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ABSTRACT 

In recent years, Deep Learning has shown remarkable success 
in fault diagnosis for Prognostics and Health Management, 
automatically extracting features from complex sensor data. 
However, its application to real-world industrial systems is 
often hampered by fundamental limitations such as the 
scarcity of comprehensive fault data and the difficulty of 
creating accurate physics-based models for complex systems. 
This lack of sufficient data and explicit domain knowledge 
makes it challenging for conventional models to distinguish 
different fault modes that produce highly similar sensor 
patterns. To compensate for this scarcity, this paper proposes 
a novel and versatile framework that leverages the vast, pre-
trained knowledge of a Large Language Model (LLM) to 
enrich features extracted from limited sensor data. The 
framework connects an arbitrary time-series feature extractor 
to a frozen-weight LLM via a trainable adapter layer, using 
the LLM as an efficient feature enhancer. We demonstrate its 
effectiveness and versatility on a challenging rock drill fault 
diagnosis task, which suffers from both the aforementioned 
data ambiguity and significant domain shift. Experimental 
results show that our proposed method outperforms the 
baseline models, achieving the highest performance with an 
Accuracy of 0.811 and a Macro F1-Score of 0.793. Notably, 
the classification accuracy for fault classes that were 
conventionally difficult to identify improved significantly, 
indicating that the utilization of abstract knowledge from 
LLMs is highly effective for building more robust and 
accurate fault diagnosis systems. 

1. INTRODUCTION 

In modern manufacturing and social infrastructure, 
enhancing equipment reliability and reducing operational 

costs are critical management challenges. Prognostics and 
Health Management (PHM), a core technology for 
preventing failures by monitoring and predicting equipment 
status based on sensor data, is gaining increasing importance. 
In particular, fault diagnosis, the fundamental task of 
detecting signs of abnormality and identifying their causes, 
constitutes the cornerstone of PHM. In recent years, 
numerous studies have reported that Deep Learning (DL) 
models can achieve high diagnostic performance by 
automatically extracting features from complex time-series 
sensor data. 

However, the practical application of such data-driven 
methods to real-world industrial environments still faces 
fundamental challenges. Industrial systems are often 
characterized by limited data availability, especially for 
various fault conditions, and their physical complexity makes 
it difficult to construct accurate physics-based models. 
Therefore, the ability to learn robust and highly 
discriminative feature representations from scarce numerical 
data is paramount. This becomes particularly critical when 
trying to distinguish between different fault modes that 
exhibit highly similar waveform patterns, a task where 
conventional DL models often struggle, as they can only form 
an understanding based on the patterns found within the 
provided training data. 

To address this fundamental challenge, this study proposes a 
novel framework that integrates the extensive knowledge of 
pre-trained Large Language Models (LLMs) into time-series 
fault diagnosis models. Here, “Large Language Model 
(LLM)” specifically refers to general-purpose text-based 
LLMs (e.g., GPT-4), which we leverage for knowledge 
transfer and reasoning support. We distinguish these from 
pre-trained time-series foundation models (e.g., TimesNet, 
MOMENT), which are complementary but not the focus of 
this study. Our central hypothesis is that by leveraging the 
abstract conceptual understanding and contextual reasoning 
capabilities that LLMs acquire from vast textual data, we can 
enhance the feature representations extracted from sensor 
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data. This approach aims to move beyond mere numerical 
pattern matching and capture more essential, robust features, 
thereby improving diagnostic performance even with limited 
data. Importantly, the LLM component is treated as a drop-in 
module: the interface consumes task prompts and returns 
abstract features that are then fused in our similarity-based 
pipeline, without relying on model-specific internals. While 
broader benchmarking across multiple LLMs and datasets is 
valuable, our primary goal here is to introduce and validate 
the methodology; accordingly, we scope experiments to a 
representative LLM and dataset split to foreground clarity 
and reproducibility. 

Our contributions are therefore threefold: First, we design a 
versatile and modular integration framework that utilizes a 
frozen-weight LLM as a computationally efficient feature 
enhancer. Second, to demonstrate its effectiveness and 
versatility, we apply the framework to a challenging rock drill 
fault diagnosis task characterized by domain shift, and show 
that it can be flexibly integrated with the established Domain-
Adversarial Neural Network (DANN) adaptation technique. 
Third, through extensive experiments, we demonstrate that 
our method not only surpasses baseline models but also the 
DANN-applied model, with a particularly significant 
improvement for fault classes that were conventionally 
difficult to distinguish. This result substantiates that the 
enhanced features provided by the LLM are effective and 
robust even under domain shift conditions. 

The remainder of this paper is organized as follows. Section 
2 provides an overview of related work. Section 3 details the 
proposed LLM-integrated framework. Section 4 describes 
the experimental setup for validating our method, and Section 
5 presents and discusses the experimental results. Finally, 
Section 6 concludes the paper and outlines future work. 

2. RELATED WORK 

Recent advances in Transformer-based time-series modeling, 
including Time Series Transformer (TST), Informer, 
PatchTST, and TS-BERT, have reported strong performance 
on temporal representation learning and PHM-related tasks. 
While a systematic head-to-head benchmarking against these 
models is beyond the scope of this paper, our goal here is to 
isolate and validate the contribution of the frozen, text-based 
LLM as a plug-in feature enhancer within a similarity-based 
PHM pipeline. Extending the evaluation to include such 
Transformer-based time-series baselines is a natural direction 
for future work and is facilitated by our model-agnostic 
interface. 

This research is situated at the intersection of two major 
research fields: deep learning-based PHM, and the emerging 
frontier of applying LLMs to time-series analysis. In this 
section, we review prior work in these areas to clarify the 
academic positioning and contribution of our study. 

First, deep learning has been firmly established as a powerful 
tool in PHM, particularly for fault diagnosis using time-series 
sensor data. While signal processing and classical machine 
learning methods were traditionally dominant, in recent 
years, CNNs and Recurrent Neural Networks (RNNs) have 
been widely adopted due to their ability to automatically learn 
hierarchical features directly from data (Chang & Han, 2024; 
Zhang et al., 2019; Zhao et al., 2019). Among these, 
specialized architectures like the Depth-wise CNN are noted 
for their efficiency in processing multi-channel sensor data. 
However, the efficacy of these purely data-driven approaches 
is often constrained in real-world settings by the scarcity of 
comprehensive fault data and the difficulty of formulating 
accurate physics-based models for complex systems. This 
lack of data and explicit domain knowledge makes it 
challenging for models to learn highly discriminative 
features, especially for faults with similar signatures. 
Furthermore, this challenge is often compounded by "domain 
shift" from unit-to-unit variations, which also degrades 
generalization. While domain adaptation techniques like 
DANN have been developed to address the latter issue, the 
fundamental challenge of enriching feature representations 
from limited data remains a key research objective. 

Recent years have seen two parallel lines of progress: (i) 
general-purpose text-based LLMs, which excel in natural 
language understanding and reasoning; and (ii) pre-trained 
foundation models for time series, such as TimesNet or 
MOMENT. While our framework primarily exploits the first 
category (text-based LLMs) for knowledge transfer and 
reasoning support, we view time-series foundation models as 
complementary and discuss their integration as future work 
(Nie et al.,2023; Gruver et al., 2023). 

In contrast to this prior work, our study proposes a different 
paradigm for leveraging LLMs. The novelty of our approach 
lies not in fine-tuning the LLM as a direct predictor, but in 
using it as a computationally efficient frozen feature 
enhancer. Furthermore, we have designed a modular and 
versatile framework that connects an arbitrary time-series 
feature extractor to the frozen LLM via a trainable adapter 
layer. This high degree of versatility allows our framework 
not only to be compatible with various time-series models but 
also to be flexibly combined with existing techniques like 
DANN to address specific problems, such as the 
aforementioned domain shift. In this paper, we demonstrate 
that this LLM-integrated framework can provide a robust and 
high-precision solution for challenging PHM tasks. 

3. PROPOSED FRAMEWORK 

In this section, we propose a versatile framework, which is 
the core of our research, for integrating pre-trained LLMs 
with time-series analysis models. 
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3.1. Overview and Motivation 

Conventional time-series analysis models learn patterns 
solely from numerical data, such as sensor readings. In 
contrast, LLMs, trained on vast amounts of text data, possess 
sophisticated capabilities for conceptual understanding and 
contextual reasoning. Our research is founded on the 
hypothesis that by leveraging this abstract "knowledge" from 
LLMs in time-series analysis, we can acquire more advanced 
and robust feature representations that are unattainable from 
numerical data alone. The proposed framework aims to 
connect an arbitrary time-series model with an LLM, 
enabling the latter to function as a powerful feature enhancer. 

3.2. Framework Architecture 

The overall architecture of the proposed framework is 
illustrated in Figure 1. It is composed of four functionally 
distinct primary modules: (1) a Time-Series Feature 
Extractor, (2) Adapter layers, (3) a Frozen Pre-trained LLM, 
and (4) a Task-Specific Head. 

First, the Time-Series Feature Extractor is responsible for 
extracting an initial feature vector from the raw input time-
series data for use in subsequent tasks. The primary 
characteristic of this module is its flexibility; depending on 
the nature of the task and data characteristics, an optimal 
model can be selected from a variety of time-series 
architectures, such as CNNs or Transformers. 

Next, the Adapter layers act as a bridge to fill the domain gap 
between the numerical feature representations generated by 
the time-series feature extractor and the high-dimensional 
embedding space that LLMs operate on. Specifically, it is 
tasked with projecting the feature vector into an embedding 
space suitable for processing by the LLM. Potential 
implementations include linear transformations using a fully 
connected layer or techniques like patching, which divides 
the data into local structures. 

The Frozen Pre-trained LLM forms the core of the 
framework. It refines the features received from the adapter 
layer into more sophisticated, context-aware representations 
by leveraging its extensive pre-trained knowledge. A key 
design principle is that the LLM's parameters are kept frozen 
and are not updated during training. This approach avoids the 
computationally expensive process of fine-tuning and allows 
the LLM to be used as a lightweight yet powerful feature 
enhancer. 

Finally, the Task-Specific Head takes the features enhanced 
by the LLM as input and performs the final prediction to 
achieve the task objective, such as classification or 
regression. This module is also highly flexible, and its 
architecture can be designed according to the specific 
problem to be solved. Common implementations include a 
Multi-Layer Perceptron (MLP) or Support Vector Machine 
(SVM). 

Figure 1. Conceptual Diagram of the Proposed 
Framework. This figure illustrates the overall architecture, 
comprising four main modules: a Time-Series Feature Extractor, an 
Adapter, a Frozen Pre-trained LLM, and a Task-Specific Head, 
designed for modular and flexible integration. 

 

By adopting this modular design, where each component has 
a clear and independent role, the proposed framework is 
expected to demonstrate high adaptability and effectiveness 
for a wide range of time-series analysis problems without 
being overly dependent on a specific time-series model or a 
limited set of tasks. 

4. EMPIRICAL STUDY: ROCK DRILL FAULT DIAGNOSIS 

To validate the effectiveness of the LLM-integrated 
framework proposed in the previous section, this chapter 
presents a concrete case study on a rock drill fault diagnosis 
task. This study aims to evaluate the performance and 
robustness of the proposed method, particularly under 
conditions where domain shift, caused by unit-to-unit 
variations in equipment, exists 

4.1. Dataset and Preprocessing 

This study utilizes the rock drill dataset released for a PHM 
Data Challenge (Jakobsson et al., 2022; PHM Society, 2022). 
The dataset is composed of time-series data from eight 
distinct individuals, each exhibiting different operational 
characteristics, across 11 fault modes. Each data sample 
consists of 3-channel pressure sensor signals and exhibits 
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heterogeneity with varying sequence lengths. Because the 
individuals included in the training and evaluation data are 
intentionally separated, this task is defined as a domain shift 
problem arising from unit-to-unit variations. 

Table 1 shows the data partitioning method and statistics for 
each individual used in this study. Although the original 
challenge setting used IDs 3 for validation and IDs 7–8 for 
testing, in this study we use only seven individuals (IDs 1–
7). We exclude ID 8 to avoid having two distinct test 
domains, which would complicate interpretation, and to keep 
the evaluation protocol simple and focused on demonstrating 
the proposed methodology. To assess the final generalization 
performance on an unseen individual, Individual 7 is 
completely held out as the test set. Individual 3 is used as the 
validation set for hyperparameter tuning and early stopping. 
The remaining five individuals (1, 2, 4, 5, and 6) are used for 
model training.  

As a preprocessing step for the input data, zero-padding is 
applied to handle samples with varying sequence lengths 
uniformly. All time-series samples were standardized to a 
length of 748, which is the maximum sequence length 
observed in the entire dataset. 

Table 1. Dataset Overview and Split 
Note: ID 8, which was part of the original challenge split, is 

excluded here to simplify evaluation and interpretation. 

Individual Data Use No. of  Sample Length 
    Sample Min. Max. 
1 Train  7,331  617 748 

2 Train  7,887  603 729 
3 Validation  7,887  594 715 
4 Train  7,617  585 710 
5 Train  7,997  579 705 
6 Train  3,313  571 692 
7 Test  7,955  560 681 

 

4.2. Compared and Proposed Models 

To comprehensively evaluate the effectiveness of our 
proposed method, we designed and implemented three types 
of models: a baseline model, a domain adaptation model, and 
our proposed LLM-integrated model. 

4.2.1. Compared Methods 

Depth-wise CNN (Baseline): We adopt a Depth-wise CNN, 
which has reported high performance in prior work on the 
PHM Data Challenge, as the baseline model (Oh et al., 2023). 
This model is characterized by applying independent 
convolutional layers to each sensor channel upstream of the 
feature extractor, a technique known as depth-wise separable 
convolution (Chollet, 2017). 

CNN+DANN: This model integrates the DANN, a domain 
adaptation technique, with the aforementioned CNN model 
(Ganin et al., 2016). It is included as a comparative model 
given that this task involves a domain shift problem between 
individuals. In this method, the feature extractor is trained 
adversarially with a domain classifier to learn domain-
invariant feature representations. 

4.2.2. Proposed Method (CNN+DANN+LLM) 

Based on the versatile framework described in Section 3, we 
constructed the architecture shown in Figure 2. The details of 
each component in the proposed model are shown in Table 2. 

The architecture of the proposed model is constructed by 
integrating multiple modules. First, for the time-series feature 
extractor, we employ a Depth-wise CNN, similar to the 
baseline, due to its ability to efficiently process 3-channel 
sensor signals. Next, to further enhance the features extracted 
by the CNN, we selected the pre-trained DistilBERT 
(distilbert-base-uncased) for the LLM component of our 
framework, considering its lightweight nature and affinity for 
classification tasks (Sanh et al., 2019). To leverage its 
extensive knowledge while curbing computational costs, the 

weights of DistilBERT are frozen during training, allowing it 
to function as a feature enhancer. 
Figure 2. Proposed LLM integrated Model for Rockdrill Fault 

Diagnosis 
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Table 2. Details of Proposed Model Components  

Component Detail Dimensions 

Feature 
Extractor 

Applies individual CNN branches to 
each sensor (3ch). Outputs from the 3 
branches are concatenated and 
flattened. 

in: [3, 748] 
out: [561] 

Adapter  
(in) 

A fully-connected layer that 
transforms CNN features to the 
LLM's embedding dimension. 

in: [561] 
out: [768] 

LLM 
Embedding 

Uses a pre-trained DistilBERT 
(distilbert-base-uncased). Weights 
are frozen. 

in: [1, 768] 
out: [512, 768] 

Adapter 
(out) 

Extracts the embedding vector of the 
[CLS] token. 

in: [512, 768] 
out: [768] 

Label 
Predictor Fault class classifier (MLP). in: [768] 

out: [11] 
Domain 
Classifier 

Domain classifier (MLP) via a 
Gradient Reversal Layer (GRL). 

in: [768] 
out: [2] 

 

To connect these modules, the 561-dimensional feature 
vector output by the Depth-wise CNN is transformed by a 
trainable adapter layer (a fully-connected layer) into the 768-
dimensional standard input for DistilBERT. Receiving this 
vector as input, DistilBERT outputs a context-aware 
embedding vector. In this study, we utilize the 768-
dimensional vector corresponding to the [CLS] token from 
this output, which holds aggregated sequence-level 
information, as the LLM-enhanced feature for subsequent 
tasks. Finally, to address the domain shift problem arising 
from unit-to-unit variations, we apply the DANN technique 
to these enhanced features, promoting the learning of 
domain-invariant representations. 

The final training objective function is defined using the 
classification loss 𝐿! and the domain loss 𝐿" as follows, 
where the hyperparameter λ balances the two losses: 

										𝐿#$%&' = 𝐿! − 𝜆 ∗ 𝐿" (1) 

4.3. Experimental Setup 

4.3.1. Evaluation Protocol and Metrics 

To rigorously evaluate the model's generalization 
performance, we conduct five independent training-testing 
runs, each using one of the five individuals (IDs 1, 2, 4, 5, 6) 
as the training source. In all runs, ID 3 is fixed as the 
validation set, which is used for early stopping, and ID 7 is 
consistently held out as the unseen test set, on which accuracy 
and macro F1-score are reported. To account for variations 
due to stochastic elements (e.g., weight initialization, data 
shuffling), we conduct three independent trials for each run, 
changing only the random seed. The final scores are reported 

as the mean and standard deviation (SD) over all 15 runs (5 
training IDs × 3 trials). Additionally, a Confusion Matrix is 
used for a detailed class-by-class performance analysis. 

4.3.2. Implementation Details and Hyperparameters 

The experiments were conducted on a machine equipped with 
an NVIDIA GeForce RTX 3090 GPU, with an average 
training time of approximately 6.5 minutes per run. Key 
hyperparameters are shown in Table 3 

Table 3. Key Hyperparameters 
Hyper Parameters Value 

Learning Rate 0.0005 

Batch Size 32 

Max. No. of Epochs 100 

Patience (Early Stopping) 30 

Optimizer Adam 

Class Prediction Loss Cross-entropy 

Domain Prediction Loss Cross-entropy 

DANN Weight: λ 5 

 

Architectural specifics: The depth-wise CNN uses three 1-D 
convolutional blocks per channel with kernel sizes [7, 5, 3], 
strides [1, 1, 1], and output channels [64, 64, 64], followed 
by BatchNorm + ReLU after each block and a final global 
average pooling over time. The three channel features are 
concatenated to form a 561-dimensional vector that feeds the 
adapter. The adapter (in) is a fully connected layer 561→768 
with ReLU and dropout p=0.1. The LLM component is 
DistilBERT (distilbert-base-uncased) with all weights 
frozen; we do not tokenize the time series—the 768-D 
adapter output is provided as a single pseudo-token (one 768-
D token injected at the embedding layer), and we take the 
[CLS] representation as the LLM-enhanced feature. The 
adapter (out) keeps the dimensionality at 768 for the 
downstream heads (fault label predictor and domain 
classifier). Random seeds for the three trials are {1, 2, 3} to 
vary initialization and shuffling. 

Training procedure: Each mini-batch from a training 
individual is passed through the CNN–adapter–LLM stack. 
The resulting representation is used by two heads: the fault 
classifier (cross-entropy loss) and the domain classifier 
(cross-entropy loss via a GRL, λ=5). The combined loss (Eq. 
(1)) is used to update the CNN, adapter, and classifiers, while 
the LLM remains frozen. Early stopping is based on 
validation performance (ID 3, patience = 30), and final test 
results are reported on ID 7. Each configuration is repeated 
with three random seeds, and mean ± SD over 15 runs (five 
training-ID runs × three seeds) are reported. 
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5. RESULTS AND DISCUSSION 

5.1. Overall Performance Evaluation 

Table 4 presents the overall performance comparison of the 
three models evaluated in this study, using two metrics: 
Accuracy and Macro F1-Score. Each score represents the 
mean and SD from a total of 15 runs, derived from three 
independent trials across five runs with different training 
individuals (IDs 1, 2, 4, 5, 6). In every run, ID 3 serves as the 
validation set and ID 7 as the final test set. Thus, Table 4 
summarizes the test performance obtained under these five 
different training configurations. 

As shown in Table 4, the baseline CNN model recorded an 
Accuracy of 0.778 and a Macro F1-Score of 0.751. In 
comparison, the CNN + DANN model, which applies the 
domain adaptation technique DANN, improved the Accuracy 
to 0.792 and the Macro F1-Score to 0.772. This result 
suggests that DANN contributed to mitigating the domain 
shift between individuals and improving generalization 
performance 

Our proposed LLM-integrated model (CNN+DANN+LLM) 
further surpassed the performance of the DANN-applied 
model, achieving the highest performance among all 
compared methods with an Accuracy of 0.811 and a Macro 
F1-Score of 0.793. Furthermore, the SD of the proposed 
method was comparable to the other models, and its Macro 
F1-Score SD was the lowest, indicating that the integration 
of the LLM may contribute not only to performance 
improvement but also to the stabilization of training. Beyond 
LLMs, recent time-series Transformers such as TST, 
Informer, PatchTST, and TS-BERT represent strong 
alternative baselines. While a full comparison is beyond this 
paper’s scope, our modular design allows straightforward 
substitution or integration with such models in future work. 

It is important to note that the proposed framework introduces 
an adapter layer to connect CNN features with the LLM. To 
ensure a fair comparison, we retained the adapter even in the 
CNN+DANN baseline when the LLM component was 
removed (by applying a skip connection over the LLM). This 
design guarantees that the number of trainable parameters 
remains essentially identical across models, isolating the 
contribution of the LLM itself. The consistent improvement 
observed, particularly for fault classes that are conventionally 
difficult to distinguish, therefore cannot be attributed merely 
to parameter growth but instead highlights the added value of 
LLM-projected representations. 

Table 4. Performance Comparison 

5.2. Analysis of Class-wise Classification Performance 

Next, to analyze the factors contributing to the overall 
performance improvement in detail, we visualize how each 
model classified the 11 fault classes using normalized 
confusion matrices for the test data (Figure 3). The diagonal 
elements of the matrices correspond to the recall for each 
class, where a higher value signifies better classification 
performance for that class. 

Figure 3 clearly illustrates the improvement in classification 
performance as the model is enhanced. 

(a) CNN (Baseline): In the baseline model, values are 
dispersed outside the diagonal, indicating that 

Model Accuracy F1 score 
 Mean ± SD Mean ± SD 

CNN 0.778 ±0.131 0.751 ±0.165 

CNN+DANN 0.792 ±0.130 0.772 ±0.162 

CNN+DANN+LLM 0.811 ±0.120 0.793 ±0.147 

Figure 3. 
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misclassifications occurred between multiple classes. In 
particular, there was a noticeable tendency for 'Class 5' to be 
misclassified as 'Class 9', 'Class 8' as 'Class 7', and 'Class 10' 
as both 'Class 1' and 'Class 9'. 

(b) CNN+DANN: In the central model with DANN, the 
misclassification from 'Class 5' to 'Class 9', which was 
prominent in the baseline, is significantly improved. The 
misclassifications of 'Class 8' as 'Class 7' and 'Class 10' as 
'Class 9' are also reduced. This aligns with the overall 
performance improvement confirmed in Section 5.1 and is 
likely a result of DANN acquiring domain-invariant features. 
However, confusion in classification, such as 'Class 10' being 
misclassified as 'Class 1', is still observed. 

 (c) CNN+DANN+ LLM (Proposed): In the proposed method 
on the right, the diagonal values are the highest overall, and 
misclassifications are substantially suppressed. What is 
particularly noteworthy is the significant improvement in the 
classification accuracy for 'Class 10', which was difficult for 
the other models to distinguish. For this class, by integrating 
the LLM, a mapping to a higher-order, more abstract feature 
space was performed. We infer that this endowed the model 
with the ability to capture subtle feature differences, much 
like how a human would make judgments from context. This 
analysis corroborates the quantitative performance 
evaluation presented in Section 5.1, demonstrating that the 
integration of LLM knowledge helps solve problems that 
were particularly challenging for conventional methods and 
contributes to the realization of a more robust and high-
precision classifier. 

6. CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

This research proposed a novel, versatile, and modular 
framework for integrating the knowledge of LLMs to 
enhance the performance of time-series analysis in PHM. The 
framework utilizes an LLM as a computationally efficient 
feature enhancer by connecting an arbitrary time-series 
feature extractor to a frozen-weight LLM via an adapter layer. 
We demonstrated its effectiveness on a rock drill fault 
diagnosis task that includes a domain shift problem arising 
from unit-to-unit variations. In the experiments, a model 
integrating DANN was constructed to improve robustness 
against this domain shift. 

Experimental results showed that the proposed LLM-
integrated model (CNN+DANN+LLM) achieved the highest 
performance on both Accuracy and Macro F1-Score metrics 
compared to the baseline CNN and the DANN-applied 
models. A detailed analysis of the confusion matrices 
confirmed a significant improvement in the classification 
accuracy of specific fault classes that were difficult for 
conventional methods to distinguish, most notably Class 10. 
This result suggests that projecting the extensive pre-trained 
knowledge of an LLM into the feature space contributes to 

the identification of complex and subtle patterns that cannot 
be captured by sensor data alone. 

6.2. Limitations and Future Work 

While this research opens up many possibilities for future 
development, it also has several limitations. 

First, the validation in this paper is limited to a single dataset. 
Therefore, it is necessary to apply this framework to diverse 
PHM datasets to further evaluate its versatility. 

Second, there is room for architectural improvements to fully 
leverage the LLM's capabilities. In this study, we input the 
time-series features as a single vector to the LLM, an 
approach that may not fully utilize the self-attention 
mechanism's ability to capture relationships within a 
sequence. A promising future approach involves dividing the 
time-series features into multiple patches and inputting them 
to the LLM as a sequence with corresponding positional 
encodings. This would allow the self-attention mechanism to 
model temporal and contextual dependencies between 
features, which is expected to yield richer feature 
representations. 

Third, although we completely froze the LLM's weights to 
curb computational costs, introducing limited fine-tuning is 
another promising option. Depending on the dataset size and 
task characteristics, unfreezing only the final few layers of 
the LLM or adapting its output layer to serve as the task-
specific head could further specialize its representational 
power for the task, potentially leading to additional 
performance gains.  

Finally, using larger models than the DistilBERT used in this 
study, or LLMs pre-trained on specific industrial domains, 
could also contribute to future performance improvements. 
However, the aforementioned architectural enhancements, 
the introduction of fine-tuning, and the adoption of larger 
models all present a trade-off with increased computational 
cost. Consequently, designing efficient integration methods 
and adapter layers that balance performance and cost remains 
a critical research challenge for practical application. 

Beyond these points, we see two practical extensions and one 
evaluation plan. First, incorporating domain-specific LLMs 
trained on industrial corpora may further improve 
generalization, especially for fault classes that are 
semantically or operationally similar. Second, while this 
study addresses single-label classification, the architecture 
readily extends to multi-label settings by replacing the 
softmax head with independent sigmoid outputs; the 
upstream CNN–adapter–LLM stack remains unchanged. To 
more fully situate our method within the broader state of the 
art, we also plan to benchmark against Transformer-based 
time-series baselines (e.g., TST, Informer, PatchTST, TS-
BERT) and domain-specific LLMs; our model-agnostic 
interface makes such substitutions straightforward. 
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We hope this study serves as a solid step toward leveraging 
the potential of LLMs in time-series analysis, particularly in 
industrial applications. 
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