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ABSTRACT

As airplane components degrade over time, airplane service
organization and airline maintenance team need to
collaborate on performing component failure prognostics to
improve operation efficiency. In particular, the airplane
service organization analyzes flight/sensor data and sends
alerts to the airline maintenance team upon identifying a
potential failure. In response, the airline maintenance team
conducts inspections and replaces the component if
necessary. In this procedure, it is crucial to determine the
timing for sending alerts: late alerts leave operators no time
to avoid schedule interruptions with huge operation costs,
while early alerts lead to unnecessary inspections and
significant maintenance burden. Current solutions rely on
heuristics and/or manual engineering reviews to make
decisions on whether and when to send alerts, which is
difficult to scale and adapt. To address this limitation, we
developed a deep reinforcement learning-based approach to
automate the prognostics procedure and enhance accuracy of
alert timing. A case study on Air Cycle Machine (ACM)
prognostics was conducted to demonstrate the feasibility and
effectiveness of our approach.

1. INTRODUCTION

As airplane components degrade over time, airplane service
organizations (e.g., Boeing Global Services (BGS)) and their
airline customers need to collaborate on airplane components
failure prognostics to replace/maintain components
proactively to improve operation efficiency and reduce
maintenance cost. In particular, airplane components are
often mounted with sensors to monitor their operational
states, the airline maintenance team sends flight records that
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include sensor information and service records that include
maintenance history to the airplane service organization. By
analyzing these flight and service records, the airplane
service organization predicts possible component failures.
Upon identifying an impending component failure, the
airplane service organization promptly sends alerts to the
airline maintenance team. In response, the airline
maintenance team conducts inspections and maintenance on
the component and replaces it if necessary. This airplane
component failure prognostics procedure is illustrated in
Figure 1.
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Figure 1. Airplane components failure prognostics.

In this airplane components failure prognostics procedure,
machine learning or engineering-based models can be used to
make a prediction of airplane component failure. However, it
is crucial for the airplane service organization to determine
when to send alerts to airlines given the failure predictions.
Late alerts may cause schedule interruptions or even
grounding of the airplane waiting for parts. Early alerts can
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bring unnecessary inspections that lead to significant
maintenance burden.

In the research literature, most airplane component failure
prognostics methods predict the status of the airplane
components based on the sensor or flight data using data
driven model, e.g., machine learning or probabilistic models.
Alerts will be sent upon a potential component failure
prediction. These methods ignore the interactions between
the airplane service organization and their airline customers
such as historical alert timings, inspection results which
include important information about airplane component
operation states as well as the prognostics procedure status.
The industry solutions rely on heuristic rules and engineering
reviews, which require significant manual efforts and are
difficult to scale or adapt.

To improve the efficiency of airplane components failure
prognostics, we developed a deep reinforcement learning-
based approach that automates the full cycle of prognostics
procedure and enhances accuracy of alert timing.
Specifically, we first built probabilistic models from real
flight and service records to simulate airline responses to
alerts and component state transitions, thereby enabling a
full-cycle prognostics simulation. We then used a Long
Short-Term Memory (LSTM) neural network model to
represent the alert policy that outputs alerts decisions based
on flight records and service records. By running the alert
policy in simulated prognostics procedure, the policy is
trained by policy learning algorithms based on feedback
received from the simulation. We investigated two policy
learning algorithms including Deep Q Network (DQN)
algorithm and its variant Double Deep Q Network (DDQN)
with Prioritized Replay Buffer (PRB) to learn the alert policy.
Once trained, the policy can be deployed to automatically
make alert decisions by processing incoming flight records
and service records. Additionally, the alert policy parameters
can be fine-tuned to adapt to new airplane component
features and evolving airline operations. We conducted a case
study on ACM prognostics using data from 17 airlines by
comparing our approach to the currently deployed heuristic
approach, which demonstrated the feasibility and
effectiveness of our approach.

Our main contributions are: 1) Development of a deep
reinforcement learning-based approach to automate full cycle
prognostic procedure and enhance alert timing accuracy. Our
approach leverages probabilistic data modeling derived from
real flight and service records to simulate the prognostics
process. The approach adopts an LSTM neural network to
represent the alert policy, which effectively captures the
temporal features in time-series records. 2) A case study on
ACM prognostics that validates our approach by comparing
our approach to the currently deployed heuristic prognostics
approach. Using real data from 17 airlines, the study provides
valuable insights into the practical deployment of the alert

policy and guides parameter tuning to align with operational
requirements.

In the rest of the paper, Section 2 reviews related work on
airplane component prognostic and health management.
Section 3 formulates the airplane components failure
prognostic problem considered in this paper. A reinforcement
learning formulation for prognostics procedure is provided in
Section 4. Section 5 and 6 discuss alert policy learning
algorithms, and alert policy deployment and evaluation,
respectively. Section 7 presents the case study on ACM to
evaluate our approach. Section 8 concludes the paper. All
mathematical symbols used in this paper are defined in the
Nomenclature.

2. RELATED WORK

The airplane component prognostic procedure typically
consists of two stages. The first stage is to build a model to
capture the state of airplane components and the second is to
make failure predictions based on the model. The model used
in the first stage can be categorized into three types including
knowledge-based model, physical model, and data-driven
model. The knowledge-based model uses the domain
knowledge of the airplane component and empirical
experience to get knowledge of airplane component
operation state. This model requires expert knowledge or
engineering experience and thus is inefficient and hard to
scale.

In the physical model-based approach, a physical model is
built through system identification and parameter estimation
that includes dynamics of airplane components to capture the
state transition of airplane components. For example,
Kulkarni, Schumann, and Roychoudhury (2018) built an
electrochemical battery model combined with Unscented
Kalman Filter for onboard battery monitoring and
prognostics in electric-propulsion aircraft. The physical
model can provide physics interpretation of the airplane
component state transitions. However, it is hard to develop
high-fidelity physical models for complex airplane
components such as engines.

Data-driven models are more favorable that allows modeling
system transitions using data only without physics
knowledge. Typical data-driven models include probabilistic
models, machine learning models, reinforcement learning
models. For example, Pidaparthi, Jacobs, Ghosh, Ravi,
Amer, Luan, and Wang (2024) built a component level-
probabilistic model to forecast damage growth for aircraft
engines. Dangut, Skaf, and Jennions (2021) developed a
hybrid machine learning approach combining natural
language processing and ensemble learning for predicting
aircraft component failures. Hu, Miao, Zhang, Liu, and Pan
(2021) designed a reinforcement learning driven maintenance
strategy for airplane maintenance decision optimization
considering future mission requirements, repair cost, etc. In
most existing data-driven models, the model is used to make
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predictions on the failure of airplane components or
maintenance decisions relying on airplane component data.
But they ignore other context information of prognostics
procedure such as prognostics service records that include
historical alerts, inspection time and results. In practice,
engineers and data analysts often rely on complete context
information including component sensor data, flight records
and service records to make decisions on sending alerts on
potential airplane component failure. Unlike existing data-
driven models, our deep reinforcement learning-based
approach integrates the full-cycle context information for
airplane component prognostics which leads to more accurate
alert timings.

3. AIRPLANE COMPONENT FAILURE
PROGNOSTICS PROBLEM FORMULATION

In this section, we describe the full cycle of airplane
component failure prognostics and formulate the problem
considered in this paper.

In airplane component failure prognostics procedure, there
are sensors mounted on airplane components such as
accelerometers, thermocouples and so on, to monitor the
operational status of airplane components. In addition to the
sensor data, there are flight logs associated with airplane
components such as registry id, number of days since the last
removal, etc. The sensor data and flight logs are concatenated
into flight records denoted by F(t), which are sent from
airlines to airplane service organization. Moreover, airlines
also share service records with the airplane service
organization. The service records denoted by S(t) include
maintenance history in the life cycle of an airplane
component such as alert times, inspection times and
corresponding inspection results.

By analyzing flight records F(t) and service records S(t) at
certain time step t, the airplane service organization
determines whether to send an alert to its airline customers to
remind them of impeding component failure. More formally,
we aim to create a model that takes flight records F(t) and
service records S(t) as inputs and outputs action a(t) €
{0, 1}, where 1 means sending an alert, represented as

a(t) = f(S(®),F(®) (M

Upon receiving an alert, airlines may either ignore it or
schedule an inspection. The probability of scheduling an
inspection, given the current alert, flight and service records
is modeled as P(X|S(t),F(t),a(t) =1), where X is a
Bernoulli random variable to denote if an inspection is
scheduled (X=1) or not (X=0). Due to the operational
constraints, there is typically a delay between alert and
inspection, represented by a continuous random variable Y.
The inspection result can be Failed or Passed. A Failed result
indicates that the airplane component requires maintenance
or replacement, while Passed means it is functioning

properly. We model the inspection result as a Bernoulli
random variable Z with failure probability P(ZIS(¢), F(t)).

Depending on airlines’ responses upon receiving alerts and
their following actions, there is a reward associated with the
prognostic’s procedure. Since the flight records and service
records capture the whole contextual information, we
designed a reward function captured by r(S(t), F(t), a(t)).
Our goal is to obtain an alert model that maximizes the
accumulated reward for the life cycle of an airplane
component, i.c.,

maxy Yo7 (S(E), F(1), a(t)) ()

where T is the terminal time of the life cycle of the airplane
component.

4. REINFORCEMENT LEARNING FORMULATION

In this paper, we present a deep reinforcement learning-based
approach to solving the formulated airplane component
failure prognostics problem. We first provide a reinforcement
learning formulation over the original problem, using a
Markov Decision Process (MDP). In particular, MDP is
mainly characterized by five components including state,
action, environment transition, reward, policy, which are
described as follows.

4.1. State and Action

State s(t) is the contextual information of the failure
prognostics procedure. In our case, we define the state to be
a time sequence of flight records and service records, denoted
by s(t) = [S(t),F(t),..,.S(t—=N+1),F(t—N+1)],
where N is number of time steps of time sequence records
and is determined based on empirical experience. As
discussed in problem formulation, Action a(t) € {0,1} is
whether to send an alert to airline customers at time step t.
The airplane service organization (or Agent) uses an alert
policy (or Policy) represented by u(s(t)) to output the action

a(®) = u(s(t)).
4.2. Policy Model

The alert policy plays a critical role in effectively utilizing
prognostic contextual information to generate alert decisions.
The contextual information includes service records and
flight records, which may contain out-of-sequence data. To
address this complexity, we utilize an LSTM neural network
model (Graves, Fernandez, Gomez, & Schmidhuber, 2006)
with fully connected layers to represent the policy. The
LSTM is particularly good at capturing patterns within time-
sequence data. It takes as input a state represented by a
sequence of time-consecutive service and flight records. The
outputs from the LSTM model are subsequently processed by
fully connected layers, which allow for additional processing
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and analysis of the information extracted by the LSTM
model. By combining the capabilities of the LSTM model
with the fully connected layers, we can generate accurate and
informed alert decisions based on the contextual information
provided. Moreover, LSTM allows variable sequence lengths
for input simply by applying zero-padding techniques to
make input length consistent. This capability enables the
model to effectively handle out-of-sequence records by
reordering and zero-padding the input as needed.

4.3. Environment Transition Model

Environment transition model simulates the prognostics
procedure by defining the next state based on current state
and action. By running the agent in the simulated prognostics
procedure, we can collect a sequence of states, actions and
calculate a sequence of rewards. These experiences enable
the agent to optimize its decision-making behavior. Based on
our airplane component failure prognostics problem
formulation, we built environment transition model of failure
prognostics by modeling airline’s response to alerts,
inspection delay, inspection result and transitions of airplane
component states.

4.3.1. Airline Response Model

We estimate the probability of airlines performing inspection
when they receive alerts using service records that contain
interaction history between airlines and the airplane service
organization. The service records include historical alert
times, inspection times, and inspection results from each
airline regarding an airplane component. Since each airline
has its own operation policies and processes, their responses
can vary. We estimate the probability of scheduling an
inspection upon receiving an alert for each airline using
frequentist approach. Particularly, we estimate the
probability by calculating the proportion of alerts that have
inspections scheduled among all alerts, which is represented
by the following equation,

P(XIS(6), F(t),a(t) = 1)

. Number of alerts with inspections

~ (€))

Number of alerts

4.3.2. Inspection Delay Model

Once airlines decide to schedule an inspection, they will
choose a date for inspection. Due to operation schedule,
airlines won’t inspect immediately when they decide to
inspect component upon getting alerts. There is usually a
delay from alert time to inspection time. We use an
exponential distribution to fit the cumulative distribution
function (CDF) of inspection delay Y. Particularly,

PY < y)=1 —exp(-1y) (4)

where A is the parameter of exponential distribution and is
estimated through Maximum Likelihood Estimation by
using the sample mean of inspection delays,

1 Y delay of each inspection

i (%)

Number of inspections

where delay of each inspection and number of inspections
can be obtained from service records.

4.3.3. Inspection Result Model

In airplane component failure prognostics, we model the
inspection result to depend on two factors including the
number of days from the inspection time to the component’s
next removal time and inspection delay, which are available
in service records. Note that this does not imply a causal
relation from the two factors to the inspection result.

In particular, the closer the inspection time to the next
removal time, the larger the probability for the inspection
result being Failed, because airplane component is likely to
malfunction as it gets closer to its removal time. We denote
the number of days from inspection to the next removal to be
a continuous random variable W. Moreover, the inspection
result is also affected by inspection delay. The reason is that
airplane components sometimes seem to be self-healed if
only symptoms are considered. In particular, the symptom of
degradation is obvious if inspected at the alert time but
gradually disappears with time, e.g., when the mechanical
parts grind off the touching portion of blades or cases.
Therefore, when an airplane component is not functioning
properly, the sooner the inspection is, the larger probability
the inspection can detect that.

Based on Bayes’ law, the inspection Failed probability
P(Z|W,Y) can be represented by

_ p(Y|Z,W)

P(ZIW,Y) = P(Z|W) - P (TW) (6)
where p (-) is probability density function. We then
approximate P(Z|W = w) with an exponential function
P(ZIW =w) = 1 — exp(—A,w). We estimate parameter
A, using the data sample with w = wy. In particular, the
corresponding P(Z|W = wy) is approximated using

(Number of Failed inspections within w, days to removal)/
(Number of inspections within w, days to removal) @)

We can then get 4, = — In (1 —PZ|W = wy))/ wy .
Moreover, we assume the inspection delay is independent
from the airplane component state, because when receiving
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alerts, airlines mostly look at their operation schedules to
schedule inspection as soon as possible. With this
assumption, we approximate p(Y|Z,W)/p(Y|W) with
p(Y|Z)/p(Y), which is further estimated by

p(Y =yl2)/p(Y =y) =PZ|Y =y)/P(Z) =

(Number of Failed inspections with inspection delay >
v)/(Number of Failed inspections) ®)

using data samples from service records.

4.3.4. Airplane Component State Transition Model

The airplane component state transition model is used to
capture the airplane component state change in response to
time and actions from maintenance team. Given the
complexity of these state changes, directly modeling their
dynamics can be challenging. In this paper, we directly use
actual sequential flight records to represent the transitions of
airplane component states. Particularly, at each time step, the
airplane component state transits to the next state specified
by the flight record of the next time step.

When running the alert policy in simulated prognostics
procedure, two special cases need to be handled regarding
airplane component state transitions. The first case occurs
when the simulated inspection result is Failed. In this case,
we assume the airplane component is replaced, thereby
terminating its current lifecycle, even if there are still actual
flight records available after the simulated inspection time.
The second case arises when the inspection result is Passed,
but the real flight records run out for that airplane component
lifecycle. In this case, the current airplane component
lifecycle is also terminated.

4.4. Reward Model

The reward model provides feedback to alert policy based on
alert decisions, airline responses as well as airplane
component state. In our framework, the rewards associated
with different operations are summarized as follows:

1) Sending Alert: Each time the service organization sends
an alert, there is a small service cost, which is captured by a
negative reward.

2) Sending Unnecessary Alert: As the alert policy generates
alerts automatically based on context information, it can send
an alert to airline even after the airline has responded to a
previous alert on the same component. We give such an
unnecessary alert a negative reward.

3) Unnecessary Inspection: Airlines schedule and perform
inspections because of alerts. If an inspection is Passed
indicating the component is working well, the inspection

brings unnecessary costs to airlines. Therefore, we give a
large negative reward to this unnecessary inspection.

4) Successful Alert: A large positive reward is given to a
successful alert meaning either the inspection due to the alert
successfully detected a malfunctioning component, or the
alert is sent before component failure within a specified
timeframe, e.g. 30 days, even if there is no inspection.

5) Missing Component Failure: We penalize missing
component failure without alerts by giving it a large negative
reward. The missing component failure refers to not sending
alerts before component failure within a designated
timeframe, e.g. 30 days.

With the above MDP definition, our objective is to get an
alert policy that maximizes the expected sum of discounted
reward values when running the alert policy in the simulated
airplane component prognostics procedure.

5. POLICY LEARNING

With the formulated MDP for airplane components failure
prognostic, the alert policy is learned by running the policy
in the simulated environment to get feedback, based on which
the policy optimizes its alert decision-making behaviors.

The alert policy is parameterized by weights of neural
network including the LSTM module and the fully connected
layers with parameters to be learned by reinforcement
learning algorithms. As the input of the alert policy is
continuous and its output is discrete (binary decision
variable), DQN (Mnih, Kavukcuoglu, Silver, Rusu, Veness,
Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski,
Petersen, Beattie, Sadik, Antonoglou, King, Kumaran,
Wierstra, Legg, & Hassabis, 2015) or its variants including
DDQN (Van Hasselt, Guez, & Silver, 2016), etc., can be
used. The learning process is illustrated in Figure 2.

5.1. Deep Q-Network

In the DQN approach, we aim to learn the optimal Q-
function, denoted as Q (s, a), which represents the maximum
expected accumulated discounted reward achieved by
following the alert policy starting from state s and action a in
the simulated prognostics environment. Once the optimal Q-
function is obtained, the optimal alert policy can be derived
by selecting the action that maximizes Q (s, a), i.e.,

u(s) = argmax, Q(s,a) 9)

This alert policy u(s) outputs the best action to take in each
state to maximize the value function. We use a neural
network to parameterize the Q function denoted by
Q(s,a; 8). To learn these parameters, there is a replay buffer
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Figure 2. Illustration of deep reinforcement learning for airplane component failure prognostics.

that stores the training data in the form of data tuples
(s, r, a, s"), corresponding to state, reward, action and next
state, respectively. The neural network is trained iteratively.
In each training iteration, the alert policy is executed in the
simulated prognostics environment to generate new
experience tuples, which are then added to the replay buffer.
A data batch is randomly sampled from the replay buffer to
update parameter 8 through the gradient descent method to
minimize the following temporal difference error

6= Q(S' a) - (T + ymaxaQ’ (S’, a)) (10)

where y is a discount factor and Q' (s’, @) is a separate target
Q function that is a copy of Q function but are updated less
frequently that helps to stabilize the learning procedure.

5.2. Double Deep Q Network with Prioritized Replay
Buffer

In the airplane components failure prognostic framework, we
only get a positive reward when there is a successful alert,
which only happens once for the whole component lifecycle.
Such a sparse reward setting makes it very challenging to
learn the optimal decision-making policy. We used the
prioritized replay buffer (Schaul, Quan, Antonoglou, &
Silver, 2015) to address the reward sparsity issue. The
prioritized replay buffer technique prioritizes the training
data samples based on their importance quantified by
temporal difference error. To further address the
overestimation bias in DQN approach, we applied DDQN
that decouples max operation of target Q function in Eq. (10)
to the action selection and action evaluation procedure,
captured by

6§ =Q(s,a)— (r+ yQ' (s’, argmaxaQ(s’,a))) (11)

This DDQN prevents overestimation of the Q value function
by using different Q functions for action selection and Q
value evaluation. Specifically, the current Q-network is used
to select the best action, while a separate target Q-network is
used to evaluate the value of that action, thereby providing
more accurate and stable value estimates.

6. POLICY DEPLOYMENT AND EVALUATION

After training the policy, we need to evaluate the
performance of the policy. In addition to the reward value
obtained by the policy running in the simulation
environment, we use three other evaluation metrics to provide
a more straightforward evaluation that is better aligned with
business operation.

1) Precision: the ratio of alerts that lead to successful
detection of airplane component failure to the total number of
alerts generated by the alert policy. This metric reflects how
often the alerts correspond to actual airplane component
issues, indicating the effectiveness of the alert policy.

2) Recall: the ratio of the number of airplane component
failures that are successfully alerted to the total number of
failures. This value shows how often failures are successfully
alerted.

3) Inspection Redundancy: the ratio of the number of
unnecessary inspections that are triggered by false alerts on
healthy components to the total number of inspections
conducted by airline on the airplane component.
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These three metrics capture the accuracy of alerts and the
ability to detect all airplane component failures, and the
associated inspection costs from the perspective of business
operation. Ideally, an optimal policy has high precision and
recall scores, and low inspection redundancy.

After the policy is learned in simulated environment, we
deploy the policy to the actual airplane components failure
prognostic procedure. Each day the service organization
receives flight records F(t) and service records S(t) from
airlines, those records as well as flight records from previous
days, up to N records in total, where N depends on pre-
defined service rules and past operation experience, are
concatenated to form a state S(t) and are given as input to the
alert policy.

A key deployment challenge is to handle missing and out-of-
sequence records, which disrupt the time order and result in
variable-length inputs. To address this, we reorder the records
into the correct temporal sequence and apply zero-padding to
fill in any missing data, ensuring consistent input dimensions
for the policy.

Moreover, as new flight and service records come in, we
update the environment models with new data and perform
continual training of policy in the new environment models
to adapt to the new data. Additionally, we adjust reward
parameters based on airline operation needs to balance
various operational costs.

7. CASE STUDY

We conducted a case study on applying our deep
reinforcement learning approach for ACM failure
prognostics. In the following subsections, we describe the
ACM failure prognostics procedure and experiment results.

7.1. Air Cycle Machine Failure Prognostics

ACM is a crucial component in a commercial airplane. Its
main function is to provide cabin air conditioning and
pressurization by utilizing the principles of thermodynamics.
The ACM operates by taking compressed air from upstream
components and then expanded through a turbine. This
process cools the air, and the cooled air is then directed into
the cabin and other compartments. In our case study of
prognostics procedure for ACM, we have flight and service
records on ACM from 17 airlines. Each airline provides
sensor data for ACM, its lifecycle information, historical
alerts and inspection records regarding an ACM. In total we
have records for 257 ACM lifecycles. The source data
column and data descriptions are summarized in Table 1.
There are two ACMs in an airplane; we only show examples
for the left sidle ACM here. Among these ACM data, the
LLabel is Failure prediction label using a data-driven model,

Table 1. Data from airlines on ACM.

Source data column Data description
Tail Airplane ID
Leg Time of the flight record
LLabel Failure prediction label
using a pretrained model
LTruth True failure label
LTTOSeconds E;ﬁtlil;nto (s)tfo pggg/l from
LDaysFromRemoval i;n;sz of days from last
LDaysToRemoval illlnn(l)sz of days to next
AlertTime Alert sent time
InstallTime ACM installation time
RemovalTime ACM removal time
InspectionTime ACM inspection time
InspectionSummary ACM inspection result

while LTruth is the ground truth label. In our study, we
include LLabel into our state as it captures component
features implicitly, while we don’t include LTruth to avoid
label leakage.

7.2. Flight Data Processing

Our deep reinforcement learning method is designed to
effectively capture data characteristics of flight and service
records, which usually contain out-of-sequence and noisy
data. Moreover, sensor data are sometimes missing for
certain time periods. To ensure good performance, we need
to process the data to make it ready and clean for use.

The flight records, including sensor data and flight logs are
shared by airlines. Each record includes a date, flight number,
and basic information of the airplane component such as the
airplane registry number. It also contains the number of days
since the previous removal (except for the first installation on
that airplane) and the number of days to the next removal
(except for the last installation on that airplane, i.e., the
component is still on-wing). Moreover, the flight record
includes features extracted from the component’s sensor data,
along with a failure prediction label generated by a pre-
trained model that uses these features as input. For example,
in ACM, one of the features is TTOseconds, which indicates
the number of seconds it takes for ACM from a consistent
running state to full stop. Generally, the smaller the value of
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Figure 3. Fitting inspection delay model using
exponential distribution.

TTOseconds, the larger probability of ACM malfunctioning,
as degrading ACMs with higher frictions usually stop more
quickly. Since flight records can miss entries, we apply a
filter to get rid of flight records lacking important features
such as number of days since its previous removal, number
of days to its next removal, and sensor information.

In addition, we need to extract individual lifecycles of
components. A complete lifecycle is obtained by checking
each flight record in chronological order, if any of the
following three conditions is satisfied, we reach the end of a
component lifecycle, which means it is either replaced or
there are no more available flight records.

e  The registry number of the current flight record is
different from the next one, which means flight
record changes to a new airplane.

e  The number of days since the last removal drops.
For the same airplane component, the number of
days from the last removal should continually
increase.

e  The number of days until the next removal jumps.
For the same airplane component, the number of
days to its next removal should continually
decrease.

Another valuable dataset we utilize is the service records,
which capture the interaction history between BGS and
airlines. This includes historical alert times, inspection
schedule times and inspection results, removal time of
airplane component. Moreover, airlines sometimes perform
inspections on airplane components proactively, which are
also recorded in the service record. We only use records with
alerts, which can be extracted based on entries with available
alert time.

7.3. Model Fitting

With the ACM data from airlines, for each airline, we first
fitted several models discussed in Section 4.3 including the
airline response model, inspection delay model, inspection

[ Fitted probability
« Samples probability

Figure 4. Fitted inspection result probability model.

result model and airplane component state transition model
to build an ACM prognostics simulation environment. The
airline-specific inspection probability model is estimated
based on the ratio of number of inspections to the total
number of alerts. On average, the inspection probability for
17 airlines is 0.732. The inspection delay model, illustrated
in Figure 3, demonstrates that the exponential distribution
effectively captures the characteristics of inspection delays.
To further validate the model fitting, we computed the one-
sample KS statistic and CvM statistic (D'Agostino &
Stephens, 2017) to measure the maximum deviation and
average squared distance, respectively, between samples
CDF and fitted exponential distribution CDF. The KS
statistic value is 0.0842 and CvM statistic value is 0.0367.
Moreover, the inspection result model, as shown in Figure 4,
reveals that as the days to removal get closer and the
inspection delay gets smaller, the inspection failure
probability increases. This finding aligns with the discussions
on factors that have an impact on inspection results in Section
433.

Table 2. Reward for different operations.

Operation Reward value
Send alert -0.1
Unnecessary alert -0.5
Unnecessary inspection -30
Successful alert 100
Missing ACM failure -100

7.4. Training Results

We trained our deep reinforcement learning approach on a
Dell Laptop equipped with 12% i7-12800H, 2.4GHz, 32GB
RAM using CPU-only computation. The dataset was split
into 73% training data and 27% evaluation data by using a
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Figure 5. Training rewards with number of
episodes for DQN and DDQN with PRB.

cutoff date of 05/01/2023 to separate records from each
airline accordingly. And we set the reward for different
operations as summarized in Table 2 based on general
operational requirements. A large reward is given for issuing
a successful alert, while an equally significant penalty is
applied for missing an ACM failure. A smaller penalty value
is given to unnecessary inspections. Minor penalties are given
to sending alerts or unnecessary alerts.

We let the state s(t) defined in Section 4.1 include time
sequence vectors with length 100 and each vector contains
four features including LDaysFromRemoval, LLabel,
LTTOSeconds as described in Table 1 and a binary tag to
indicate if there is a scheduled inspection to avoid sending
unnecessary alerts. Both the Q Network and target Q
Network are represented by an LSTM module followed by
three fully connected layers with ReL U activation units (Nair
& Hinton, 2010). Hidden size of the LSTM module is 64 and
the three fully connected layers have 64, 64, 32 units. The
learning rate for both DQN and DDQN with PRB are set to
0.001. The batch size is set to 64. The size of replay buffer
and the parameter of prioritized sampling for PRB are set to
100000 and 0.1, respectively.

During training, both DQN and DDQN with PRB use €-
greedy selection strategy (Sutton & Barto, 2018), in which
with probability € the agent selects a random action to explore
and with probability 1—€ it selects the greedy action that
maximizes the current Q-value function. DDQN with PRB
adopts a € power decay process with minimum € set to 0.01
and power decay factor of 0.99. As learning progresses, the
policy shifts from exploration toward exploitation. DQN uses
a fixed epsilon with value 0.02. The discount factor y is set
to 0.99. The parameters of Q networks are updated at every
transition step.

It takes around 43 minutes to train DQN algorithm and
around 56 minutes to train DDQN with PRB. Figure 5 shows
the training rewards over episodes for both algorithms. We
can see from the figure that the training reward gradually
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Figure 6. Precision scores of DQN and DDQN with PRB for
different airlines ACM prognostics.
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Figure 7. Recall scores of DQN and DDQN with PRB for
different airlines ACM prognostics.
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Figure 8. Inspection redundancy ratio of DQN and DDQN
with PRB for different airlines ACM prognostics.

increases with the number of episodes, indicating that both
algorithms are optimizing the alert policy. We can also see
that DQN achieved a similar reward level to DDQN with
PRB.
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Figure 9. Examples of running DDQN with PRB for Airline #3 in simulated ACM prognostics procedure using real data.

7 5. Evaluation Results Table 3: Precision and recall scores of three approaches.

After training the alert policies, we evaluated their Precision | Recall

performance by applying them to the prognostics procedure DQN 0.23 0.44
for five airlines using the evaluation dataset. To protect -

proprietary information of airlines, the airlines are DDQN with PRB 0.18 0.61
anonymized and labeled as Airline #1 through #5. Moreover, Heuristic Approach 035 0.25
as discussed in Section 6, we adopt precision, recall scores
and inspection redundancy as key evaluation metrics. The

evaluation results are summarized as follows. Note that in our deep reinforcement learning approach, we
. . ) can adjust reward weights to balance the precision and recall
Precision scores of DQN and DDQN with PRB for different  cqreq” which can potentially have both higher recall and

airlines are shown in Figure 6, which shows that DON  ,ecision scores than the heuristic approach. This flexibility
achieves higher precision scores than DDQN with PRB for 150 enables more adaptable business operation.

Airline #2, #4 and #5, but lower scores in Airline #1 and #3.
As for recall scores shown in Figure 7, DDQN with PRB  pop jjjustration, in Figure 9, we show three representative
outperforms DQN in all airlines except Airline #2. prognostics outcomes from the DDQN with PRB alert policy
) ) ) for Airline #3, simulated using models derived from real data.
Comparing Figure 6 and Figure 7 reveals that both  geenario 1 (Figure 9.a): an alert was issued within 30 days of
approaches have higher recall scores than precision scores for an actual ACM failure, but no inspection returned “Failed”;
most airlines. This is because both approaches send many the policy still receives a high reward because it correctly
alerts, even though most of them are unnecessary ones. In- anticipated the failure. Scenario 2 (Figure 9.b): an alert
other words, the alert policy is aggressive in sending alerts o 1jo0ered an inspection that returned “Failed,” confirming the
capture any possible actual component failure even if there g1 and earning a high reward. Scenario 3 (Figure 9.c): no
are many false alerts. This is validated by the inspection  ,ert was issued within 30 days of failure, indicating a missed
redundancy ratio shown in Figure 8. The figure shows that detection. Across these examples, failed ACMs typically

both DQN and' DDQN with PRB have lar'ge inspection oy hibit smaller LTTO0Seconds, i.e., shorter time from running
redundancy ratio. DQN achieves a relatively smaller stop.

redundancy ratio.

. 7.6. Impact of Reward Parameters
Furthermore, we also compared DQN and DDQN with PRB

approaches with currently deployed heuristics approach for ~ The performance of deep reinforcement learning approach
ACM prognostics. The average precision and recall scores of ~ for ACM prognostics is sensitive to reward parameters,
three approaches are summarized in Table 3. As shown in the particularly the weights assigned to different operational
table, the current heuristic approach has the highest precision ~ outcomes. These weights directly influence the precision and
score, however, DQN and DDQN with PRB approaches have recall scores of the alert policy. To evaluate this impact, we

much higher recall scores than heuristic approach. compare the precision and recall scores of DQN trained alert
policy under different reward weights for unnecessary

inspections and successful alerts, which is shown in Figure
10. We can see that as the reward for unnecessary inspection

10
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Figure 10. Precision and recall scores of DQN
trained alert policy with different reward weights.

decreases from -10 to -80, the precision score has a trend to
increase while the recall score tends to decrease. This occurs
because smaller unnecessary inspection reward discourages
the alert policy sending excessive alerts, thereby reducing
unnecessary inspections. As a result, the precision score
increases due to fewer false alerts, while the recall score
decreases as the alert policy becomes more conservative,
increasing the likelihood of missing actual component
failures. Therefore, selecting appropriate reward weights is
crucial to balancing the trade-off between precision and
recall, ensuring the alert policy aligns with operational
priorities.

8. CONCLUSION

In this paper, we developed a reinforcement learning-based
approach to automate full cycle airplane component failure
prognostics and enhance alert timing accuracy. Our approach
leverages probabilistic data modeling derived from real flight
and service records to simulate the prognostics process and
adopts an LSTM neural network to represent the alert policy.
We explored two deep reinforcement learning algorithms:
DQN and DDQN with PRB to train the policy. A case study
on ACM prognostics was conducted to evaluate our
approach. The results demonstrated that our approach
achieves much higher recall scores, but slightly lower
precision scores compared to the heuristic approach currently
deployed at BGS. Furthermore, we highlight the inherent
trade-off between precision and recall, which can be balanced
by tuning reward weights according to operational priorities
and maintenance costs. In the future, we will explore other
reinforcement learning algorithms such as Deep
Deterministic Policy Gradient (Lillicrap, Hunt, Pritzel,
Heess, Erez, Tassa, Silver, & Wierstra, 2015) to further
enhance precision and recall scores and reduce inspection
redundancy.

NOMENCLATURE

F(t)  Flight records at time ¢t
S(t) Service records at time t

a(t)  Alertaction at time t

f ()  Alert model

r(+) Reward function

P ()  Probability mass or CDF

p ()  Probability density function

X Bernoulli random variable to denote if an inspection
is scheduled or not

Y Continuous random variable to denote inspection
delay

Z Bernoulli random variable to denote if an inspection
result is Failed or Passed

w Continuous random variable to denote number of

days between inspection and removal
s(t) State at time t
s State at next time step

u ()  Alertpolicy

Q (1)  Value function

Q' (1) Target value function

N Number of records

T Terminal time of airplane component life cycle
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