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ABSTRACT

Predictive maintenance of complex mechanical systems re-
quires robust health monitoring capabilities that can general-
ize across diverse components and operating conditions. We
present a novel component-agnostic framework that unifies
Health Indicator (HI) generation and Remaining Useful Life
(RUL) prediction through an integrated pipeline comprising
of: (a) advanced feature engineering, (b) unsupervised health
baseline modeling, (c) monotonicity and trendability learning
(d) probabilistic degradation detection with confidence-aware
RUL estimation. We validate our framework on two distinct
industrial applications: (1) We monitor tool insert wear in a
CNC machine using vibration and spindle current signatures.
Our framework achieves early detection of tool life with RUL
prediction within 10% of actual failure time. Flank wear (VB)
was measured to evaluate tool wear. (2) We utilize the IMS
bearing dataset to demonstrate fault detection earlier than tra-
ditional threshold methods with 95% confidence intervals.

Both case studies show strong HI monotonicity > 60% and
reliable uncertainty quantification, establishing the founda-
tion for scalable and explainable predictive maintenance so-
lutions. The framework’s component-agnostic design enables
rapid deployment across heterogeneous assets without exten-
sive reconfiguration, while its interpretable architecture fa-
cilitates root cause analysis and maintenance decision sup-
port. These results demonstrate significant advances in scal-
able and explainable predictive maintenance, offering practi-
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tioners a unified solution for diverse industrial health moni-
toring challenges.

1. INTRODUCTION

Failures in industrial machines can cause delays, rack up
costs, and can even be catastrophic (Schwendemann, Amjad,
& Sikora, 2021). In addition, they can also precipitate the
failure of other components. Thus, being able to anticipate
failures early and respond accordingly is crucial. Conven-
tional methods include frequent manual inspections to check
the health of the component. These can involve pausing the
machines and measuring health, which is time consuming
and inefficient (Rombach, Michau, Bürzle, Koller, & Fink,
2024). Intelligent RUL estimation maintains the efficiency
and safety of industrial machines through proactive mainte-
nance scheduling, which directly reduces delays caused by
worn-out components and lowers costs of repairs (Lei et al.,
2018). However, the broad application of effective predictive
maintenance systems remains challenging due to fundamen-
tal limitations in current approaches. Different operating con-
ditions mean that several current approaches cannot be used
in a different environment, with different loads, speeds, or
materials. In addition, many solutions cater only to specific
components or systems that can require extensive reconfigu-
ration or retraining for other new components/systems. They
may also require labeled data from previous failures which is
hard to obtain, as many times failures are not recorded or the
creation of labeled data can be time consuming and impracti-
cal.

To address the above limitations, we propose IntelliMaint, a
novel, intelligent framework that can be applied on a diverse
array of components to monitor, diagnose and prognosticate
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in different domains. It’s adaptive learning methodologies
don’t require labeled failure data as it understands the un-
derlying structure of normal operating patterns and provides
monotonicity enforcement to ensure interpretable and realis-
tic degradation trends. The framework simplifies the devel-
opment of PHM applications, making it easier to adapt the
library to various components and operating environments.

2. RELATED WORKS

The increasing availability of data has provided ways to
predict future events in the industrial maintenance sphere.
However, due to the large diversity of systems, materials
and conditions, a generic and comprehensive framework that
makes it accessible and convenient to create PHM applica-
tions is needed. During the creation of the library, we fo-
cused on 4 requirements: (1) Unsupervised Health Indicator
creation (HI), (2) Unsupervised RUL estimation, (3) Com-
ponent agnostic, and (4) End to end workflow. We explored
current literature pertaining to these requirements.

2.1. Health Indicator

Health Indicators (HI) are useful as they are a real time rep-
resentation of the health of the component. HIs are different
from condition indicators in that while condition indicators
are usually a single feature that reflects the health, HIs are
usually combinations of features (Zhou et al., 2022). They
can distinguish between degraded and normal functioning of
systems. Traditional approaches to calculate condition indi-
cators are statistical in nature like Root Mean Square (RMS)
or Spectral Kurtosis. However, separately, each signal may
not represent the complete health status of the component
(Zhou et al., 2022). To counter this, a HI is created by aggre-
gating several statistical features that more accurately reflects
the health (Li et al., 2023). There are supervised and unsu-
pervised approaches to this type of feature fusion. (Wang,
Zhang, Guo, & Lin, 2022) creates a health indicator from
multiple time domain features by employing a Supervised
Depth network. However, it still encounters the challenge
of often requiring labeled data and limited transferability be-
tween components.

Unsupervised approaches extracts time-domain features
from bearing vibration signals and fusing them into a sin-
gle HI using Principal Component Analysis (PCA) (Gao, Li,
Huang, & Wang, 2021). However, PCA doesn’t capture non-
linear structures. Self Organizing Maps (SOM) is often uti-
lized as a type of unsupervised feature fusion (Hong, Zhou,
Lu, Heart, & Zhao, 2015). SOM is an unsupervised neural
network with the advantage that it can be trained on healthy
data and does not require any faulty samples. Since many
industrial systems lack extensive historical failure data, our
framework uses SOM to learn a baseline ”healthy” state from
normal operating data, allowing it to detect degradation and

anomalies without requiring a large number of complete run-
to-failure cycles. This is a significant advantage over super-
vised models that demand extensive labeled data for training.

2.2. RUL Estimation

Remaining Useful Life (RUL) estimation is a critical com-
ponent of predictive maintenance, enabling the assessment
of operational longevity for industrial assets through sensor
data and degradation modeling (Wu, Wu, Tan, & Xu, 2024).
Broadly, RUL methodologies fall into physics-based models
(reliant on domain-specific mathematical formulations) and
data-driven approaches (leveraging historical and real-time
operational data). Modern research increasingly focuses on
data-driven techniques due to their adaptability across sys-
tems. Deep learning models like LSTM networks excel at
capturing temporal dependencies in sensor time-series data,
with bidirectional variants (BiLSTM) enhancing feature ex-
traction through forward-backward sequence analysis (Nie,
Zhang, Xu, Cai, & Yang, 2022). Particle Filtering (PF) em-
ploys Monte Carlo simulations to recursively update state es-
timates in dynamic systems, particularly effective for nonlin-
ear degradation processes with uncertainty (Fan, Yang, Li, &
Wang, 2015). Gaussian Process Regression (GPR) provides
probabilistic RUL forecasts by modeling stochastic degrada-
tion trajectories, offering inherent uncertainty quantification
(Hong et al., 2015) and outperforms PF in scenarios requir-
ing probabilistic uncertainty quantification. In our work, we
employ GPR based models to provide probabilistic RUL pre-
dictions with confidence intervals, enabling risk-based main-
tenance decisions rather than deterministic point estimates.

2.3. Component agnostic framework

PHM is necessary for any machines with electro-
mechanical signals and parts because it enables early de-
tection and prediction of faults and can reduce downtime
and maintenance costs. This makes a generic and complete
workflow necessary but also challenging to create. Most
current solutions for RUL estimation are specific to a cer-
tain system or type of component or signal and they may
require complete re-engineering when applied to new com-
ponents or operating environments. This limitation could
prevent organizations from scaling up in their predictive
maintenance implementations. The specificity of many ex-
isting approaches could be because of several factors: (1)
Component-Level Focus: Much of the research has tradi-
tionally concentrated on component-level PHM for particular
parts, such as bearings (Kim, Kim, & Choi, 2021), rather than
comprehensive system-level PHM. (2) Model-Based Limita-
tions: While physics-based methods can offer high accuracy
by employing physical and damage propagation models, they
are often restricted to specific components and fault types
(Qi, Zhu, Liu, Mauricio, & Gryllias, 2024). (3) Uncertainty
Handling: While advanced Deep Learning (DL) models can
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generate accurate RUL predictions, their inherent ability to
account for uncertainties is often limited, necessitating hybrid
approaches (Aizpurua et al., 2022). There are a few solutions
that are scalable and generic enough to extend to a variety
of usecases and scenarios. Progpy (Teubert, Jarvis, Corbetta,
Kulkarni, & Daigle, 2023) is a robust set of support packages
for development of PHM applications. The library focuses
on modeling and prediction aspects. Another framework
(Kansanaho & Kärkkäinen, 2019) is generic across different
systems and components providing core PHM functionalities
and modular architecture. However, this framework is lim-
ited to tribotronic systems only. Given the prevalence and
need for prognostics across different systems such as electro-
chemical and electro-mechanical ones, Intellimaint seeks to
provide prognostic solutions for a diverse array of systems by
separating core logic from domain-specific configurations.

2.4. End to end workflow

An efficient and end to end predictive framework enables
developers to efficiently deploy robust, scalable, and sophis-
ticated predictive maintenance solutions for various systems.
Progpy (Teubert et al., 2023), while being a robust frame-
work for prognostics and predictive maintenance, relies on
external tools for data clean up, signal processing and feature
extraction. (Zhuang, Xu, & Wang, 2023) worked on a gen-
eral predictive maintenance framework based on Bayesian
deep learning. It addresses uncertainty quantification, and
the frameworks aim to manage complexity and uncertainty
but doesn’t support the entire life cycle. In IntelliMaint,
we choose to address all aspects of the Predictive Mainte-
nance (PdM) pipeline, from data acquisition to post process-
ing artifacts such as visualizable health indicators, degrada-
tion trends, and confidence bounds that enable maintenance
personnel to understand and trust the system’s recommenda-
tions.

3. PROPOSED FRAMEWORK

We propose a single framework that can effectively moni-
tor, diagnose, and prognosticate across diverse components,
signals, and operational domains.

3.1. Key Features

• Adaptive Data Driven Learning: The core library em-
ploys unsupervised approaches like self organizing maps
(SOM), Autoencoders, Transformers methods for adap-
tive unsupervised learning. In this paper, we’ve consid-
ered and applied SOM to learn from the normal operation
of the component, thus eliminating the need for labeled
failure data. Because of this, it can be generalized to
different operating conditions. It learns what constitutes
normal for that component and operating environment.
Since it has an understanding of baseline operation, it

can provide a health metric that tracks when deviation
from the baseline occurs. Additionally, it dynamically
updates its learning as each new normal data point be-
comes available. For degradation learning, it employs
Gaussian Process Regression based model, which is a
probabilistic, Bayesian based framework that models the
degradation trend by learning from the health metric de-
rived by SOM. It makes no assumptions of the degrada-
tion form, it could be exponential or linear and provides
confidence bounds for the predicted degradation.

• Component agnostic by design: The framework has been
designed as a flexible and customizable set of modules,
due to which it can be employed across different sys-
tems, be it tools/bearing/motors/batteries etc. and phys-
ical domains such as mechanical, electrical or chemical.
The Component Template isolates domain logic while
reusing IntelliMaint’s core for HI generation, anomaly
detection, and RUL prediction.

• Monotonicity: Ensures health indicators decrease over
time by leveraging Isotonic regression which provides
a mathematical guarantee of monotonic health indicator
evolution. Additionally, the system enhances trendability
by intelligently filtering noise.

• Probabilistic Uncertainty Estimation: The library pro-
vides RUL with quantified uncertainty. For example, it
provides explainable and risk aware predictions such as
”Failure expected in 120 cycles ± 20 cycles at 95% con-
fidence”, helping make risk informed decision. Further,
it can provide confidence bounds that narrow as failure
approaches. This can help with maintenance planning.

• Explainable, Interpretable Results: IntelliMaint provides
intuitive visualizations that empower decision-makers
through HI curves, degradation phase identification and
feature contribution analysis.

• Scalability and Modularity: IntelliMaint employs a
object-oriented design with interchangeable modules
which lends it a plug and play extensibility. Different sig-
nal types, custom domain-specific features, physics and
data driven approaches can be seamlessly integrated.

• Ease of Use: Since the entire PHM workflow is con-
tained in the Component Template, even domain engi-
neers who may not necessarily be data scientists can use
the library by choosing an existing model and inherit-
ing the remaining from the Base class. See Table 1 for
a summary of advantages IntelliMaint provides from the
perspective of the developer, based on internal develop-
ment experience. Future developer sessions are planned
to assess these benefits empirically. The proposed plan is
explained in the Appendix.
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Feature Without Template With IntelliMaint Template
Code per asset Built from scratch Only override domain specific methods
Model reuse Manual integration Pre-wired models (SOM, GPR)

Developer skill required High (ML + DSP) Moderate (domain + config)
Consistency of results Varies Standardized + testable pipeline

Table 1. Advantages of IntelliMaint framework from the Perspective of the Developer

3.2. Framework design

The core library is organized around a set of core abstract
and base classes, each encapsulating a specific stage of the
data-driven maintenance workflow. The base class defines
the entire PHM workflow, this way developers don’t need to
create it from scratch, they only need to create the domain
specific methods. The core classes have prebuilt implemen-
tations of popular analysis approaches like SOM and GPR.
The user can create asset specific monitors by overriding core
class methods to handle system/domain specific logic. These
overridden classes are brought together by the Component
Template which manages the end-to-end process: loading
data, extracting features, detecting anomalies, and predicting
RUL, while handling errors and logging at each step. Fig 1
and Table 2 contain an overview of the framework. These are
the 4 core steps:

• Data Acquisition: The DataAcquisition class handles the
discovery and loading of raw sensor data from various
file formats (CSV, MAT, etc.). These classes provide
methods for listing files, loading individual files, and
preprocessing data as needed, supporting both generic
and asset-specific data structures. It can be subclassed
to serve domain-specific functionality (e.g., For a bear-
ing component, you could make a BearingDataLoader
to handle additional requirements such wanting only nu-
meric data etc.).

• Data manipulation: This group of classes includes
generic signal processing classes (Signal Separation,
Signal Enhancement), feature extraction classes (Time-
Domain, FrequencyDomain) and feature selection.
These classes provide methods to process and enhance
raw signal data, compute statistical, time-domain, and
frequency-domain features, as well as specialized fea-
tures relevant to the monitored asset. Feature extraction
can be performed on a per-file or per-window basis, and
results are aggregated into structured DataFrames for
downstream analysis.

• State Detection: This group of classes include health
indicator construction and anomaly detection
(SOMAnomalyDetection, COSMOAnomalyDetection)
(Rafik, 2019), which implement self-organizing map
(SOM) and other algorithms for creation of health in-
dicators and for unsupervised detection of abnormal

behavior. These classes are responsible for training
baseline models, scoring new data, and visualizing
anomaly distributions.

• Prognostics Assessment: For assets where remaining
useful life (RUL) estimation is required, the framework
provides modelers such as Gaussian Process Regression
based models to forecast degradation trends and predict
time-to-failure. These components can be further cus-
tomized for specific assets or degradation patterns.

Additionally, all components are configured via nested
Python dictionaries, allowing users to specify file patterns,
preprocessing options, feature extraction parameters, and
model hyperparameters without changing code. The frame-
work’s design encourages extension through subclassing and
method overriding, so new asset types or algorithms can be
integrated by implementing only the relevant methods. In
terms of visualization and reporting, the framework provides
detailed visualizations (e.g: anomaly score distributions,
health index trajectories, RUL forecasts) and logs throughout
the workflow, supporting both interactive exploration (e.g., in
Jupyter notebooks) and automated reporting.

4. THEORY

IntelliMaint’s mathematical framework outlines a system-
atic approach to processing raw sensor data, extracting mean-
ingful features, transforming them into a normalized Health
Indicator (HI), modeling degradation, and estimating Re-
maining Useful Life (RUL) probabilistically. Below is a
detailed explanation of its mathematical formulations of the
components:

4.1. Feature Extraction and Fused Indicator

This initial stage focuses on converting raw, high-
dimensional sensor signals into a set of relevant features
that capture the system’s state and then combining these fea-
tures into a single fused indicator. The process begins with
xtϵR

d, which represents the multivariate signal snapshot cap-
tured at a specific time t and d sensor channels. This is the
raw sensor data, potentially from multiple sensors or multiple
axes (like X, Y, Z vibration data). A feature extractor func-
tion feat extract() is applied to xt to derive a set of salient
features, denoted as ft . These features are designed to be
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Figure 1. Framework Design
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Input Class Output
Raw signals Data Acquisition Structured data

Structured data Signal Processing Processed data

Processed data Feature Engineering Derived features

Derived features Feature selection Selected features

Selected features Health Indicator HI values

HI values, Selected features Anomaly detection Anomaly set

Anomaly set Validate anomaly Validated anomaly

Selected Features, Anomaly set Prognostics RUL Model RUL predicted

Table 2. Framework Design Data Flow

sensitive to degradation and component wear. Examples of
features extracted include: Root Mean Square (RMS), Kur-
tosis, Spectral Kurtosis, Discrete Wavelet Transform (DWT)
Coefficients.

ft = feat extract(xt) (1)

The framework utilizes a Self-Organizing Map (SOM) for un-
supervised learning. SOM is a competitive neural network
that performs unsupervised feature mapping through topolog-
ical preservation. The SOM MQE error et is computed as
the squared Euclidean distance between the extracted feature
vector ft and w∗, which represents the weight vector of the
Best Matching Unit (BMU) from the trained SOM (Hong et
al., 2015). This error measures how well the current feature
vector is represented by the learned prototypes of the SOM.
A higher error might indicate a departure from the learned
baseline or healthy states.

et = ||ft − w∗||2 (2)

The IntelliMaint framework then creates a ”fused indicator”
zt from the SOM MQE error (et). This fusion aims to create
a more robust single metric that captures different aspects of
degradation.

zt = et (3)

4.1.1. Adaptive HI mapping

The raw fused indicator zt can be unbounded and may not
directly represent degradation in an intuitive way. This step
adaptively maps zt into a normalized Health Indicator (HI),
denoted as ht. The HI is typically a bounded metric (e.g.,
between 0 and 1) that monotonically increases or decreases
with degradation. Four types of mapping functions M are
provided:

1. Log Mapping: This mapping uses a logarithmic transfor-
mation, useful when the indicator zt spans several orders
of magnitude. α is a scaling parameter, and zmin is a

reference minimum value.

M(zt) = exp(−α ∗ (log(zt)− log(zmin))) (4)

2. Min-Max Mapping: This is a common linear normaliza-
tion technique that scales the indicator between 0 and 1,
assuming degradation increases as zt moves from zmin
to zmax. It can be adapted to scale between 0 and 1 or 1
and 0 depending on whether increasing zt means wors-
ening health. The formula maps minimum health to 1
and maximum health to 0, or vice versa, depending on
the interpretation ofzmin and zmax.

M(zt) = (zt − zmin)/(zmax − zmin) (5)

3. Sigmoid Mapping: The sigmoid function maps any real
value to a range between 0 and 1. This can be useful for
indicators that exhibit an S-shaped degradation curve.

M(zt) = 1/(1 + exp(−β0 − β1 ∗ zt)) (6)

4. Isotonic Regression: This is a non-parametric method
that learns a monotonic (non-decreasing or non-
increasing) mapping function from zt to ht . It is
data-driven and does not assume a specific functional
form.

4.1.2. Monotonicity Enforcement

To ensure consistent degradation trends, the mapped health
indicator ht is enforced to be monotonic. One simple step-
wise enforcement is:

ht = min(ht, ht−1 − ϵ) (7)

4.1.3. Degradation Modeling & RUL Estimation

This final stage models the dynamics of the Health Indica-
tor over time and uses this model to predict the Remaining
Useful Life (RUL) through:

1. HI Dynamics Modeled as Gaussian Process (GP): The
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Health Indicator (HI) ht is modeled as a Gaussian Pro-
cess. A Gaussian Process defines a distribution over
functions, meaning it can model the uncertainty in the
HI trajectory. It is characterized by a mean function µ(t)
and a covariance (kernel) function k(t, t′).

ht ≈ GP (µt, k(t, t
′)) (8)

This allows IntelliMaint to not only predict the future
HI trajectory but also to provide probabilistic uncertainty
bounds around these predictions.

2. RUL Estimation: The Remaining Useful Life (RUL) is
estimated as the minimum future time t∗ at which the
predicted Health Indicator h(t∗) reaches or crosses a pre-
defined failure threshold δ. Below we assume δ is a low
health threshold:

RUL = min(t∗|h(t∗) ≤ δ) (9)

Because the HI dynamics are modeled probabilistically
via a GP, the RUL estimation also inherently comes with
uncertainty bounds (e.g., 2σ).

This mathematical framework enables IntelliMaint to learn
component-agnostic health baselines via unsupervised learn-
ing, adaptively map raw metrics to a normalized HI, enforce
monotonicity, and predict degradation trajectories and RUL
probabilistically with uncertainty bounds.

5. CASE STUDIES

The framework was tested through 2 case studies: The first
is a real world experiment conducted on the CNC machine
(Turn mill) where the run to failure data of the tool insert
was collected. The second study tested the framework on a
bearing vibration dataset created by the Center for Intelligent
Maintenance Systems (IMS) of the University of Cincinnati
(IMS Bearings, 2007).

5.1. Tool Insert Monitoring

Vibration data was collected from an accelerometer sensor
mounted on the spindle headstock of the CNC machine, over
the course of 4 days with gaps. The Flank Wear (VB), Sur-
face Roughness (Ra) and Current were measured every few
hours with a digital microscope, profilometer and Hall effect
current transducer respectively, see Table 3 and Fig 5b. The
purpose of these physical measurements was to provide an ac-
curate timestamp of the tool’s degradation and failure in the
real world. A run-to-failure experiment was conducted with a
single carbide insert operated on Mild Steel work pieces, Fig
3b. The tool performed facing operations on the workpieces
under regular industrial working conditions.

5.1.1. Experiment Specifications

• Sensors: NCD Predictive Maintenance accelerometer

(a) Insert in Machine (b) Close up of insert

Figure 2. Tool Insert in CNC Turn Mill Machine

• Insert: Carbide insert - CNMG 120408-DR YBC252

• Work piece: Mild-steel workpieces

• Total number of work pieces operated on: 24 work pieces

• Number of files recorded: 88 files or snapshots

• Machine: DMG CTX 310 eco V3 CNC

• Sampling Rate: 25.6 kHz for 52 milliseconds every 5
minutes

• Facing operation cycle time: 16 minutes

• Depth of cut: 0.5 mm

• RPM: 1500

• Feed rate: 0.3 mm/rev

5.2. IMS Bearing Dataset

We used a popular dataset from the Center for Intelligent
Maintenance Systems (IMS) of the University of Cincinnati
(IMS Bearings, 2007) in this evaluation. In these run to fail-
ure tests, four double row bearings were installed on one
shaft. The shaft rotation and the radial load were constant
during the test-runs and all bearings were force-lubricated.
For each test-run, run-to-failure data was collected. For our
evaluation, we used the data from the second set for bearing 1.
At the end of the test-to-failure experiment, outer race failure
occurred in bearing 1.

5.2.1. Experiment Details

• Sensors: PCB 353B33 accelerometer sensor

• Sampling: 20 kHz for 1 second every 10 minutes

• Loading: 6000 lbs radial load

• Lubrication: Oil circulation system
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(a) Illustration of Setup

(b) Sensor placement

Figure 3. Bearing Setup and Sensor placement

• Duration: February 12, 2004 to February 19, 2004

• Bearing: Rexnord ZA-2115 double row

6. RESULTS AND DISCUSSION

6.1. Tool Insert

6.1.1. Overview

Firstly, time domain features like RMS, Skewness, Crest
Factor, Kurtosis and frequency domain features like Spec-
tral Kurtosis based features are extracted. The features are
then ranked according to their monotonicity scores and the
top k features are selected. The value of k is chosen empir-
ically through trial and error to maximize prognostic perfor-
mance. Secondly, an initial set of data points (20%) is con-
sidered as the baseline i.e. normal functioning of the insert.
The extracted features are used to compute a health indica-
tor by taking the Euclidean difference between a baseline se-
quence and the remaining data points. The cumulative wear
is then derived by sequentially summing the health indicator
values, normalizing the cumulative sum to the [0, 1] inter-
val, and expressing it as a percentage. When the cumulative
wear crosses 60% wear, we consider that to be the warning
threshold and 80% as the critical threshold.

Algorithm Parameters:

• k: 7
• Baseline for Health Indicator: 20% of data points
• Warning threshold: 60% of cumulative wear
• Critical threshold: 80% of cumulative wear

Next, to estimate RUL with confidence intervals, an ensem-
ble model consisting of Gaussian Process regression (GPR)
and Linear regression on polynomial fit is employed. An en-
semble approach can leverage the strengths of both GPR and
linear regression. While GPR can handle the complex, non-
linear parts of the degradation, linear regression can capture
the overall trend. The parameters of the GPR are determined
through Hyperparameter grid search and Time Series cross
validation. The hyperparameters are optimized with a grid
search of different kernel parameters of learning scale and
noise levels. Below are the GPR kernels we finally used:

• RBF with length scale 10.0 and bounds of 0.01 to 100
• WhiteKernel with default noise level
• DotProduct with sigma of 10.0

The models are trained using data collected up to the stage
when cumulative wear surpasses 60% of its total. The dif-
ferent models in the ensemble training were weighted using
dynamic weighting with the GPR being given higher impor-
tance closer to failure. The source code underlying this work
is proprietary and its access may be granted to interested par-
ties upon request.

6.1.2. Framework customization

Fig 4 depicts the customization of the IntelliMaint frame-
work in the creation of the Tool Insert monitoring.

6.1.3. Analysis of results

Since the amount of data available for tool insert wear mon-
itoring is limited (only 88 files), we focused on using the cu-
mulative wear thresholds of 60% and 80%. Fig 5a shows the
cumulative wear in percentage with key prognostic thresholds
indicated: a warning threshold at 60% wear, a critical thresh-
old at 80%, and complete failure at 100% wear. The blue
curve represents the GPR-predicted wear progression, with
the shaded region denoting the 95% confidence interval (CI),
capturing uncertainty in the forecast.

The accuracy is calculated by measuring how close the pre-
dicted RUL is to the actual amount of time before failure.

Accuracy =

(
1−

|RULpredicted − RULactual|
RULactual

)
× 100%

(10)

At the warning threshold, the RUL is estimated to occur
after 2.33 hours which is 90% accurate as the actual failure
occurs after 2.59 hours. At the critical threshold, the RUL is
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Figure 4. Tool Insert Monitor created with the Component Template

estimated to be 1.08 hours which is 92% accurate as the actual
failure occurs after 1 hour. The 95% confidence bounds are
shown. The algorithm accurately identifies the onset of rapid
wear and provides early predictions of RUL at both warning
and critical points, as annotated on the plot. The close align-
ment between measured and predicted wear, along with quan-
tified uncertainty, demonstrates IntelliMaint’s effectiveness
in generating robust health indicators and supporting timely
maintenance decisions in electromechanical systems. In prac-
tical contexts, this enables scheduling maintenance windows
hours in advance, potentially avoiding unplanned stops.

Table 3 shows the three key physical measurements: Flank
Wear (VB), Surface Roughness (Ra), and Spindle Current
over time, while Fig 5b illustrates the correlation between ob-
served cumulative wear percentage and the physical measure-
ments. The observed cumulative wear percentage is derived
by sequentially summing the observed wear values, normal-
izing the cumulative sum to the [0, 1] interval, and express-
ing it as a percentage. (The wear value at the start i.e. new
tool, is mapped to 0 and the wear value at failure i.e. com-
pletely worn out tool is mapped to 1). Since the physical
measurements were only taken every few hours due to logis-
tical constraints in the testing environment, the intermediate
values are interpolated from measured values. As the cumula-
tive wear increases, flank wear and surface roughness exhibit
strong upward trends, with surface roughness showing a par-
ticularly sharp rise after the 5-hour mark, reflecting degrada-
tion in tool quality. Notably, current draw increases initially
but plateaus after approximately 4 hours, suggesting that cur-
rent is a more reliable early indicator than a late-stage predic-
tor. The observed cumulative wear percentage curve closely
follows the Flank wear’s trend, supporting Flank wear’s role
as a key wear metric.

6.1.4. Comparison with baseline model

Table 4 presents a comparative evaluation of two RUL (Re-
maining Useful Life) estimation approaches: an Ensemble
Model and a Linear Fit model, based on multiple performance
metrics. The Ensemble Method significantly outperforms the
Linear Fit in terms of predictive accuracy and robustness.
It achieves lower root mean square error (RMSE = 0.0314)
and mean absolute error (MAE = 0.0278), indicating more
precise RUL predictions. Moreover, its R2 score of 0.9382

reflects a high degree of fit to the actual wear progression
data, compared to 0.7464 for the Linear Fit. When assessed
at key degradation thresholds, the Ensemble Method demon-
strates higher accuracy at the warning threshold (60% wear)
with 89.96% accuracy, and markedly better performance at
the critical threshold (80% wear) with 92% accuracy, com-
pared to only 58% for the Linear Fit. Interestingly, both meth-
ods achieve high accuracy for failure prediction (97.66% and
98.76%, respectively), suggesting that linear models may suf-
fice near end-of-life but struggle earlier in the degradation cy-
cle. Overall, the results highlight the superior early and mid-
life prediction capability of the Ensemble Method, making it
more suitable for proactive maintenance and early warning
applications within the IntelliMaint framework.

6.2. Bearing

6.2.1. Overview

Time and frequency domain features are extracted from all
bearing data files. The extracted features are then ranked
according to their monotonicity scores. Feature selection is
performed by selecting the top k features, with the value of k
determined empirically to maximize prognostic performance.
For the below experiment, we selected 13 features with 9
time domain ones: RMS, Peak, Crest Factor, Kurtosis, Skew-
ness, Standard deviation, Peak-to-Peak,Shape Factor and Im-
pulse Factor and 4 feature domain ones: BPFO (Ball Pass
Frequency Outer), BPFI (Ball Pass Frequency Inner), FTF
(Fundamental Train Frequency) and BSF (Ball Spin Fre-
quency). An initial portion of the feature dataset (20%) is
treated as baseline data representing normal operation. A
Self-Organizing Map (SOM) neural network is trained and
used to find the best matching unit’s weight vector. The Min-
imum Quantization Error (MQE) between each input sample
and the corresponding best matching unit is used to construct
the Health Indicator (HI). Essentially, for each new feature
vector, the MQE value is calculated as the Euclidean distance
from the vector to the closest matching neuron on the trained
SOM. The point of degradation is also identified based on
deviations in the MQE trend. The HI is then constructed by
mapping the log(MQE) values to a Health Index using fixed
exponential decay.

Algorithm Parameters:
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Workpiece VB(µm) Ra(µm) Current (a)

1 78.62 0.613 11.3
8 299.45 1.506 13.28

16 558.85 1.866 13.23
19 570.41 2.276 13.27
21 586.8 3.653 13.325
24 595.46 4.016 13.5

Table 3. Measured values of Flank Wear - VB (µm), Surface Roughness - Ra (µm), and Current (Amps)

Figure 5. (a) Observed Cumulative Wear (black) and Predicted Wear (blue), (b) Measured values of Flank Wear (blue),
Surface Roughness (green) and Current (brown) plotted against Observed Cumulative Wear (black)

• k: 13 features

• Baseline Data for SOM training: 20%

• SOM Map Size: 50x50

• SOM Training Iterations: 500

From this degradation point onward, Remaining Useful Life
(RUL) is estimated using Gaussian Process Regression (GPR)
with confidence intervals. GPR is selected for its ability to
capture non-linear behavior and provide uncertainty-aware
predictions. Data from the first point of occurrence of the
degradation is used as training data for GPR. The training is
done with a sliding window technique, where for a certain

number of data points, the next data point is the label. Below
are the kernels we employed for the GPR:

• ConstantKernel,
• RBF with length scale 5.0
• WhiteKernel with noise level 1× 10−3

The source code underlying this work is currently proprietary
and its access may be granted to interested parties upon re-
quest.

6.2.2. Framework customization

Fig 6 depicts the customization of the IntelliMaint frame-
work in the creation of the Bearing monitoring.

10
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RUL
estimation
method

RMSE MAE R2 score Alpha
Score

Lambda
Score

Accuracy
of RUL at
Warning %

Accuracy of
RUL at
Critical %

Accuracy of
Predicted failure
%

Ensemble
Method

0.0314 0.0278 0.9382 0.9639 0.0021 89.96139 92 97.65517

Linear Fit 0.0637 0.0571 0.7464 0.922 0.0044 87.25869 58 98.75862

Table 4. Comparison of RUL Estimation Methods for Tool Insert

Figure 6. Bearing Monitor created with the Component Template

Figure 7. (a) Anomaly Detection and (b) RUL Prediction in Bearing

6.2.3. Analysis of results

Fig 7a shows the Mean Quantization Error (MQE) com-
puted using the trained SOM across the extracted features.
Since the initial 20% is set aside for SOM training, only the
portion of data used for evaluation is shown in the plot. The
green markers represent data points that were identified as
normal during testing, while the red markers indicate samples

where anomalies were detected. Initially, the MQE remains
stable and low, reflecting normal behavior, until a clear shift
occurs at sample 535, where MQE crosses the threshold and
degradation (anomaly) is detected. Beyond this point, MQE
values rise steadily, indicating progressive fault development.

Fig 7b illustrates the Health Index (HI) derived from the
MQE values, along with RUL prediction using Gaussian Pro-

11
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cess Regression (GPR). Training and evaluation followed a
sliding-window approach. The start of degradation at sam-
ple 535 is highlighted, aligning with the anomaly point in
the SOM plot. After an initial prediction window, the GPR
model begins forecasting HI progression from this point on-
ward. The predicted HI closely follows the actual HI, with a
95% confidence interval shown as the shaded band. As MQE
increases, HI decreases, essentially capturing the worsening
system health. The HI failure threshold of 0.03 was selected
empirically by analyzing the run-to-failure dataset. Specif-
ically, we examined the distribution of HI values across the
baseline and degradation phases. A threshold near 0.03 maxi-
mized separation between healthy and failed states, while also
aligning with the 95th percentile of healthy variation. This
ensured that the threshold was sensitive to degradation on-
set without generating false alarms. The GPR model predicts
failure at sample 942, while actual failure occurs at sample
984. This corresponds to a predicted RUL of 407 steps (67.83
hours) versus an actual RUL of 448 steps (74.67 hours), mea-
sured from the degradation point. The accuracy was calcu-
lated by measuring how close the predicted RUL is to the ac-
tual amount of time before failure, achieving approximately
91%.

Accuracy =

(
1−

|RULpredicted − RULactual|
RULactual

)
× 100%

(11)

To further evaluate the GPR model’s performance, several
error metrics were considered, as summarized in Table 5. It
achieves a low RMSE and MAE, indicating high precision in
RUL prediction and minimal deviation from the actual val-
ues. Moreover, its R2 score of 0.8795 reflects a strong cor-
relation with the observed degradation trend, suggesting the
model effectively captures the underlying wear progression
dynamics. These results demonstrate IntelliMaint’s effective-
ness in constructing robust health indicators and delivering
accurate, early RUL predictions, thereby supporting timely
maintenance decisions in electromechanical systems.

6.2.4. Comparison with Baseline model

Table 5 summarizes the performance of different RUL es-
timation methods: Gaussian Process Regression (GPR), Sup-
port Vector Regression (SVR), and Sparse Variational Gaus-
sian Process (SVGP) on the bearing dataset. Among the
three, GPR demonstrates the most balanced and reliable per-
formance across the evaluation metrics. It achieves the low-
est MAE and RMSE, along with the highest R2, indicat-
ing both superior accuracy and goodness-of-fit. Importantly,
GPR also yields the highest monotonicity score, reflecting
its ability to produce smoother, more physically consistent
degradation trajectories, which is a crucial property for prog-
nostics. Although SVR and SVGP show marginally higher
accuracy at the early stages of degradation, their predictions

tend to forecast failure later than observed, whereas GPR an-
ticipates failure earlier, which is advantageous for minimiz-
ing unplanned downtime. Overall, SVR and SVGP display
reduced monotonicity and increased error rates relative to
GPR. Given that predictive maintenance applications require
not only accurate but also stable and interpretable degrada-
tion trends, GPR emerges as the most effective method, of-
fering the best trade-off between prediction accuracy, error
minimization, and monotonic behavior.

6.3. Development Efficiency

The framework enables rapid deployment of new compo-
nent monitors within two to three days, requiring only spe-
cific feature extraction overrides while reusing shared signal
processing, anomaly detection, and RUL prediction modules.
Testing and field deployment are streamlined via standardized
interfaces and configuration-driven parameter tuning. The
pseudocode in Fig 8, illustrates the development of the Tool
Insert and Bearing monitor by leveraging the framework. Ta-
ble 6 includes different aspects of the development using the
framework vs without. These estimates are based on inter-
nal development experience, and engineering logs. While
they demonstrate indicative benefits of the framework, a con-
trolled user study and external benchmarking are planned as
future work to provide empirical validation. The proposed
plan is explained in the Appendix.

6.4. Practical Considerations and Business Impact

The IntelliMaint framework’s ability to provide accurate
and uncertainty-aware RUL predictions translates directly
into tangible business benefits, primarily by enabling a shift
from reactive to proactive maintenance strategies. Our case
studies demonstrate the framework’s effectiveness in provid-
ing early warnings. For instance, in the CNC tool wear case
study, the framework accurately predicted the failure would
occur in 2.33 hours with a 90% accuracy - giving manufac-
turers time to plan and anticipate failures and reduce down-
time. While full-scale quantification by the user company is
planned for the upcoming pilot deployment, expected ben-
efits of the IntelliMaint framework in CNC tool monitoring
based on ongoing conversations with user companies include:
unplanned downtime reduction, tool life extension, scrap/re-
work reduction, and maintenance cost reduction.

7. FUTURE WORK

Future work will include other deep learning methods for
health indicator and RUL estimation and explore the incorpo-
ration of multi-modal sensor data such as thermal and acous-
tic signals, and the adoption of hybrid deep learning archi-
tectures. Future directions can also encompass the adoption
of transfer learning. The framework’s modularity makes it
well-suited to leverage pre-trained models from similar as-
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RUL
estimation
method

MAE RMSE R2

Score
Monotonicity Predicted

RUL
(hours)

Actual
RUL
(hours)

Accuracy of
RUL at Degrada-
tion Start %

GPR 0.0288 0.0396 0.8795 0.6264 70.783 74.833 91.51

SVR 0.0777 0.067 0.61 0.5781 78 74.833 95.76

SVGP 0.0117 0.0454 0.82 0.4665 78.843 74.833 94.64

Table 5. Metrics of RUL Estimation Methods for Bearing

Figure 8. Left: (a) Tool Insert pseudocode and Right: (b) Bearing pseudocode

sets or public datasets, allowing it to provide reliable predic-
tions even with limited data on a new machine/environment.
Cross-asset learning and cloud-native microservices will be
investigated to improve scalability and generalizability. Fur-
thermore, adaptive GPR models and physics-informed ap-
proaches will be developed to enhance prediction robustness,

supported by expanded validation across diverse electrome-
chanical systems.

8. DEPLOYMENT CHALLENGES

To handle large-scale data, the framework can be deployed
in a cloud-native microservices architecture. In this setup,
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Aspect Without Framework With IntelliMaint
Development Time Order of weeks (Estimated) 2-3 days

Testing Effort Full custom validation Template validation

Maintenance Component-specific Standardized

Table 6. Tool Insert Engineering Effort Metrics

each module, such as data acquisition, feature extraction, or
prognostics assessment, can be run as a separate service. This
allows for horizontal scaling, where multiple instances of a
service can be spun up to handle increased data loads without
requiring a monolithic application to be re-engineered.

9. LIMITATIONS

Despite its promising results, the proposed framework faces
several limitations requiring further research. The primary
challenge is that the Gaussian Process Regression (GPR)
model can be computationally demanding, which restricts its
suitability for deployment in resource-limited distributed or
edge computing scenarios. If the GPR model’s update time
takes longer than the data stream’s interval, the system will
fall behind. This could lead to a backlog of data points
and inaccurate or delayed predictions, which is unaccept-
able for critical systems like those in industrial maintenance.
Moreover, integrating the framework with existing industrial
ecosystems is nontrivial and requires the development of ro-
bust APIs for seamless interfaces with existing systems.

10. CONCLUSION

We propose IntelliMaint, an intelligent, component-
agnostic framework with the critical ability to generalize
for different components and operating environments and
provide uncertainty-aware predictions. These qualities make
it uniquely suited for practical industrial deployment across
diverse domains. We validate our framework on two dis-
tinct industrial applications: (1) Tool insert wear monitoring
using vibration and spindle current. Early detection of tool
wear with RUL prediction with accuracy of 97%. (2) IMS
bearing dataset used for fault detection, earlier than threshold
methods, with 95% confidence intervals with RUL accuracy
of 91%. Both cases show HI monotonicity and reliable
uncertainty quantification.
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APPENDIX: PROPOSED PLAN TO MEASURE DEVELOP-
MENT EFFICIENCY OF FRAMEWORK

To evaluate the practical utility of the IntelliMaint frame-
work, a structured user study will be conducted involving
individual developers. The methodology entails recruiting
four to five participants and dividing them into two groups:
a control group, which will independently develop a predic-
tive maintenance solution from scratch, and an experimental
group, which will utilize the IntelliMaint framework for the
same task of creating a monitoring application for a machine
component. Evaluation will focus on several key metrics: to-
tal time from project initiation to deployment of a functional
solution; detailed time allocation for data acquisition, feature
engineering, model training, and deployment; and the num-
ber of lines of code written by each team. This experimental
design will provide quantitative insights into the framework’s
impact on development efficiency and module reusability, fa-
cilitating an evidence-based assessment of its strengths and
limitations.
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