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ABSTRACT

The reliability of rotating machinery is essential in industrial
environments, where early fault detection can prevent signif-
icant losses. In this scenario, Condition-Based Maintenance
strategies benefit from the combined use of signal processing
and machine learning techniques. Although Deep Learning
based models present good results in automatic fault classi-
fication, their exclusive dependence on data can generate in-
consistent predictions and non-compliance with physics. This
study presents a Physics-Informed Deep Learning (PIDL) ap-
proach for fault detection in rolling element bearings based
on vibration signal analysis. Experimental data were col-
lected from a controlled test bench that simulates real opera-
tional conditions, using a self-aligning double row ball bear-
ing (NSK 1205K C3) under three health conditions: healthy,
light and severe damage. Vibration signals were acquired us-
ing piezoelectric accelerometers and pre-processed through
envelope analysis to enhance fault-related features in the fre-
quency domain. The classification task was reformulated into
a binary problem - healthy vs. unhealthy - aiming to improve
the generalization of the model and its practical utility. A con-
volutional neural network (CNN) was developed for binary
classification, which combines convolutional, clustering, and
dense layers. A custom loss function was proposed to in-
corporate physical knowledge, penalizing false negatives and
false positives differently, according to the criticality of each
type of error in industrial contexts. The experimental results
showed that the PIDL model achieved a balance precision of
94.77%, outperforming the traditional deep learning model
(94.05%) not only in overperformance, but rather reducting
false negatives, which are critical for preventive maintenance.
The findings demonstrate that incorporating domain knowl-
edge into the training process leads to safer and more reli-
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able fault detection, making the PIDL approach particularly
suitable for industrial applications where early and accurate
detection is crucial to avoid unplanned downtime and equip-
ment failure.

1. INTRODUCTION

Reliability is a key factor in ensuring the success and com-
petitiveness of modern industries. With increasingly complex
systems and the growing need for higher availability while
reducing costs, the importance of maintaining the integrity of
industrial assets cannot be overstated. To address these chal-
lenges, Condition-Based Maintenance (CBM) strategies have
gained prominence, focusing on the management of equip-
ment according to their health status (Jardine, Lin, & Ban-
jevic, 2006). This approach is often integrated with Prog-
nostics and Health Management (PHM) programs (Pecht,
2009), which enable continuous monitoring of system health
and allow interventions before critical failures occur (Maior,
Moura, & Lins, 2019).

Among the many components that contribute to the reliabil-
ity of mechanical systems, bearings play a crucial role, par-
ticularly in rotating machinery such as motors, compressors,
and gearboxes. Bearings are often responsible for a signifi-
cant proportion of system failures—up to 55% of all failures
in rotating machines, according to studies by (Yang, Yu, &
Cheng, 2007). The ability to detect faults in bearings early
on is, therefore, vital to minimizing unexpected downtimes,
reducing maintenance costs, and ensuring operational safety.

One of the most effective methods for detecting bearing
faults is vibration analysis. Techniques such as the Hilbert-
Huang Transform, envelope analysis, and frequency spectrum
analysis have proven useful in extracting relevant features
from vibration signals, enabling early detection of anomalies
(Soualhi, Medjaher, & Zerhouni, 2015). The Hilbert Trans-
form, in particular, is known for its sensitivity to damage in
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rotating components, as it highlights small minor variations
in the time domain that are indicative of fault progression.

At the same time, advancements in data storage, the availabil-
ity of affordable sensors, and enhanced computational capa-
bilities have fueled the rise of data-driven methods, includ-
ing Machine Learning (ML) and Deep Learning (DL). These
techniques are particularly compelling in tackling complex
systems, extracting patterns from large datasets, and apply-
ing them to a variety of tasks, such as failure mode classi-
fication (Yuan et al., 2020), Remaining Useful Life (RUL)
prediction (Maior et al., 2016; Sikorska, Hodkiewicz, & Ma,
2011), and anomaly detection (Bakdi & Kouadri, 2017; Zhou
& Paffenroth, 2017). However, relying solely on data can in-
troduce limitations, such as false alarms or low confidence in
predictions when the data fails to fully represent the nuances
of specific equipment or conditions (S. Shen et al., 2021).

Despite their success, one of the main drawbacks of these
data-driven models is their lack of integration with physical
principles, which are often essential for understanding the un-
derlying causes of system behavior. This gap becomes partic-
ularly important when dealing with equipment such as bear-
ings in the rolled element, such as those found in pumps,
where bearings account for a significant proportion of sys-
tem failures. This issue raises critical questions about how
to combine the strengths of data-driven approaches with a
deeper understanding of physical systems to improve fault
detection and prediction reliability. To overcome these limita-
tions, a new hybrid approach called Physics-Informed Deep
Learning (PIDL) has emerged. This methodology incorpo-
rates physical knowledge directly into the training process
of neural networks, typically by modifying the loss func-
tion with additional terms that represent constraints based on
physical laws (S. Shen et al., 2021; Thuerey et al., 2021).

This study proposes the application of a PIDL model for fault
detection in bearings based on vibration analysis. Signals
were acquired from an experimental test bench with differ-
ent fault conditions in self-aligning ball bearings. Data pre-
processing includes Hilbert Transform application and seg-
mentation into 512-sample temporal windows. The convolu-
tional neural network model is trained with a modified loss
function that penalizes inconsistent predictions according to
amplitude thresholds defined from bearing physical charac-
teristics.

The main contribution of this study is the explicit incorpora-
tion of physical knowledge into the machine learning process,
enhancing the robustness and reliability of the fault detection
system. Comparative experiments between PIDL and tradi-
tional DL models demonstrate the superiority of the former
in industrially sensitive scenarios where early fault detection
is critical for equipment safety and continuous operation.

2. THEORETICAL BACKGROUND

2.1. Machine Learning, Neural Networks, and Deep
Learning

ML can be defined as the development of algorithms and sta-
tistical models that enable computational systems to improve
performance on specific tasks based on data, without rely-
ing exclusively on explicit instructions from programmers.
According to (Maior, Moura, Santana, & Lins, 2020), ma-
chine learning is the improvement of a computational pro-
gram’s performance on a given task, as measured by a crite-
rion, based on acquired experience.

Artificial Neural Networks (ANNs), introduced by
(McCulloch & Pitts, 1943), represent a class of models
within ML inspired by the human brain’s structure and func-
tion for learning and pattern recognition. These networks
consist of computational units called neurons, organized into
layers: input, hidden, and output. Each neuron applies an
activation function to its input signals, producing outputs
that propagate through the network. Synaptic weights, ad-
justable during training, determine the relative influence of
each input.

During training, ANNs adjust weights to minimize the error
between predicted outputs and desired targets via a procedure
called backpropagation. This technique is associated with op-
timization methods like gradient descent to minimize prede-
fined cost functions.

DL is a subfield of ANNs distinguished by the use of multi-
ple hidden layers, known as Deep Neural Networks (DNNs).
This structural depth allows hierarchical feature extraction,
facilitating the modeling of complex relationships within the
data. Unlike traditional ANNs, DL employs various layer
types for specific purposes. Convolutional layers, for exam-
ple, are effective in processing grid-structured data like im-
ages and time series signals, due to their ability to capture
spatial hierarchies of features.

The success of DL owes to factors such as large data availabil-
ity, advances in computational resources, and optimization al-
gorithm improvements. This approach has been effective in
solving complex problems across domains, including com-
puter vision, signal processing, and predictive maintenance.

2.2. Physics-Informed Deep Learning (PIDL)

Despite DL models’ remarkable performance in various ap-
plications, many of these methods are purely data-driven,
which may lead to predictions inconsistent with underlying
physical laws. This limitation is critical in domains where
safety, robustness, and interpretability are essential. Models
that ignore physical principles can make incorrect classifica-
tions, violating expected system behavior and compromising
reliability.
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Physics-Informed Deep Learning (PIDL) addresses this by
integrating physical knowledge directly into DL training. The
primary strategy involves modifying the model’s loss func-
tion to include terms that penalize deviations from known
physical laws. Thus, the loss function reflects not only predic-
tive error but also compliance with domain-specific physical
principles.

During training, the PIDL model optimizes to minimize dis-
crepancies between predictions and real data while respecting
constraints imposed by physical equations or system proper-
ties. This approach is particularly advantageous in scenarios
with scarce or noisy data, where incorporating prior knowl-
edge about system behavior improves model generalization
and stability.

2.3. Vibration Monitoring in Bearings

Vibration monitoring is a widely used and effective technique
for assessing bearing condition, which is crucial for the reli-
able operation of rotating mechanical systems. Bearings sup-
port radial and axial loads, allowing smooth rotation of shafts
and gears. Self-aligning bearings, in particular, accommodate
angular misalignments between shaft and housing, ideal for
applications with alignment variations caused by vibrations,
thermal expansion, or wear.

Accurate fault characterization requires detailed experiments
using vibration sensors, such as accelerometers or velocity
transducers (Safizadeh & Latifi, 2014), capable of capturing
vibrational signals at strategic points on the structure.

3. METHODOLOGY: PIDL MODEL IMPLEMENTATION

The physics-informed deep learning approach adopted in this
study is based on the work of (C. Shen et al., 2020) and
(Streck et al., 2024). The method involves creating a thresh-
old model that reflects the expected physical behavior of
faults. The output of this model is integrated into the DL sys-
tem’s loss function, allowing training to be guided not only by
statistical patterns but also by relevant physical knowledge.
The process follows typical Al modeling steps:

1. Data features undergo pre-processing including segmen-
tation, transformation, variable selection, train-test split-
ting, labeling, and shuffling.

2. Model development, which includes:
* The deep neural network

* A customized loss function incorporating the
threshold model

3. Classification is performed, and results are analyzed.

3.1. Dataset Description

Data were collected from a vibration test bench designed to
simulate real operational conditions of bearings in rotating

Figure 1. Vibration Bench Components

Table 1. Bearing and Accelerometer Specifications

Bearing Specifications

Accelerometer Specifications

Inner diameter (d), mm: 25
Outer diameter (D), mm: 52
Pitch diameter (Pd), mm: 38.5
Ball diameter (Bd), mm: 7.14
No. rolling elements (Nb): 12

Sensitivity: 10.2 mV/(m/s?)
Measur. Range: + 490 m/s?
Freq. Range: 0.5 - 10K Hz

Resonant Frequency: 25 Hz

Non-Linearity: + 1%
Transverse Sensitivity: < 7%

Broadband Res: 3434 pm/sec?

systems. Located at the Center for Risk Analysis, Reliability
Engineering and Environmental Modeling (CEERMA) at the
Federal University of Pernambuco (UFPE), the bench com-
prises a transmission system driven by an adjustable-speed
induction motor controlled via a frequency inverter, as illus-
trated in Figure 1.

The bearing used was the NSK 1205K C3, a self-aligning
double-row ball bearing. This bearing type is especially suit-
able for applications with angular misalignment and shaft de-
flections, exhibiting low friction coefficient and high radial
load capacity. Its unsealed design facilitates direct failure
analysis and damage propagation. Main geometric and tech-
nical specifications of the bearing and sensors used are pre-
sented in Table 1.

Vibration monitoring was performed using two piezoelectric
accelerometers (model 603C01), magnetically attached to the
split bearing housings. Vibration signals were amplified 45
times before digitization by a Labjack U12 acquisition de-
vice, with a sampling rate of 2048 Hz and scan rate of 4096
Hz, configured via LJscope V1.09 software.

During tests, the motor frequency was fixed at 15 Hz, with
measurements taken under three bearing conditions:

e Healthy: bearing without damage

e Light Fault: artificial 1 mm damage on the bearing outer
race

¢ Heavy Fault: artificial 3 mm damage on the bearing outer
race

Figure 2 shows the fault states considered. Standardizing
these conditions enabled replicable experiments and facili-
tated comparative analyses.
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Figure 2. Bearing Conditions: (A) Healthy; (B) Light dam-
age; (C) Heavy damage

Table 2. Fault Characteristic Frequencies

Characteristic Frequency Value (Hz)
Ball Pass Frequency, Outer Race (BPFO) 73.305
Ball Pass Frequency Inner (BPFI) 106.695
Ball Spin Frequency (BSF) 78.08
Fundamental Train Frequency (FTF) 6.10875

3.2. Data Pre-processing

Following data acquisition, the raw vibration signals were
segmented into overlapping windows of 512 data points, a
size empirically determined to balance resolution and com-
putational efficiency. Each window represented a time se-
ries sample corresponding to a specific condition of the bear-
ing. Next, an envelope analysis was conducted to transform
the time-domain signal into the frequency domain, a process
particularly effective in highlighting amplitude modulations
caused by structural defects. This approach is supported by
previous studies such as (Lessmeier et al., 2016) which em-
phasize the relevance of frequency-domain features in fault
detection.

The Hilbert Transform was applied to the signal to extract the
envelope, enhancing the fault-related frequency components
in the frequency domain. This step is crucial to better high-
light characteristic fault frequencies such as Ball Pass Fre-
quency Outer race (BPFO), Ball Pass Frequency Inner race
(BPFI), Ball Spin Frequency (BSF), and Fundamental Train
Frequency (FTF). These frequencies were calculated based
on the bearing specifications and the operating condition of
15 Hz, and are summarized in Table 2.

The envelope signal was then segmented into windows of 512
samples each, resulting in time frames of approximately 0.25
seconds at a sampling frequency of 2048 Hz. Each segment
was labeled according to the bearing condition (healthy or
faulty) for supervised training.

This work considered, in addition to each calculated charac-
teristic frequency, up to three of its harmonics. To account
for noise and minor variations, a tolerance band of +5% was
applied around each frequency and its corresponding harmon-
ics. Furthermore, the dataset was split into training and test-
ing sets using an 80%-20% ratio, followed by a random shuf-
fling of the data to ensure unbiased model evaluation.

Flatten Qutput

Figure 3. Network Architecture

Here, for simplification purpose, the original prob-
lem—initially framed as a multi-class classification with
three states (healthy, light damage, and heavy damage)—was
reformulated into a binary classification problem, defined as
follows:

e Class 0 (Healthy): samples corresponding to undamaged
bearings

* Class 1 (Unhealthy): samples containing any level of
damage, whether light or heavy

This binary reformulation allows the model to focus on iden-
tifying the presence of anomalies, regardless of their severity.
In practical industrial scenarios, this approach is valuable,
as early identification of any abnormality can trigger main-
tenance inspections and prevent unscheduled downtimes or
catastrophic failures.

3.3. Model Architecture

To compare the performance of the PIDL model with that
of a conventional DL model using vibration data collected
from our bearing vibration test bench, we adopted an archi-
tecture inspired by the model proposed by (S. Shen et al.,
2021), which we modified to better suit the specific require-
ments of our binary classification problem. In particular, the
kernel size and stride were empirically adjusted based on the
characteristics of our dataset. The final architecture is illus-
trated in Figure 3.

The architecture consists of:

¢ 1D Convolutional Layer with filters, kernel size 5, and
ReLU activation: This convolutional layer is responsible
for extracting temporal features from vibration data. The
convolutional filter acts locally on the data, applying a
convolution operation to identify specific patterns, such
as peaks and variations in vibration waves, which are in-
dicative of bearing faults. The ReLU (Rectified Linear
Unit) activation introduces non-linearities to the model,
allowing it to capture more complex patterns.

¢ MaxPoolinglD Layer with pool size 2: Pooling is an
important operation that reduces the dimensionality of
the data by applying an aggregation function (typically
the maximum value) over each sub-region of the input.
The goal is to reduce the number of parameters while re-
taining the most important information, such as the most
prominent features of bearing faults.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 20XX

» Flatten Layer: This layer converts the multidimensional
output from the previous layers into a one-dimensional
vector, which is required for input into the subsequent
dense layer. The goal of the Flatten layer is to organize
the representations extracted by the convolutional and
pooling layers for the network’s final decision-making
process.

* Dense Layer with neurons and ReLU activation: Dense
layers, which are fully connected, learn more complex
patterns in the representations provided by the previous
layers. The ReLU activation here also helps introduce
non-linearities, allowing the network to learn more so-
phisticated representations of the vibration data.

*  Output Layer with 1 neuron and sigmoid activation:
The final layer of the network provides a probability be-
tween 0 and 1, indicating the classification of the bearing
as healthy (0) or faulty (1). The sigmoid activation func-
tion is used to ensure that the output is within the range
[0, 1], which is suitable for a binary classification task.

3.4. Custom Loss Function (PIDL Loss)

The loss function plays a key role in guiding the model’s
training. In the PIDL approach, the standard loss is modified
to include penalties for misclassifications, based on physical
knowledge about bearing failures. The loss function is:

Loss = Std_Loss + « x False_Pos + 8 x False Neg (1)

Where:

» Standard_Loss is typically binary cross-entropy

* «and [ are weights to penalize false positives and false
negatives, respectively

In the study, « = 8 was used to balance both types of errors.
However:

* « > (: penalizes false positives more (useful for reduc-
ing false alarms)

* [ > «: penalizes false negatives more (useful for detect-
ing more faults and avoiding missed failures)

Choosing « = (3 ensures balanced performance, but adjust-
ing these values can significantly shift the model’s behavior
depending on the application priority.

4. RESULTS

The experimental results showed that both the traditional DL
model and the PIDL model achieved high balanced accuracy
rates. However, there are significant differences in the nature
of the errors made by each model. While the traditional DL
model tended to classify faulty bearings as healthy (false neg-
atives), the PIDL model showed a slight tendency to classify

Matriz de Confusao - PIDL (binary_fault) Matriz de Confus3o - DL (binary_fault)
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Figure 4. Confusion matrices: (a) PIDL: 94.776% accuracy
balanced; (b) DL: 94.050% balanced accuracy

Table 3. Classification metrics for PIDL model

Class Precision Recall Fl-score
Healthy 0.9300 0.9140  0.9206
Non-healthy 09780 09815  0.9797
Accuracy 0.9677

Macro avg 0.9540 09478  0.9502
Weighted avg 0.9678 0.9677  0.9676

healthy bearings as faulty (false positives). This behavior was
unexpected since the weights o and 8 were set equal, but false
positives are less harmful to industry than false negatives.

Both models (traditional DL and PIDL) were trained using
the same data and hyperparameters (50 epochs, batch size =
64, Adam optimizer with learning rate = 0.001). The aver-
age balanced accuracy results were: 94.776% for PIDL and
94.050% for traditional DL.

Beyond the slight improvement in metric, the most relevant
difference lies in the nature of the errors:

e Traditional DL: tends to classify faulty bearings as
healthy (false negatives)

* PIDL: tends to classify some healthy bearings as faulty
(false positives)

The PIDL approach proved to be more robust and reliable for
implementation in industrial scenarios where minimizing the
occurrence of undetected failures is a priority. Tables 3 and 4
present the detailed classification metrics for each model.

The PIDL model shows superior performance in recall for
healthy bearings (0.9140 vs 0.8983) while maintaining com-
parable precision. Both models achieve high accuracy, with
PIDL showing a slight advantage (96.77% vs 96.54%). The
most significant improvement comes in the Fl-score for
healthy bearings (0.9206 vs 0.9147), suggesting PIDL pro-
vides better balance between precision and recall for this crit-
ical class.

5. CONCLUSION

This study introduced a PIDL approach for the detection of
bearing faults based on vibration signal analysis. By incorpo-
rating domain-specific physical insights into the training pro-
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Table 4. Classification metrics for DL model

Class Precision Recall Fl-score
Healthy 0.9326  0.8983  0.9147
Non-healthy 09740  0.9827 0.9783
Accuracy 0.9654

Macro avg 0.9533 0.9405  0.9465
Weighted avg ~ 0.9655 0.9654  0.9653

cess—specifically through a custom loss function that penal-
izes critical misclassifications—the resulting model became
not only accurate but also safer and more suitable for real in-
dustrial applications.

Results show a slightly increased accuracy when compar-
ing the traditional and the physics-informed DL models:
94.776% and 94.050%, respectively. The main contributions
include:

* The proposal and implementation of a PIDL loss func-
tion that integrates knowledge about the criticality of
false negatives and false positives

* A comparative analysis demonstrating that even a small
modification to the learning objective can result in more
reliable predictions in safety-sensitive scenarios

This approach is particularly promising for industrial envi-
ronments, where predictive maintenance relies heavily on re-
liable early detection of mechanical faults to prevent failures
and optimize operational costs.
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