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ABSTRACT

In recent years, Deep Learning has shown remarkable success
in fault diagnosis for Prognostics and Health Management,
automatically extracting features from complex sensor data.
However, its application to real-world industrial systems is
often hampered by fundamental limitations such as the
scarcity of comprehensive fault data and the difficulty of
creating accurate physics-based models for complex systems.
This lack of sufficient data and explicit domain knowledge
makes it challenging for conventional models to distinguish
different fault modes that produce highly similar sensor
patterns. To compensate for this scarcity, this paper proposes
a novel and versatile framework that leverages the vast, pre-
trained knowledge of a Large Language Model (LLM) to
enrich features extracted from limited sensor data. The
framework connects an arbitrary time-series feature extractor
to a frozen-weight LLM via a trainable adapter layer, using
the LLM as an efficient feature enhancer. We demonstrate its
effectiveness and versatility on a challenging rock drill fault
diagnosis task, which suffers from both the aforementioned
data ambiguity and significant domain shift. Experimental
results show that our proposed method outperforms the
baseline models, achieving the highest performance with an
Accuracy of 0.811 and a Macro F1-Score of 0.793. Notably,
the classification accuracy for fault classes that were
conventionally difficult to identify improved significantly,
indicating that the utilization of abstract knowledge from
LLMs is highly effective for building more robust and
accurate fault diagnosis systems.

1. INTRODUCTION

In modern manufacturing and social infrastructure,
enhancing equipment reliability and reducing operational
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costs are critical management challenges. Prognostics and
Health Management (PHM), a core technology for
preventing failures by monitoring and predicting equipment
status based on sensor data, is gaining increasing importance.
In particular, fault diagnosis, the fundamental task of
detecting signs of abnormality and identifying their causes,
constitutes the cornerstone of PHM. In recent years,
numerous studies have reported that Deep Learning (DL)
models can achieve high diagnostic performance by
automatically extracting features from complex time-series
sensor data.

However, the practical application of such data-driven
methods to real-world industrial environments still faces
fundamental challenges. Industrial systems are often
characterized by limited data availability, especially for
various fault conditions, and their physical complexity makes
it difficult to construct accurate physics-based models.
Therefore, the ability to learn robust and highly
discriminative feature representations from scarce numerical
data is paramount. This becomes particularly critical when
trying to distinguish between different fault modes that
exhibit highly similar waveform patterns, a task where
conventional DL models often struggle, as they can only form
an understanding based on the patterns found within the
provided training data.

To address this fundamental challenge, this study proposes a
novel framework that integrates the extensive knowledge of
pre-trained Large Language Models (LLMs) into time-series
fault diagnosis models. Here, “Large Language Model
(LLM)” specifically refers to general-purpose text-based
LLMs (e.g., GPT-4), which we leverage for knowledge
transfer and reasoning support. We distinguish these from
pre-trained time-series foundation models (e.g., TimesNet,
MOMENT), which are complementary but not the focus of
this study. Our central hypothesis is that by leveraging the
abstract conceptual understanding and contextual reasoning
capabilities that LLMs acquire from vast textual data, we can
enhance the feature representations extracted from sensor
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data. This approach aims to move beyond mere numerical
pattern matching and capture more essential, robust features,
thereby improving diagnostic performance even with limited
data. Importantly, the LLM component is treated as a drop-in
module: the interface consumes task prompts and returns
abstract features that are then fused in our similarity-based
pipeline, without relying on model-specific internals. While
broader benchmarking across multiple LLMs and datasets is
valuable, our primary goal here is to introduce and validate
the methodology; accordingly, we scope experiments to a
representative LLM and dataset split to foreground clarity
and reproducibility.

Our contributions are therefore threefold: First, we design a
versatile and modular integration framework that utilizes a
frozen-weight LLM as a computationally efficient feature
enhancer. Second, to demonstrate its effectiveness and
versatility, we apply the framework to a challenging rock drill
fault diagnosis task characterized by domain shift, and show
that it can be flexibly integrated with the established Domain-
Adversarial Neural Network (DANN) adaptation technique.
Third, through extensive experiments, we demonstrate that
our method not only surpasses baseline models but also the
DANN-applied model, with a particularly significant
improvement for fault classes that were conventionally
difficult to distinguish. This result substantiates that the
enhanced features provided by the LLM are effective and
robust even under domain shift conditions.

The remainder of this paper is organized as follows. Section
2 provides an overview of related work. Section 3 details the
proposed LLM-integrated framework. Section 4 describes
the experimental setup for validating our method, and Section
5 presents and discusses the experimental results. Finally,
Section 6 concludes the paper and outlines future work.

2. RELATED WORK

Recent advances in Transformer-based time-series modeling,
including Time Series Transformer (TST), Informer,
PatchTST, and TS-BERT, have reported strong performance
on temporal representation learning and PHM-related tasks.
While a systematic head-to-head benchmarking against these
models is beyond the scope of this paper, our goal here is to
isolate and validate the contribution of the frozen, text-based
LLM as a plug-in feature enhancer within a similarity-based
PHM pipeline. Extending the evaluation to include such
Transformer-based time-series baselines is a natural direction
for future work and is facilitated by our model-agnostic
interface.

This research is situated at the intersection of two major
research fields: deep learning-based PHM, and the emerging
frontier of applying LLMs to time-series analysis. In this
section, we review prior work in these areas to clarify the
academic positioning and contribution of our study.

First, deep learning has been firmly established as a powerful
tool in PHM, particularly for fault diagnosis using time-series
sensor data. While signal processing and classical machine
learning methods were traditionally dominant, in recent
years, CNNs and Recurrent Neural Networks (RNNs) have
been widely adopted due to their ability to automatically learn
hierarchical features directly from data (Chang & Han, 2024;
Zhang et al, 2019; Zhao et al., 2019). Among these,
specialized architectures like the Depth-wise CNN are noted
for their efficiency in processing multi-channel sensor data.
However, the efficacy of these purely data-driven approaches
is often constrained in real-world settings by the scarcity of
comprehensive fault data and the difficulty of formulating
accurate physics-based models for complex systems. This
lack of data and explicit domain knowledge makes it
challenging for models to learn highly discriminative
features, especially for faults with similar signatures.
Furthermore, this challenge is often compounded by "domain
shift" from unit-to-unit variations, which also degrades
generalization. While domain adaptation techniques like
DANN have been developed to address the latter issue, the
fundamental challenge of enriching feature representations
from limited data remains a key research objective.

Recent years have seen two parallel lines of progress: (i)
general-purpose text-based LLMs, which excel in natural
language understanding and reasoning; and (ii) pre-trained
foundation models for time series, such as TimesNet or
MOMENT. While our framework primarily exploits the first
category (text-based LLMs) for knowledge transfer and
reasoning support, we view time-series foundation models as
complementary and discuss their integration as future work
(Nie et al.,2023; Gruver et al., 2023).

In contrast to this prior work, our study proposes a different
paradigm for leveraging LLMs. The novelty of our approach
lies not in fine-tuning the LLM as a direct predictor, but in
using it as a computationally efficient frozen feature
enhancer. Furthermore, we have designed a modular and
versatile framework that connects an arbitrary time-series
feature extractor to the frozen LLM via a trainable adapter
layer. This high degree of versatility allows our framework
not only to be compatible with various time-series models but
also to be flexibly combined with existing techniques like
DANN to address specific problems, such as the
aforementioned domain shift. In this paper, we demonstrate
that this LLM-integrated framework can provide a robust and
high-precision solution for challenging PHM tasks.

3. PROPOSED FRAMEWORK

In this section, we propose a versatile framework, which is
the core of our research, for integrating pre-trained LLMs
with time-series analysis models.
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3.1. Overview and Motivation

Conventional time-series analysis models learn patterns
solely from numerical data, such as sensor readings. In
contrast, LLMs, trained on vast amounts of text data, possess
sophisticated capabilities for conceptual understanding and
contextual reasoning. Our research is founded on the
hypothesis that by leveraging this abstract "knowledge" from
LLM:s in time-series analysis, we can acquire more advanced
and robust feature representations that are unattainable from
numerical data alone. The proposed framework aims to
connect an arbitrary time-series model with an LLM,
enabling the latter to function as a powerful feature enhancer.

3.2. Framework Architecture

The overall architecture of the proposed framework is
illustrated in Figure 1. It is composed of four functionally
distinct primary modules: (1) a Time-Series Feature
Extractor, (2) Adapter layers, (3) a Frozen Pre-trained LLM,
and (4) a Task-Specific Head.

First, the Time-Series Feature Extractor is responsible for
extracting an initial feature vector from the raw input time-
series data for use in subsequent tasks. The primary
characteristic of this module is its flexibility; depending on
the nature of the task and data characteristics, an optimal
model can be selected from a variety of time-series
architectures, such as CNNs or Transformers.

Next, the Adapter layers act as a bridge to fill the domain gap
between the numerical feature representations generated by
the time-series feature extractor and the high-dimensional
embedding space that LLMs operate on. Specifically, it is
tasked with projecting the feature vector into an embedding
space suitable for processing by the LLM. Potential
implementations include linear transformations using a fully
connected layer or techniques like patching, which divides
the data into local structures.

The Frozen Pre-trained LLM forms the core of the
framework. It refines the features received from the adapter
layer into more sophisticated, context-aware representations
by leveraging its extensive pre-trained knowledge. A key
design principle is that the LLM's parameters are kept frozen
and are not updated during training. This approach avoids the
computationally expensive process of fine-tuning and allows
the LLM to be used as a lightweight yet powerful feature
enhancer.

Finally, the Task-Specific Head takes the features enhanced
by the LLM as input and performs the final prediction to
achieve the task objective, such as classification or
regression. This module is also highly flexible, and its
architecture can be designed according to the specific
problem to be solved. Common implementations include a
Multi-Layer Perceptron (MLP) or Support Vector Machine
(SVM).
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Figure 1. Conceptual Diagram of the Proposed
Framework. This figure illustrates the overall architecture,
comprising four main modules: a Time-Series Feature Extractor, an
Adapter, a Frozen Pre-trained LLM, and a Task-Specific Head,
designed for modular and flexible integration.

By adopting this modular design, where each component has
a clear and independent role, the proposed framework is
expected to demonstrate high adaptability and effectiveness
for a wide range of time-series analysis problems without
being overly dependent on a specific time-series model or a
limited set of tasks.

4. EMPIRICAL STUDY: ROCK DRILL FAULT DIAGNOSIS

To wvalidate the effectiveness of the LLM-integrated
framework proposed in the previous section, this chapter
presents a concrete case study on a rock drill fault diagnosis
task. This study aims to evaluate the performance and
robustness of the proposed method, particularly under
conditions where domain shift, caused by unit-to-unit
variations in equipment, exists

4.1. Dataset and Preprocessing

This study utilizes the rock drill dataset released for a PHM
Data Challenge (Jakobsson et al., 2022; PHM Society, 2022).
The dataset is composed of time-series data from eight
distinct individuals, each exhibiting different operational
characteristics, across 11 fault modes. Each data sample
consists of 3-channel pressure sensor signals and exhibits
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heterogeneity with varying sequence lengths. Because the
individuals included in the training and evaluation data are
intentionally separated, this task is defined as a domain shift
problem arising from unit-to-unit variations.

Table 1 shows the data partitioning method and statistics for
each individual used in this study. Although the original
challenge setting used IDs 3 for validation and IDs 7-8 for
testing, in this study we use only seven individuals (IDs 1-
7). We exclude ID 8 to avoid having two distinct test
domains, which would complicate interpretation, and to keep
the evaluation protocol simple and focused on demonstrating
the proposed methodology. To assess the final generalization
performance on an unseen individual, Individual 7 is
completely held out as the test set. Individual 3 is used as the
validation set for hyperparameter tuning and early stopping.
The remaining five individuals (1, 2, 4, 5, and 6) are used for
model training.

As a preprocessing step for the input data, zero-padding is
applied to handle samples with varying sequence lengths
uniformly. All time-series samples were standardized to a
length of 748, which is the maximum sequence length
observed in the entire dataset.

Table 1. Dataset Overview and Split
Note: ID 8, which was part of the original challenge split, is
excluded here to simplify evaluation and interpretation.

Individual | Data Use No. of | Sample Length
Sample Min. Max.
1 Train 7,331 617 748
2 Train 7,887 603 729
3 Validation 7,887 594 715
4 Train 7,617 585 710
5 Train 7,997 579 705
6 Train 3,313 571 692
7 Test 7,955 560 681

4.2. Compared and Proposed Models

To comprehensively evaluate the effectiveness of our
proposed method, we designed and implemented three types
of models: a baseline model, a domain adaptation model, and
our proposed LLM-integrated model.

4.2.1. Compared Methods

Depth-wise CNN (Baseline): We adopt a Depth-wise CNN,
which has reported high performance in prior work on the
PHM Data Challenge, as the baseline model (Oh et al., 2023).
This model is characterized by applying independent
convolutional layers to each sensor channel upstream of the
feature extractor, a technique known as depth-wise separable
convolution (Chollet, 2017).

CNN+DANN: This model integrates the DANN, a domain
adaptation technique, with the aforementioned CNN model
(Ganin et al., 2016). It is included as a comparative model
given that this task involves a domain shift problem between
individuals. In this method, the feature extractor is trained
adversarially with a domain classifier to learn domain-
invariant feature representations.

4.2.2. Proposed Method (CNN+DANN+LLM)

Based on the versatile framework described in Section 3, we
constructed the architecture shown in Figure 2. The details of
each component in the proposed model are shown in Table 2.

The architecture of the proposed model is constructed by
integrating multiple modules. First, for the time-series feature
extractor, we employ a Depth-wise CNN, similar to the
baseline, due to its ability to efficiently process 3-channel
sensor signals. Next, to further enhance the features extracted
by the CNN, we selected the pre-trained DistilBERT
(distilbert-base-uncased) for the LLM component of our
framework, considering its lightweight nature and affinity for
classification tasks (Sanh et al., 2019). To leverage its
extensive knowledge while curbing computational costs, the
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Figure 2. Proposed LLM integrated Model for Rockdrill Fault
Diagnosis
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Table 2. Details of Proposed Model Components

Component Detail Dimensions

Applies individual CNN branches to

Feature each sensor (3ch). Outputs from the 3 in: [3, 748]
Extractor branches are concatenated and out: [561]
flattened.
A fully-connected layer that -
z(AIcli)a per transforms CNN features to the Ln’ t[s[gég;]
! LLM's embedding dimension. ut:
Uses a pre-trained DistilBERT .
LILM . . in: [1, 768]
Embedding (distilbert-base-uncased). Weights out: [512, 768]
are frozen.
Adapter Extracts the embedding vector of the in: [512, 768]
(out) [CLS] token. out: [768]
Label . in: [768]
Predictor Fault class classifier (MLP). out: [11]
Domain Domain classifier (MLP) via a in: [768]
Classifier Gradient Reversal Layer (GRL). out: [2]

To connect these modules, the 561-dimensional feature
vector output by the Depth-wise CNN is transformed by a
trainable adapter layer (a fully-connected layer) into the 768-
dimensional standard input for DistilBERT. Receiving this
vector as input, DistilBERT outputs a context-aware
embedding vector. In this study, we utilize the 768-
dimensional vector corresponding to the [CLS] token from
this output, which holds aggregated sequence-level
information, as the LLM-enhanced feature for subsequent
tasks. Finally, to address the domain shift problem arising
from unit-to-unit variations, we apply the DANN technique
to these enhanced features, promoting the learning of
domain-invariant representations.

The final training objective function is defined using the
classification loss L, and the domain loss L, as follows,
where the hyperparameter A balances the two losses:

Lrotar = Le — A Lg (1

4.3. Experimental Setup

4.3.1. Evaluation Protocol and Metrics

To rigorously evaluate the model's generalization
performance, we conduct five independent training-testing
runs, each using one of the five individuals (IDs 1, 2, 4, 5, 6)
as the training source. In all runs, ID 3 is fixed as the
validation set, which is used for early stopping, and ID 7 is
consistently held out as the unseen test set, on which accuracy
and macro Fl-score are reported. To account for variations
due to stochastic elements (e.g., weight initialization, data
shuffling), we conduct three independent trials for each run,
changing only the random seed. The final scores are reported

as the mean and standard deviation (SD) over all 15 runs (5
training IDs X 3 trials). Additionally, a Confusion Matrix is
used for a detailed class-by-class performance analysis.

4.3.2. Implementation Details and Hyperparameters

The experiments were conducted on a machine equipped with
an NVIDIA GeForce RTX 3090 GPU, with an average
training time of approximately 6.5 minutes per run. Key
hyperparameters are shown in Table 3

Table 3. Key Hyperparameters

Hyper Parameters Value
Learning Rate 0.0005
Batch Size 32
Max. No. of Epochs 100
Patience (Early Stopping) 30
Optimizer Adam

Class Prediction Loss Cross-entropy

Domain Prediction Loss Cross-entropy

DANN Weight: A 5

Architectural specifics: The depth-wise CNN uses three 1-D
convolutional blocks per channel with kernel sizes [7, 5, 3],
strides [1, 1, 1], and output channels [64, 64, 64], followed
by BatchNorm + ReLU after each block and a final global
average pooling over time. The three channel features are
concatenated to form a 561-dimensional vector that feeds the
adapter. The adapter (in) is a fully connected layer 561—768
with ReLU and dropout p=0.1. The LLM component is
DistilBERT (distilbert-base-uncased) with all weights
frozen, we do not tokenize the time series—the 768-D
adapter output is provided as a single pseudo-token (one 768-
D token injected at the embedding layer), and we take the
[CLS] representation as the LLM-enhanced feature. The
adapter (out) keeps the dimensionality at 768 for the
downstream heads (fault label predictor and domain
classifier). Random seeds for the three trials are {1, 2, 3} to
vary initialization and shuffling.

Training procedure: Each mini-batch from a training
individual is passed through the CNN-adapter—-LLM stack.
The resulting representation is used by two heads: the fault
classifier (cross-entropy loss) and the domain classifier
(cross-entropy loss via a GRL, A=5). The combined loss (Eq.
(1)) is used to update the CNN, adapter, and classifiers, while
the LLM remains frozen. Early stopping is based on
validation performance (ID 3, patience = 30), and final test
results are reported on ID 7. Each configuration is repeated
with three random seeds, and mean + SD over 15 runs (five
training-ID runs X three seeds) are reported.
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Figure 3. Comparison of Normalized Confusion Matrices

5. RESULTS AND DISCUSSION

5.1. Overall Performance Evaluation

Table 4 presents the overall performance comparison of the
three models evaluated in this study, using two metrics:
Accuracy and Macro F1-Score. Each score represents the
mean and SD from a total of 15 runs, derived from three
independent trials across five runs with different training
individuals (IDs 1, 2, 4, 5, 6). In every run, ID 3 serves as the
validation set and ID 7 as the final test set. Thus, Table 4
summarizes the test performance obtained under these five
different training configurations.

As shown in Table 4, the baseline CNN model recorded an
Accuracy of 0.778 and a Macro F1-Score of 0.751. In
comparison, the CNN + DANN model, which applies the
domain adaptation technique DANN, improved the Accuracy
to 0.792 and the Macro Fl1-Score to 0.772. This result
suggests that DANN contributed to mitigating the domain
shift between individuals and improving generalization
performance

Our proposed LLM-integrated model (CNN+DANN-+LLM)
further surpassed the performance of the DANN-applied
model, achieving the highest performance among all
compared methods with an Accuracy of 0.811 and a Macro
F1-Score of 0.793. Furthermore, the SD of the proposed
method was comparable to the other models, and its Macro
F1-Score SD was the lowest, indicating that the integration
of the LLM may contribute not only to performance
improvement but also to the stabilization of training. Beyond
LLMs, recent time-series Transformers such as TST,
Informer, PatchTST, and TS-BERT represent strong
alternative baselines. While a full comparison is beyond this
paper’s scope, our modular design allows straightforward
substitution or integration with such models in future work.

It is important to note that the proposed framework introduces
an adapter layer to connect CNN features with the LLM. To
ensure a fair comparison, we retained the adapter even in the
CNN+DANN baseline when the LLM component was
removed (by applying a skip connection over the LLM). This
design guarantees that the number of trainable parameters
remains essentially identical across models, isolating the
contribution of the LLM itself. The consistent improvement
observed, particularly for fault classes that are conventionally
difficult to distinguish, therefore cannot be attributed merely
to parameter growth but instead highlights the added value of
LLM-projected representations.

Table 4. Performance Comparison

Model Accuracy F1 score
Mean + SD Mean £ SD
CNN 0.778 +0.131  0.751 +0.165
CNN+DANN 0.792 +0.130 0.772 +0.162
CNN+DANN+LLM 0.811 +0.120 0.793 +0.147

5.2. Analysis of Class-wise Classification Performance

Next, to analyze the factors contributing to the overall
performance improvement in detail, we visualize how each
model classified the 11 fault classes using normalized
confusion matrices for the test data (Figure 3). The diagonal
elements of the matrices correspond to the recall for each
class, where a higher value signifies better classification
performance for that class.

Figure 3 clearly illustrates the improvement in classification

performance as the model is enhanced.

(a) CNN (Baseline): In the baseline model, values are
dispersed  outside the diagonal, indicating that
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misclassifications occurred between multiple classes. In
particular, there was a noticeable tendency for 'Class 5' to be
misclassified as 'Class 9', 'Class 8' as 'Class 7', and 'Class 10'
as both 'Class 1' and 'Class 9'.

(b) CNN+DANN: In the central model with DANN, the
misclassification from 'Class 5' to 'Class 9', which was
prominent in the baseline, is significantly improved. The
misclassifications of 'Class §' as 'Class 7' and 'Class 10" as
'Class 9' are also reduced. This aligns with the overall
performance improvement confirmed in Section 5.1 and is
likely a result of DANN acquiring domain-invariant features.
However, confusion in classification, such as 'Class 10' being
misclassified as 'Class 1', is still observed.

(c) CNN+DANN+ LLM (Proposed): In the proposed method

on the right, the diagonal values are the highest overall, and
misclassifications are substantially suppressed. What is
particularly noteworthy is the significant improvement in the
classification accuracy for 'Class 10', which was difficult for
the other models to distinguish. For this class, by integrating
the LLM, a mapping to a higher-order, more abstract feature
space was performed. We infer that this endowed the model
with the ability to capture subtle feature differences, much
like how a human would make judgments from context. This
analysis corroborates the quantitative performance
evaluation presented in Section 5.1, demonstrating that the
integration of LLM knowledge helps solve problems that
were particularly challenging for conventional methods and
contributes to the realization of a more robust and high-
precision classifier.

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

This research proposed a novel, versatile, and modular
framework for integrating the knowledge of LLMs to
enhance the performance of time-series analysis in PHM. The
framework utilizes an LLM as a computationally efficient
feature enhancer by connecting an arbitrary time-series

feature extractor to a frozen-weight LLM via an adapter layer.

We demonstrated its effectiveness on a rock drill fault
diagnosis task that includes a domain shift problem arising
from unit-to-unit variations. In the experiments, a model
integrating DANN was constructed to improve robustness
against this domain shift.

Experimental results showed that the proposed LLM-
integrated model (CNN+DANN+LLM) achieved the highest
performance on both Accuracy and Macro F1-Score metrics
compared to the baseline CNN and the DANN-applied
models. A detailed analysis of the confusion matrices
confirmed a significant improvement in the classification
accuracy of specific fault classes that were difficult for
conventional methods to distinguish, most notably Class 10.
This result suggests that projecting the extensive pre-trained
knowledge of an LLM into the feature space contributes to

the identification of complex and subtle patterns that cannot
be captured by sensor data alone.

6.2. Limitations and Future Work

While this research opens up many possibilities for future
development, it also has several limitations.

First, the validation in this paper is limited to a single dataset.
Therefore, it is necessary to apply this framework to diverse
PHM datasets to further evaluate its versatility.

Second, there is room for architectural improvements to fully
leverage the LLM's capabilities. In this study, we input the
time-series features as a single vector to the LLM, an
approach that may not fully utilize the self-attention
mechanism's ability to capture relationships within a
sequence. A promising future approach involves dividing the
time-series features into multiple patches and inputting them
to the LLM as a sequence with corresponding positional
encodings. This would allow the self-attention mechanism to
model temporal and contextual dependencies between
features, which is expected to yield richer feature
representations.

Third, although we completely froze the LLM's weights to
curb computational costs, introducing limited fine-tuning is
another promising option. Depending on the dataset size and
task characteristics, unfreezing only the final few layers of
the LLM or adapting its output layer to serve as the task-
specific head could further specialize its representational
power for the task, potentially leading to additional
performance gains.

Finally, using larger models than the DistilBERT used in this
study, or LLMs pre-trained on specific industrial domains,
could also contribute to future performance improvements.
However, the aforementioned architectural enhancements,
the introduction of fine-tuning, and the adoption of larger
models all present a trade-off with increased computational
cost. Consequently, designing efficient integration methods
and adapter layers that balance performance and cost remains
a critical research challenge for practical application.

Beyond these points, we see two practical extensions and one
evaluation plan. First, incorporating domain-specific LLMs
trained on industrial corpora may further improve
generalization, especially for fault classes that are
semantically or operationally similar. Second, while this
study addresses single-label classification, the architecture
readily extends to multi-label settings by replacing the
softmax head with independent sigmoid outputs; the
upstream CNN-adapter—LLM stack remains unchanged. To
more fully situate our method within the broader state of the
art, we also plan to benchmark against Transformer-based
time-series baselines (e.g., TST, Informer, PatchTST, TS-
BERT) and domain-specific LLMs; our model-agnostic
interface makes such substitutions straightforward.
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We hope this study serves as a solid step toward leveraging
the potential of LLMs in time-series analysis, particularly in
industrial applications.
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