are available 

in service records. Note that this does not imply a causal 

relation from the two factors to the inspection result.  

In particular, the closer the inspection time to the next 

removal time, the larger the probability for the inspection 

result being Failed, because airplane component is likely to 

malfunction as it gets closer to its removal time. We denote 

the number of days from inspection to the next removal to be 

a continuous random variable 𝑊. Moreover, the inspection 

result is also affected by inspection delay. The reason is that 

airplane components sometimes seem to be self-healed if 

only symptoms are considered. In particular, the symptom of 

degradation is obvious if inspected at the alert time but 

gradually disappears with time, e.g., when the mechanical 

parts grind off the touching portion of blades or cases. 

Therefore, when an airplane component is not functioning 

properly, the sooner the inspection is, the larger probability 

the inspection can detect that.  

Based on Bayes’ law, the inspection Failed probability  

𝑃(𝑍|𝑊, 𝑌) can be represented by  

𝑃(𝑍|𝑊, 𝑌) = 𝑃(𝑍|𝑊) ·
𝑝(𝑌|𝑍, 𝑊)

𝑝(𝑌|𝑊)
                (6) 

where 𝑝 (·) is probability density function. We then 

approximate 𝑃(𝑍|𝑊 = 𝑤)  with an exponential function 

𝑃(𝑍|𝑊 = 𝑤) =  1 −  𝑒𝑥𝑝(−𝜆2𝑤).  We estimate parameter 

𝜆2  using the data sample with 𝑤  = w0 . In particular, the 

corresponding 𝑃(𝑍|𝑊 =  w0) is approximated using 

𝑃(𝑍|𝑊 =  𝑤0) ≈ 

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 w0 𝑑𝑎𝑦𝑠 𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)/

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 w0  𝑑𝑎𝑦𝑠 𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑎𝑙)          (7)   

We can then get 𝜆2 =  − In (1 − 𝑃(𝑍|𝑊 =  w0))/ w0 . 

Moreover, we assume the inspection delay is independent 

from the airplane component state, because when receiving 
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alerts, airlines mostly look at their operation schedules to 

schedule inspection as soon as possible. With this 

assumption, we approximate 𝑝(𝑌|𝑍, 𝑊)/𝑝(𝑌|𝑊) with 

𝑝(𝑌|𝑍)/𝑝(𝑌), which is further estimated by 

𝑝(𝑌 = 𝑦|𝑍)/𝑝(𝑌 = 𝑦) = 𝑃(𝑍|𝑌 = 𝑦)/𝑃(𝑍) ≈ 

 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 ≥
𝑦)/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠)                              (8) 

 using data samples from service records. 

4.3.4. Airplane Component State Transition Model 

The airplane component state transition model is used to 

capture the airplane component state change in response to 

time and actions from maintenance team. Given the 

complexity of these state changes, directly modeling their 

dynamics can be challenging. In this paper, we directly use 

actual sequential flight records to represent the transitions of 

airplane component states. Particularly, at each time step, the 

airplane component state transits to the next state specified 

by the flight record of the next time step. 

When running the alert policy in simulated prognostics 

procedure, two special cases need to be handled regarding 

airplane component state transitions. The first case occurs 

when the simulated inspection result is Failed. In this case, 

we assume the airplane component is replaced, thereby 

terminating its current lifecycle, even if there are still actual 

flight records available after the simulated inspection time. 

The second case arises when the inspection result is Passed, 

but the real flight records run out for that airplane component 

lifecycle. In this case, the current airplane component 

lifecycle is also terminated. 

4.4. Reward Model 

The reward model provides feedback to alert policy based on 

alert decisions, airline responses as well as airplane 

component state. In our framework, the rewards associated 

with different operations are summarized as follows: 

1) Sending Alert: Each time the service organization sends 

an alert, there is a small service cost, which is captured by a 

negative reward.  

2) Sending Unnecessary Alert: As the alert policy generates 

alerts automatically based on context information, it can send 

an alert to airline even after the airline has responded to a 

previous alert on the same component. We give such an 

unnecessary alert a negative reward.  

3) Unnecessary Inspection: Airlines schedule and perform 

inspections because of alerts. If an inspection is Passed 

indicating the component is working well, the inspection 

brings unnecessary costs to airlines. Therefore, we give a 

large negative reward to this unnecessary inspection.  

4) Successful Alert: A large positive reward is given to a 

successful alert meaning either the inspection due to the alert 

successfully detected a malfunctioning component, or the 

alert is sent before component failure within a specified 

timeframe, e.g. 30 days, even if there is no inspection.  

5) Missing Component Failure: We penalize missing 

component failure without alerts by giving it a large negative 

reward. The missing component failure refers to not sending 

alerts before component failure within a designated 

timeframe, e.g. 30 days. 

With the above MDP definition, our objective is to get an 

alert policy that maximizes the expected sum of discounted 

reward values when running the alert policy in the simulated 

airplane component prognostics procedure. 

5. POLICY LEARNING 

With the formulated MDP for airplane components failure 

prognostic, the alert policy is learned by running the policy 

in the simulated environment to get feedback, based on which 

the policy optimizes its alert decision-making behaviors. 

The alert policy is parameterized by weights of neural 

network including the LSTM module  and the fully connected 

layers with parameters to be learned by reinforcement 

learning algorithms. As the input of the alert policy is 

continuous and its output is discrete (binary decision 

variable), DQN (Mnih, Kavukcuoglu, Silver, Rusu, Veness, 

Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, 

Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, 

Wierstra, Legg, & Hassabis, 2015) or its variants including 

DDQN (Van Hasselt, Guez, & Silver, 2016), etc., can be 

used. The learning process is illustrated in Figure 2. 

5.1. Deep Q-Network 

In the DQN approach, we aim to learn the optimal Q-

function, denoted as 𝑄(𝑠, 𝑎), which represents the maximum 

expected accumulated discounted reward achieved by 

following the alert policy starting from state s and action a in 

the simulated prognostics environment. Once the optimal Q-

function is obtained, the optimal alert policy can be derived 

by selecting the action that maximizes 𝑄(𝑠, 𝑎), i.e., 

                    𝑢(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎  𝑄(𝑠, 𝑎)                        (9) 

This alert policy 𝑢(𝑠) outputs the best action to take in each 

state to maximize the value function. We use a neural 

network to parameterize the Q function denoted by 

𝑄(𝑠, 𝑎; 𝜃). To learn these parameters, there is a replay buffer  
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that stores the training data in the form of data tuples 
(𝑠,  𝑟,  𝑎,  𝑠′), corresponding to state, reward, action and next 

state, respectively. The neural network is trained iteratively. 

In each training iteration, the alert policy is executed in the 

simulated prognostics environment to generate new 

experience tuples, which are then added to the replay buffer. 

A data batch is randomly sampled from the replay buffer to 

update parameter 𝜃 through the gradient descent method to 

minimize the following temporal difference error 

 𝛿 = 𝑄(𝑠, 𝑎) − (𝑟 +  𝛾𝑚𝑎𝑥𝑎𝑄′ (𝑠′, 𝑎))                 (10) 

where 𝛾 is a discount factor and 𝑄′ (𝑠′, 𝑎) is a separate target 

Q function that is a copy of Q function but are updated less 

frequently that helps to stabilize the learning procedure. 

5.2. Double Deep Q Network with Prioritized Replay 

Buffer 

In the airplane components failure prognostic framework, we 

only get a positive reward when there is a successful alert, 

which only happens once for the whole component lifecycle. 

Such a sparse reward setting makes it very challenging to 

learn the optimal decision-making policy. We used the 

prioritized replay buffer (Schaul, Quan, Antonoglou, & 

Silver, 2015) to address the reward sparsity issue. The 

prioritized replay buffer technique prioritizes the training 

data samples based on their importance quantified by 

temporal difference error. To further address the 

overestimation bias in DQN approach, we applied DDQN 

that decouples max operation of target Q function in Eq. (10) 

to the action selection and action evaluation procedure, 

captured by  

     𝛿 = 𝑄(𝑠, 𝑎) − (𝑟 +  𝛾𝑄′ (𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)))        (11) 

This DDQN prevents overestimation of the Q value function 

by using different Q functions for action selection and Q 

value evaluation. Specifically, the current Q-network is used 

to select the best action, while a separate target Q-network is 

used to evaluate the value of that action, thereby providing 

more accurate and stable value estimates. 

6. POLICY DEPLOYMENT AND EVALUATION 

After training the policy, we need to evaluate the 

performance of the policy. In addition to the reward value 

obtained by the policy running in the simulation 

environment, we use three other evaluation metrics to provide 

a more straightforward evaluation that is better aligned with 

business operation.  

1) Precision: the ratio of alerts that lead to successful 

detection of airplane component failure to the total number of 

alerts generated by the alert policy. This metric reflects how 

often the alerts correspond to actual airplane component 

issues, indicating the effectiveness of the alert policy. 

2) Recall: the ratio of the number of airplane component 

failures that are successfully alerted to the total number of 

failures. This value shows how often failures are successfully 

alerted. 

3) Inspection Redundancy: the ratio of the number of 

unnecessary inspections that are triggered by false alerts on 

healthy components to the total number of inspections 

conducted by airline on the airplane component.  

Figure 2. Illustration of deep reinforcement learning for airplane component failure prognostics. 
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These three metrics capture the accuracy of alerts and the 

ability to detect all airplane component failures, and the 

associated inspection costs from the perspective of business 

operation. Ideally, an optimal policy has high precision and 

recall scores, and low inspection redundancy.  

After the policy is learned in simulated environment, we 

deploy the policy to the actual airplane components failure 

prognostic procedure. Each day the service organization 

receives flight records 𝐹(𝑡) and service records 𝑆(𝑡) from 

airlines, those records as well as flight records from previous 

days, up to 𝑁  records in total, where 𝑁  depends on pre-

defined service rules and past operation experience, are 

concatenated to form a state 𝑆(𝑡) and are given as input to the 

alert policy.  

A key deployment challenge is to handle missing and out-of-

sequence records, which disrupt the time order and result in 

variable-length inputs. To address this, we reorder the records 

into the correct temporal sequence and apply zero-padding to 

fill in any missing data, ensuring consistent input dimensions 

for the policy. 

Moreover, as new flight and service records come in, we 

update the environment models with new data and perform 

continual training of policy in the new environment models 

to adapt to the new data. Additionally, we adjust reward 

parameters based on airline operation needs to balance 

various operational costs. 

7. CASE STUDY 

We conducted a case study on applying our deep 

reinforcement learning approach for ACM failure 

prognostics. In the following subsections, we describe the 

ACM failure prognostics procedure and experiment results. 

7.1. Air Cycle Machine Failure Prognostics 

ACM is a crucial component in a commercial airplane. Its 

main function is to provide cabin air conditioning and 

pressurization by utilizing the principles of thermodynamics. 

The ACM operates by taking compressed air from upstream 

components and then expanded through a turbine. This 

process cools the air, and the cooled air is then directed into 

the cabin and other compartments. In our case study of 

prognostics procedure for ACM, we have flight and service 

records on ACM from 17 airlines. Each airline provides 

sensor data for ACM, its lifecycle information, historical 

alerts and inspection records regarding an ACM. In total we 

have records for 257 ACM lifecycles. The source data 

column and data descriptions are summarized in Table 1. 

There are two ACMs in an airplane; we only show examples 

for the left side ACM here. Among these ACM data, the 

LLabel is Failure prediction label using a data-driven model,  

Table 1. Data from airlines on ACM. 

Source data column Data description 

Tail Airplane ID 

Leg Time of the flight record 

LLabel Failure prediction label 

using a pretrained model 

LTruth True failure label 

LTT0Seconds 
Duration of ACM from 

running to stopping 

LDaysFromRemoval 
Number of days from last 

removal 

LDaysToRemoval 
Number of days to next 

removal 

AlertTime Alert sent time 

InstallTime ACM installation time 

RemovalTime ACM removal time 

InspectionTime ACM inspection time 

InspectionSummary ACM inspection result 

 

while LTruth is the ground truth label. In our study, we 

include LLabel into our state as it captures component 

features implicitly, while we don’t include LTruth to avoid 

label leakage. 

7.2. Flight Data Processing 

Our deep reinforcement learning method is designed to 

effectively capture data characteristics of flight and service 

records, which usually contain out-of-sequence and noisy 

data. Moreover, sensor data are sometimes missing for 

certain time periods. To ensure good performance, we need 

to process the data to make it ready and clean for use.  

The flight records, including sensor data and flight logs are 

shared by airlines. Each record includes a date, flight number, 

and basic information of the airplane component such as the 

airplane registry number. It also contains the number of days 

since the previous removal (except for the first installation on 

that airplane) and the number of days to the next removal 

(except for the last installation on that airplane, i.e., the 

component is still on-wing). Moreover, the flight record 

includes features extracted from the component’s sensor data, 

along with a failure prediction label generated by a pre-

trained model that uses these features as input. For example, 

in ACM, one of the features is TT0seconds, which indicates 

the number of seconds it takes for ACM from a consistent 

running state to full stop. Generally, the smaller the value of 
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TT0seconds, the larger probability of ACM malfunctioning, 

as degrading ACMs with higher frictions usually stop more 

quickly.  Since flight records can miss entries, we apply a 

filter to get rid of flight records lacking important features 

such as number of days since its previous removal, number 

of days to its next removal, and sensor information.  

In addition, we need to extract individual lifecycles of 

components. A complete lifecycle is obtained by checking 

each flight record in chronological order, if any of the 

following three conditions is satisfied, we reach the end of a 

component lifecycle, which means it is either replaced or 

there are no more available flight records. 

• The registry number of the current flight record is 

different from the next one, which means flight 

record changes to a new airplane. 

• The number of days since the last removal drops. 

For the same airplane component, the number of 

days from the last removal should continually 

increase. 

•  The number of days until the next removal jumps. 

For the same airplane component, the number of 

days to its next removal should continually 

decrease. 

Another valuable dataset we utilize is the service records, 

which capture the interaction history between BGS and 

airlines. This includes historical alert times, inspection 

schedule times and inspection results, removal time of 

airplane component. Moreover, airlines sometimes perform 

inspections on airplane components proactively, which are 

also recorded in the service record. We only use records with 

alerts, which can be extracted based on entries with available 

alert time. 

7.3. Model Fitting 

With the ACM data from airlines, for each airline, we first 

fitted several models discussed in Section 4.3 including the 

airline response model, inspection delay model, inspection 

result model and airplane component state transition model 

to build an ACM prognostics simulation environment. The 

airline-specific inspection probability model is estimated 

based on the ratio of number of inspections to the total 

number of alerts. On average, the inspection probability for 

17 airlines is 0.732. The inspection delay model, illustrated 

in Figure 3, demonstrates that the exponential distribution 

effectively captures the characteristics of inspection delays. 

To further validate the model fitting, we computed the one-

sample KS statistic and CvM statistic (D'Agostino & 

Stephens, 2017) to measure the maximum deviation and 

average squared distance, respectively, between samples 

CDF and fitted exponential distribution CDF. The KS 

statistic value is 0.0842 and CvM statistic value is 0.0367. 

Moreover, the inspection result model, as shown in Figure 4, 

reveals that as the days to removal get closer and the 

inspection delay gets smaller, the inspection failure 

probability increases. This finding aligns with the discussions 

on factors that have an impact on inspection results in Section 

4.3.3. 

Table 2. Reward for different operations. 

 

Operation Reward value 

Send alert -0.1 

Unnecessary alert -0.5 

Unnecessary inspection -30 

Successful alert 100 

Missing ACM failure -100 

 

7.4. Training Results 

We trained our deep reinforcement learning approach on a 

Dell Laptop equipped with 12th i7-12800H, 2.4GHz, 32GB 

RAM using CPU-only computation. The dataset was split 

into 73% training data and 27% evaluation data by using a 

Figure 3. Fitting inspection delay model using 

exponential distribution. 

 Figure 4. Fitted inspection result probability model. 
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cutoff date of 05/01/2023 to separate records from each 

airline accordingly. And we set the reward for different 

operations as summarized in Table 2 based on general 

operational requirements. A large reward is given for issuing 

a successful alert, while an equally significant penalty is 

applied for missing an ACM failure. A smaller penalty value 

is given to unnecessary inspections. Minor penalties are given 

to sending alerts or unnecessary alerts.  

We let the state 𝑠(𝑡)  defined in Section 4.1 include time 

sequence vectors with length 100 and each vector contains 

four features including LDaysFromRemoval, LLabel, 

LTT0Seconds as described in Table 1 and a binary tag to 

indicate if there is a scheduled inspection to avoid sending 

unnecessary alerts. Both the Q Network and target Q 

Network are represented by an LSTM module followed by 

three fully connected layers with ReLU activation units (Nair 

& Hinton, 2010). Hidden size of the LSTM module is 64 and 

the three fully connected layers have 64, 64, 32 units. The 

learning rate for both DQN and DDQN with PRB are set to 

0.001. The batch size is set to 64. The size of replay buffer 

and the parameter of prioritized sampling for PRB are set to 

100000 and 0.1, respectively. 

During training, both DQN and DDQN with PRB use 𝜖 -

greedy selection strategy (Sutton & Barto, 2018), in which 

with probability ϵ the agent selects a random action to explore 

and with probability 1−𝜖  it selects the greedy action that 

maximizes the current Q-value function. DDQN with PRB 

adopts a 𝜖 power decay process with minimum 𝜖 set to 0.01 

and power decay factor of 0.99. As learning progresses, the 

policy shifts from exploration toward exploitation. DQN uses 

a fixed epsilon with value 0.02. The discount factor 𝛾 is set 

to 0.99. The parameters of Q networks are updated at every 

transition step. 

It takes around 43 minutes to train DQN algorithm and 

around 56 minutes to train DDQN with PRB. Figure 5 shows 

the training rewards over episodes for both algorithms. We 

can see from the figure that the training reward gradually 

increases with the number of episodes, indicating that both 

algorithms are optimizing the alert policy. We can also see 

that DQN achieved a similar reward level to DDQN with 

PRB. 

Figure 7. Recall scores of DQN and DDQN with PRB for 

different airlines ACM prognostics. 

Figure 8. Inspection redundancy ratio of DQN and DDQN 

 with PRB for different airlines ACM prognostics. 

 

Figure 6. Precision scores of DQN and DDQN with PRB for 

different airlines ACM prognostics. 

 

Figure 5. Training rewards with number of 

episodes for DQN and DDQN with PRB. 
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7.5. Evaluation Results 

After training the alert policies, we evaluated their 

performance by applying them to the prognostics procedure 

for five airlines using the evaluation dataset. To protect 

proprietary information of airlines, the airlines are 

anonymized and labeled as Airline #1 through #5. Moreover, 

as discussed in Section 6, we adopt precision, recall scores 

and inspection redundancy as key evaluation metrics. The 

evaluation results are summarized as follows. 

 

Precision scores of DQN and DDQN with PRB for different 

airlines are shown in Figure 6, which shows that DQN 

achieves higher precision scores than DDQN with PRB for 

Airline #2, #4 and #5, but lower scores in Airline #1 and #3. 

As for recall scores shown in Figure 7, DDQN with PRB 

outperforms DQN in all airlines except Airline #2. 

 

Comparing Figure 6 and Figure 7 reveals that both 

approaches have higher recall scores than precision scores for 

most airlines. This is because both approaches send many  

alerts, even though most of them are unnecessary ones. In 

other words, the alert policy is aggressive in sending alerts to 

capture any possible actual component failure even if there 

are many false alerts. This is validated by the inspection 

redundancy ratio shown in Figure 8. The figure shows that 

both DQN and DDQN with PRB have large inspection 

redundancy ratio. DQN achieves a relatively smaller 

redundancy ratio. 

 

Furthermore, we also compared DQN and DDQN with PRB 

approaches with currently deployed heuristics approach for 

ACM prognostics. The average precision and recall scores of 

three approaches are summarized in Table 3. As shown in the 

table, the current heuristic approach has the highest precision 

score, however, DQN and DDQN with PRB approaches have 

much higher recall scores than heuristic approach. 

 

 

 

Table 3: Precision and recall scores of three approaches. 

 Precision Recall 

DQN 0.23 0.44 

DDQN with PRB 0.18 0.61 

Heuristic Approach 0.35 0.25 

 

Note that in our deep reinforcement learning approach, we 

can adjust reward weights to balance the precision and recall 

scores which can potentially have both higher recall and 

precision scores than the heuristic approach. This flexibility 

also enables more adaptable business operation. 

 

For illustration, in Figure 9, we show three representative 

prognostics outcomes from the DDQN with PRB alert policy 

for Airline #3, simulated using models derived from real data. 

Scenario 1 (Figure 9.a): an alert was issued within 30 days of 

an actual ACM failure, but no inspection returned “Failed”; 

the policy still receives a high reward because it correctly 

anticipated the failure. Scenario 2 (Figure 9.b): an alert 

triggered an inspection that returned “Failed,” confirming the 

fault and earning a high reward. Scenario 3 (Figure 9.c): no 

alert was issued within 30 days of failure, indicating a missed 

detection. Across these examples, failed ACMs typically 

exhibit smaller LTT0Seconds, i.e., shorter time from running 

to stop. 

7.6. Impact of Reward Parameters 

The performance of deep reinforcement learning approach 

for ACM prognostics is sensitive to reward parameters, 

particularly the weights assigned to different operational 

outcomes. These weights directly influence the precision and 

recall scores of the alert policy. To evaluate this impact, we 

compare the precision and recall scores of DQN trained alert 

policy under different reward weights for unnecessary 

inspections and successful alerts, which is shown in Figure 

10. We can see that as the reward for unnecessary inspection 

Figure 9. Examples of running DDQN with PRB for Airline #3 in simulated ACM prognostics procedure using real data. 

 

a) b) c) 
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decreases from -10 to -80, the precision score has a trend to 

increase while the recall score tends to decrease. This occurs 

because smaller unnecessary inspection reward discourages 

the alert policy sending excessive alerts, thereby reducing 

unnecessary inspections. As a result, the precision score 

increases due to fewer false alerts, while the recall score 

decreases as the alert policy becomes more conservative, 

increasing the likelihood of missing actual component 

failures. Therefore, selecting appropriate reward weights is 

crucial to balancing the trade-off between precision and 

recall, ensuring the alert policy aligns with operational 

priorities.  

8. CONCLUSION 

In this paper, we developed a reinforcement learning-based 

approach to automate full cycle airplane component failure 

prognostics and enhance alert timing accuracy. Our approach 

leverages probabilistic data modeling derived from real flight 

and service records to simulate the prognostics process and 

adopts an LSTM neural network to represent the alert policy. 

We explored two deep reinforcement learning algorithms: 

DQN and DDQN with PRB to train the policy. A case study 

on ACM prognostics was conducted to evaluate our 

approach. The results demonstrated that our approach 

achieves much higher recall scores, but slightly lower 

precision scores compared to the heuristic approach currently 

deployed at BGS. Furthermore, we highlight the inherent 

trade-off between precision and recall, which can be balanced 

by tuning reward weights according to operational priorities 

and maintenance costs. In the future, we will explore other 

reinforcement learning algorithms such as Deep 

Deterministic Policy Gradient (Lillicrap, Hunt, Pritzel,  

Heess, Erez, Tassa, Silver, & Wierstra, 2015) to further 

enhance precision and recall scores and reduce inspection 

redundancy. 

NOMENCLATURE 

𝐹(𝑡) Flight records at time 𝑡 

𝑆(𝑡) Service records at time 𝑡 

𝑎(𝑡) Alert action at time 𝑡 

𝑓 (·) Alert model 

𝑟 (·) Reward function 

𝑃 (·) Probability mass or CDF 

𝑝 (·) Probability density function 

𝑋 Bernoulli random variable to denote if an inspection 

is scheduled or not 

𝑌 Continuous random variable to denote inspection 

delay 

𝑍 Bernoulli random variable to denote if an inspection 

result is Failed or Passed 

𝑊 Continuous random variable to denote number of 

days between inspection and removal 

𝑠(𝑡) State at time t 

𝑠′ State at next time step 

𝑢 (·) Alert policy 

𝑄 (·)      Value function 

𝑄′ (·)     Target value function 

𝑁            Number of records 

𝑇            Terminal time of airplane component life cycle 
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