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ABSTRACT

This paper presents a novel methodology for fine-tuning
vision backbones (or foundation models) and enabling
continual learning to ensure reliable prediction performance
after Al model deployment. The proposed network
architecture is designed to adapt to new and previously
unseen defect classes through few-shot learning. The
methodology is demonstrated using two practical optical
inspection applications: 1) Liquid crystal films produced on
a high-throughput roll-to-roll manufacturing line and 2)
Wafer map images from real-world semi-conductor
manufacturing process. Experimental results show that the
model achieves high prediction accuracy at test time and is
capable of continuously learning from new data.
Additionally, the model provides calibration scores, offering
insights into prediction uncertainty. In summary, the
proposed framework delivers a practical Al-based solution
for optical inspection, combining high accuracy,
interpretability, and continual learning. It eliminates the
need for handcrafted image features and significantly
reduces human intervention in defect detection and labeling.

1. INTRODUCTION

Optical inspection with automatic data handling plays a
critical role in modern manufacturing by enabling rapid,
accurate, and non-contact evaluation of product quality. It
significantly enhances production efficiency by accurately
detecting surface defects, dimensional inaccuracies, and
assembly errors. Integrating automated data handling in
optical inspection further streamlines the process by
organizing and analyzing vast amounts of inspection data
instantly, allowing for predictive maintenance, process
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optimization, and quality assurance. This not only reduces
human error and inspection time but also supports data-
driven decision-making, ultimately leading to higher
product reliability, lower defect rates, and reduced
manufacturing costs.

Traditional pattern recognition algorithms have been widely
used in optical inspection systems for defect identification
(Lo & Lin, 2024). These methods typically rely on
handcrafted features extracted from image data, such as
edges, textures, shapes, or statistical properties, using
techniques like Sobel filters, Gabor wavelets, histogram of
oriented gradients (HOG), and Hough transformation
(Gonzales & Woods, 2002). Once features are extracted,
classifiers such as k-nearest neighbors (KNN), support
vector machines (SVM), and decision trees are employed to
categorize image regions as defective or non-defective.
While these algorithms are computationally efficient and
interpretable, their performance is often limited by their
dependence on domain-specific feature engineering and
sensitivity to variations in lighting, scale, and orientation.
As a result, although effective in controlled environments,
traditional methods often struggle with generalizing to
complex, real-world inspection tasks (Zhu et al., 2021)
(Shih et al., 2023).

Recent breakthroughs in deep learning, particularly the
emergence of pre-trained foundation models, have
significantly advanced Al applications in optical inspection.
These models, such as Vision Transformers (ViT) (Vaswani
et al., 2017) or ResNet50 (Koonce, 2021), trained on
massive and diverse datasets, provide powerful feature
representations that can be adapted to various defect
detection tasks with minimal labeled data. Their versatility
enables robust performance across different materials,
lighting conditions, and defect types, making Al-driven
inspection more scalable and accessible. This shift
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significantly reduces the need for extensive dataset curation
and domain-specific training.

Despite recent advances, several technical challenges
remain in leveraging Al for optical inspection tasks(Cui &
Wang, 2022). One major issue is data shift, particularly
covariate shift, where the input distribution p(x)changes
between training and deployment, potentially degrading
model performance if the inference model p(y/x) fixed.
Another critical challenge is open-set recognition, where
previously unseen defect types or new classes appear during
testing, making it difficult for traditional models to
generalize. Addressing these challenges requires robust
domain adaptation techniques and models capable of
detecting and adapting to novel or out-of-distribution inputs.
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Figure 1. The overall prediction accuracy in case study 1
given by different deep neural network design. The ViT is
the pre-trained foundation model without any fine-tuning.
The ViTt is the updated backbone network by using
supervised fine tuning. ProtoNet is a few-shot learner that is
included to learning from new data continuously and adapt
to unseen label classes. The results indicates that the
proposed Backbone + Few-Shot Learner + Continual
Learning method yield the best prediction performance.

To address data shifts in optical inspection, this paper
proposes a novel methodology that integrates Al model
fine-tuning during an offline phase and online learning after
deployment. In the offline phase, the approach involves
supervised fine-tuning (SFT) of a pre-trained backbone
network, a few-shot learner to enable adaptation to new
defect classes, along with a model calibration strategy to
evaluate the reliability of the model’s predicted probabilities
across classes. During the online phase, prediction
confidence is used to identify uncertain predictions, which
are flagged for expert review and labeling. The newly
labeled samples are then used to monitor model
performance degradation and update the few-shot learner
accordingly. This framework ensures the model can
maintain high prediction accuracy while adapting to novel
and unseen defects. Furthermore, the use of calibration
scores enhances the interpretability of the Al system by
indicating when predictions can be trusted. A new optical

inspection application is utilized to test the proposed method,
and the prediction results are shown in Figure 1.

The rest of the paper is organized as follows. Section 2
describes the inspection problem and the related works.
Section 3 elaborates on the proposed methodology. Section
4 shows the results and discussions. Conclusions are given
in Section 5.

2. PROBLEM STATEMENT AND RELATED WORKS
2.1. Problem Statement

The objective of this study is to develop an Al-powered
optical inspection system capable of automatically
identifying part defects in Figure 2. Currently, human
inspectors are required due to challenges related to lighting
and complex data processing. Specifically, defective areas
often occupy less than 2% of the entire part, making them
difficult for Al algorithms to detect. Additionally,
reflections and ambient light further complicate the
detection of such small defects. Automating this inspection
process is critical, as liquid crystal film products in Figure 2
are  produced through  high-volume  roll-to-roll
manufacturing, making it impractical to manually inspect
every part. According to the manufacturer, the accuracy of
human inspectors is approximately 80%, primarily due to
fatigue and visual strain. Additionally, while classes 2 and 3
in Figure 2 illustrate common defects, there are also rare
defect types in Table 1 that must be incorporated into the
model. However, image data for these rare defects is
extremely limited, presenting a challenge for effective
training. Due to the disclosure restrictions, the images for
those rare defects cannot be provided.

Defect: Class 2

Defect: Class 3
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Figure 2. Defect classes on liquid crystal films

Table 1 The prediction class labels for this research task

Class 1 Healthy

Class 2 Common Defects (included in the training set)
Class 3 Common Defects (included in the training set)
Class 4 Rare Defects (Unseen to the training set)
Class 5 Rare Defects (Unseen to the training set)

To address these technical challenges, this study developed
a machine vision system incorporating a state-of-the-art
deep neural network architecture with the following
capabilities. 1) Fine-grained sub-region scanning to
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accurately identify small defective areas; 2) Adaptability to
new and previously unseen defect classes, enabling the
system to incorporate emerging defect types into the
detection model—while classes 2 and 3 represent common
defects, it is essential to account for novel classes that may
appear during production; 3) Sustained prediction accuracy
through online learning, allowing the model to continually
improve and adapt in real time.

2.2. Literature Review

Backbone network retraining and fine-tuning are
foundational strategies used for adapting pretrained vision
models to application-specific tasks. Previous studies have
shown that full backbone retraining performs well when
large amounts of labeled data are available, especially in
complex settings such as manufacturing (Kornblith et al.,
2019). As an alternative, supervised fine-tuning (SFT)
focuses on selectively updating specific layers or parameters
of pretrained models to improve efficiency and avoid
overfitting. This approach has gained popularity in recent
literature, especially for tasks with limited data or
deployment constraints. Layer-wise learning rate decay
(LLRD) is a common approach, where earlier layers receive
smaller gradient updates while deeper layers adapt more
aggressively to the target task (Clark et al., 2020).
Discriminative fine-tuning extends this idea by assigning
different learning rates to different layers based on their
sematic relevance to the downstream task (Howard & Ruder,
2018). Additional SFT methods such as BitFiT (Zaken et al.,
2021) and LoRA (Low-Rank Adaptation) (Hu et al., 2022)
have shown promising results in resource-constrained
environments. Vision backbones including ViT-B/16
(Dosovitskiy et al., 2020), MobileNetv3 (Howard et al.,
2019), and EfficientNet (Tan & Le, 2019) have been utilized
in these settings due to their balance of accuracy and
deployment efficiency. Collectively, these techniques have
become state-of-the-art for deploying foundation models on
application specific tasks with minimal overfitting and high
generalization (Elharrouss et al., 2024).

Few-Shot Learning (FSL) has concurrently become an
essential method to address novel class generalization with
limited labeled samples. Prototypical networks remains a
foundational component of FSL by computing class
centroids in an embedding space and classifying queries via
distance metrics (Snell et al., 2017). Matching Networks
builds upon this by employing a learned attention
mechanism over the support set, producing query-dependent
embeddings through context-aware matching (Vinyals et al.,
2016). Relation Networks introduce a learnable non-linear
comparator that models interactions between support-query
pairs, improving performance on more complex visual tasks
(Sung et al., 2018). Gradient-based meta-learning methods
such as Model-Agnostic Meta-Learning (MAML) take a
different approach, training models through inner-loop
optimization so they can quickly adapt to new tasks with

just a few gradient steps (Finn et al., 2017). Variants like
ANIL (Almost No Inner Loop) (Raghu et al., 2019) and
Meta-SGD (Li et al., 2017) refine this framework by
adjusting which layers or learning rates are trainable during
the inner loop. More recent methods include Meta-Baseline,
which applies a straightforward yet effective normalization
and linear classifier strategy on top of a pretrained backbone
(Chen et al., 2020), and FEAT (Few-shot Embedding
Adaptation with Transformer), which uses self-attention to
dynamically adapt the supper-query relationship in the
embedding space (Ye et al., 2020). When integrated with a
fine-tuned backbone, FSL methods benefit from more
semantically aligned features, improving both accuracy and
robustness in few-shot classification tasks under real-world
constraints (Triantafillou et al., 2019).

In vision-based classification, modern deep neural networks
often produce mis-calibrated probability estimates (Wenger
et al., 2020) Standard post-hoc fixes apply simple
parametric mappings. For example, Platt scaling (Boken,
2021) uses logistic regression on model scores and Guo et al.
showed that a single ‘temperature’ scalar on the softmax
scores can greatly improve calibration on vision tasks (Guo
et al., 2017). These methods are easy to implement but are
limited by their fixed functional forms. Bayesian Binning
into Quantiles (BBQ) (Naeini et al., 2015) is a non-
parametric Bayesian calibration approach. BBQ creates
multiple equal frequency histogram-binning models of the
classifier’s scores and scores each binning using a Bayesian
likelihood. It then averages the calibrated probabilities from
all these models according to their posterior weights. By
marginalizing over bin configurations, BBQ produces a
flexible calibration map that is not constrained to a sigmoid
or scalar-temperature shape.

In prognostics and health monitoring tasks, new fault
classes typically appear infrequently, and models must adapt
on edge devices with very limited memory and compute.
Under these constraints, conventional continual learning
methods  struggle. Replay-based methods become
impractical due to storage, privacy, and scalability limits,
and parameter-isolation approaches incur large model
overhead and assume clear task delineation. Moreover,
gradient-based fine-tuning for a few layers can impose
nontrivial computation, making it poorly suited for real-time
edge use (Chen et al., 2025). Accordingly, recent work
favors a frozen-backbone strategy with lightweight adapters
or small task-specific heads. For example, one can freeze a
pretrained backbone and insert compact adapter modules or
additive weight updates that are trained on the few new
examples (Stein et al., 2025). This parameter-efficient
design achieves near full-finetuning performance while
keeping the bulk of the network fixed. In practice, it
preserves the generic features of the backbone and adds only
minimal new parameters, enabling few-shot adaptation of
rare classes without overwriting previous knowledge.
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3. PROPOSED METHODOLOGY
3.1. Overview of the Proposed Methodology
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Figure 3. The proposed methodology

An overview of the proposed methodology is shown in
Figure 3. The proposed methodology has an offline phase
and an online phase. The offline phase focuses on getting a
good prediction model using historical data. The online
phase retains the model's performance after deployment by
continuous learning from new data.

In the offline phase, the proposed network architecture
consists of a pre-trained backbone, a few-shot learner, and a
model calibration module. The pre-trained image backbone
serves as a general-purpose feature encoder that transforms
input images into compact feature vectors. In this study, we
adopted the Vision Transformer (ViT) backbone, pre-trained
on ImageNet. Depending on the computational environment
(e.g., a server or an loT device), the model size can be
adjusted accordingly. Given that our model runs on an
industrial PC with limited RAM and computational
resources, we adopt the ViT-B/16 backbone, a variant of
ViT with approximately 86M network parameters (330MB).
Supervised fine-tuning (SFT) can be applied to adapt the
general-purpose backbone to a specific task. Once fine-
tuned, the backbone can remain fixed during the online
phase to ensure stable and consistent feature extraction. In
the authors’ experience, SFT is essential when using a
lightweight backbone, as it significantly enhances prediction
accuracy. However, for traditional backbones pre-trained on
extremely large datasets, SFT can often be omitted, as few-
shot learners offer sufficient adaptability to tailor the
backbone to specific tasks.

The few-shot learning module is crucial for enabling the
model to adapt to new defect classes and maintain
performance after deployment. It is common for new defect
types to emerge as inspection continues, or new product
variants are introduced. In this work, we implement
Prototypical Networks (ProtoNet) to support few-shot
learning.

The model calibration module serves as a post-processing
component for the classification head. It adjusts the
prediction probabilities to improve the reliability and
interpretability of the model’s outputs. In this study, the
Bayesian Binning into Quantiles (BBQ) model calibration
method is utilized. The approach involves dividing the
predicted probability space into quantile-based bins and

fitting a Bayesian model to estimate the true likelihood of
correctness within each bin. By capturing uncertainty, BBQ
produces well-calibrated probabilities even when data is
sparse or imbalanced.

During the online phase, the trained model is deployed to
identify part defects from a given image I. To evaluate
model performance, we apply the BBQ calibration method,
which adjusts predicted probabilities to better reflect true
likelihoods under uncertainty. For confidence estimation,
we use the distance between a sample’s embedding and its
nearest prototype in the feature space. Based on this
confidence measure, a decision is made on whether the
image requires human review. In this study, we set 90%
confidence as a threshold for sample selection. If so, a
human inspector will label the image and annotate the
defective region. The labeled image is then added to the
training set to support continual online learning and improve
future model performance. Once enough labeled images are
collected (e.g., 10 images), the data is used to update the
few-shot learner. During the online phase, the fine-tuned
backbone remains fixed to ensure consistent feature
representation, while only the few-shot learner is updated to
incorporate the new data and adapt to emerging defect
classes.

3.2. Few-Shot Learning (FSL)

The FSL is the key to accommodating new defects and
maintaining model prediction accuracy after the model is
deployed. Given an input image I, the fine-tuned backbone
(or feature encoder) extracts a feature vector V € RP from
the input I. The FSL in this study further maps the feature
vector V to a task-specific feature vector € € R%. The FSL
establish a mapping f: R — R4 by using neural networks.
In this study, the Prototypical Network (ProtoNet) (Snell et
al., 2017) is utilized to build the few-shot learner.

Given a labelled dataset S = {(x;,y;)}i=1,..n Where x; € R?
represents the feature vector given by the feature encoder
(or fine-turned backbone) and y € {1,2,...,K} is the class
labels. S, denotes the subset of samples belonging to class
k. The loss function for ProtoNet can be written as follows.

1
C =m Z fo(Xi) ™)
k (X, Y{)ESk
exp[—d(f (%), ¢ )] )

L =
@) Yk €Xp [_d (f¢ ), ckr)]

Where ¢ in Eqg. (1) is the centroid of class k. The distance
function d(-,-) measures the distance between the
embedding of a sample and the class centroid. By
minimizing the loss function, the neural network learns a
new feature mapping in which examples are close to their
class prototype but far from other classes.
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In this study, FSL is leveraged for three main purposes: (1)
tailoring the network to specific classification tasks during
the offline phase; (2) maintaining model performance
through continual learning from new samples; (3)
accommodating new defect classes with minimal
supervision. The training procedure of the ProtoNet is as
follows:

Table 2. The ProtoNet training algorithm using 3-way 5-
shot learning as an example.

ProtoNet Training Algorithm (3-Way 5-Shot):

1 Initialization: Training set S = {(x;,¥;)}i=1,..n, Where
y; € {1,2,...,K}.

2  Building Data Episode:
2.1 Randomly select 3 subclasses (3-Way) from all K
classes.
2.2 Randomly select 15 samples from the training set to
build the Support Set. The support set has 5 samples
for each selected subclass (5-Shot).
2.3 Randomly select samples from the training set to
build the Query Set. The Query Set has no overlapping
with the Support Set.

3 Minimizing the loss function:
3.1 Compute the prototype from the Support Set based
on Eq. (1).
3.2 Minimize the loss function Eq. (2) by using the
Query Set.

4 Repeat step 2 and 3 until the network is fully trained.

3.3. Model Calibration and Model Performance Metrics

Model calibration aims to adjust a model’s predicted
probabilities so that they better reflect the true likelihood of
prediction outcomes. In quality inspection applications,
understanding model calibration is as important as the
prediction itself. Common calibration methods include
Histogram Binning (or Hist), which divides the predicted
probabilities into fixed width bins and adjusts the prediction
for each bin based on the observed frequency of correct
predictions, providing a simple yet effective way to reduce
miscalibration. Platt Scaling (or Platt), which fits a logistic
regression model to the model’s output probabilities;
Isotonic Regression (IsoReg), a non-parametric method that
fits a piecewise-constant function; and Bayesian Binning
into Quantiles (BBQ), which combines quantile binning
with Bayesian inference to improve robustness. Calibration
is typically performed on a validation dataset after model
training and is particularly useful for deep learning models,
which are often overconfident in their predictions. Proper
calibration enhances model interpretability, supports better
decision-making and model reliability.

Model performance evaluation in classification tasks often
involves multiple metrics to comprehensively assess both
accuracy and reliability. Accuracy and Area Under the
Curve (AUC) measure how well a model classifies data,
with accuracy focusing on overall correctness and AUC

assessing the model’s ability to distinguish between classes.
However, these metrics do not evaluate how reliable the
predicted probabilities are. Expected Calibration Error
(ECE) and Maximum Calibration Error (MCE) address this
by evaluating the alignment between predicted probability
and actual outcomes. While ECE captures the average
calibration error across bins, MCE highlights the worst-case
miscalibration.

Expected Calibration Error (ECE) quantifies the average
difference between predicted probabilities and actual
outcomes across all predictions, capturing how well the
probability scores reflect true likelihoods. Maximum
Calibration Error (MCE) complements this by reporting the
worst-case deviation among all prediction bins, highlighting
the most severe miscalibration. These metrics are written as
follows:

Mo (3)
| B |
ECE= ) —& lacc(By,) — conf (B,,)|
m=1
MCE = Er{llﬁfM}Iacc(Bm) — conf (By,)| 4)

Where N is the total number of samples, M is the number of
bins. B,, is the set of sampls falls in the bin m, acc(B,)
shows the average prediction accuracy in sample bin B,,, and
conf (B,,) is the average uncalibrated prediction probability
given by the classification head of the deep neural network.
Normally, uncalibrated probability is a real number ¢ €
[0,1]. To evaluate calibration performance, the range of ccc
is often discretized into M = 10 equal-width bins, which are
then used to construct a reliability diagram that visually
compares predicted probability with actual accuracy.

3.4. Online Learning

During the online phase, model performance is tracked
regularly (e.g., hourly or daily) and the model parameters
for the few-shot learner are updated when the prediction
accuracy drops below 95% or when a new class is identified.

First, model performance tracking is conducted by randomly
selecting a subset of Al-labeled images with prediction
confidence < 90% for human inspection during each
monitoring period. These low-confidence images are
reviewed and re-labeled by human experts. The validated
images, along with their expert annotations, are then added
to the training set to update the few-shot learner. The
backbone feature encoder remains unchanged during this
update.

Second, the few-shot learner is updated according to the
training algorithm outlined in Table 2. The triggering
condition for the model parameter update is prediction
accuracy < 95% or a new class is identified. In this study, a
new defect class is added if more than 10 samples of that



Annual Conference of the Prognostics and Health Management Society 2025

class are observed. This augmented class will be utilized for
few-shot training.

To emphasize the importance of newly added images during
model updates, higher weights are assigned to these samples
to increase their likelihood of being selected for the support
set and query set in the training algorithm.

3.5. Hardware Setup and Data Description

Figure 4. The hardware setup for the optical inspection.

Figure 4 illustrates the hardware setup for the inspection
task. The vision system consists of a camera, optical lens,
power supply, and a camera controller with built-in image
processing capabilities. Due to hardware constraints on the
camera controller, a moderately sized model is required.

Table 3. Hardware Specifications

online phase includes data from a total of five classes, two
of which (Classes 4 and 5) are previously unseen by the
trained neural network. To simulate a real-world operating
environment, the online training samples are fed
sequentially to the model as a data stream. The objective is
to adapt the pre-trained network to these unseen classes

using FSL.

Table 4. Flex Electronics Data Description

Training

Class Offline online Validation Total
1(Healthy) 800 100 30 930
2 500 50 30 580

3 500 20 30 550

4 N/A 20 10 30

5 N/A 20 10 30
Total 1800 210 110 2120

Operating System Windows 7 Embedded

CPU Intel Celeron, dual core

Memory 8 GB RAM, 32 GB ROM

Table 3 summarizes the hardware platform used for optical-
inspection data acquisition and on-device deployment. The
selected industrial controller-class PC lacked a discrete
GPU; consequently, all inference was executed on the CPU.
Within these constraints, the Vision Transformer base
model with 16-pixel patches (ViT-B/16) was adopted as the
backbone because it offers a favorable balance between
representational capacity and computational efficiency for
resource-limited environments. ViT-B/16 comprises 12
transformer encoder layers with multi-head self-attention,
yielding reliable accuracy without exceeding the compute
and memory budgets of a CPU-only system. To further
minimize overhead during online adaptation, the
Prototypical Network (ProtoNet) adapter was implemented
as a lightweight module containing a single transformer
block, preserving real-time responsiveness while enabling
class-prototype refinement.

The number of data samples used for model training and
validation is summarized in Table 4. During the offline
phase, the training data contains only three classes, with
class 1 representing the healthy condition. In contrast, the

4. RESULTS AND DISCUSSIONS
4.1. Case Study 1: Flex Electronics
4.1.1. Offline Phase: Model Training

The ResNet50 (Koonce, 2021) and ViT-B/16 (Vaswani et
al., 2017) that are pre-trained on ImageNet-1Kk are utilized as
a backbone feature encoder. The supervised fine-tuning for
the pretrained backbone is attempted. The detailed model
prediction performance for the ViT-B/16 after SFT (or
ViT1) are provided in Table 6 and the benchmarking
between the two models can be found in Table 7. All the
results in this subsection are generated by using the training
(offline) and validation set in Table 4Error! Reference
source not found.. Table 5 shows the SFT training
parameters for ViTt.

Table 5. SFT training parameters

Learning Rate le-4
Optimizer Adamw
Number of Epochs 10
Image Size 224x224
Batch Size 64

Patch Size 16
Trainable ViT Layers 7

Table 6 compares four model calibration methods:
Histogram Binning (Hist), Platt Scaling (Platt) (Boken,
2021), Isotonic Regression (IsoReg) (Zadrozny & Elkan,
2002), and Bayesian Binning into Quantiles (BBQ) (Naeini
et al., 2015). The evaluation is based on four performance
metrics: class prediction accuracy (Acc), Area Under the
Curve (AUC), Expected Calibration Error (ECE), and
Maximum Calibration Error (MCE). The backbone network
used in this study is ViT-B/16, a variant of the Vision
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Transformer (ViT) architecture introduced by Meta Al for
image classification tasks. It consists of 12 Transformer
encoder blocks, among which 7 blocks are made tunable for
supervised fine-tuning (SFT).

Table 6. The model performance for ViT+

Class 1
Hist Platt IsoReg BBQ
Acc .900 .930 .870 .930
AUC .890 .890 910 .860
ECE .056 .074 071 .064
MCE .618 .189 .841 136
Class 2
Hist Platt IsoReg BBQ
Acc .970 .900 .900 .900
AUC .970 970 .980 .970
ECE .025 .108 .034 021
MCE 171 .656 517 .065
Class 3
Hist Platt IsoReg BBQ
Acc .930 .930 .930 .930
AUC .950 .950 970 .950
ECE .046 .079 .041 .054
MCE .268 .290 478 202

The results in Table 6 demonstrate promising performance
from ViTT, with all three classes achieving satisfactory
prediction accuracy. Among the four calibration methods,
all yielded comparable results. For subsequent analysis, we
adopt BBQ as the post-processing method, given its strong
balance between robustness and predictive performance.

Table 7 shows more comprehensive benchmarking among
different model architectures. Comparison between the
untuned backbone feature encoder (i.e., ResNet+BBQ and
ViT+BBQ) with the fine-tuned backbone (ResNett+BBQ
and ViTTH+BBQ) clearly indicates the SFT can significantly
improve the model performance. This is because the
backbone feature encoder is fairly lightweight and the
training data in this inspection is significantly different with
ImageNet. Therefore, the SFT is a necessary step in this
analysis. Further comparison of the untuned backbone and
fine-tuned backbone with ProtoNet indicate that the SFT is
required to improve the prediction accuracy in this task even
with the ProtoNet concatenated to the backbone.

Comparison ~ between the ViTt+BBQ and the
ViT++ProtoNet+BBQ shows quite similar model prediction
performance. This is because a large number of training
samples for class 1,2, and 3 are available and the merits of
ProtoNet are not fully demonstrated. Moreover, the
separability of these classes is not so difficult. This is
supported by the feature embedding distribution in Figure 5.
The middle figure already shows great separability among
the class 1-3 after backbone SFT.
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Figure 5. A visualization of scatter plots for the feature

Table 7. The benchmarking of different network design for the offline Al model training

Network Class 1 Class 2 Class 3
Acc AUC | ECE Acc AUC | ECE Acc AUC | ECE
ResNet + BBQ .800 .690 .090 .370 .650 .075 .133 .400 102
ViT + BBQ .230 420 .045 .000 .640 .035 .833 .730 104
ResNetT + BBQ .867 .950 .081 .870 .900 .155 .867 .940 .048
ViTT+ BBQ .933 .890 .074 .900 .970 .108 .933 .950 .079
ResNet + ProtoNet + BBQ .033 .672 .067 .233 551 .005 .900 .537 .020
ViT + ProtoNet + BBQ .000 516 .056 433 17 .042 .900 611 .030
ResNetT + ProtoNet + BBQ (Proposed) | .900 .940 .108 .900 918 187 .867 .954 .037
ViTT + ProtoNet + BBQ (Proposed) .933 .847 .065 .933 .947 .022 .933 .946 .051
Class 4 Class 5 Overall
Acc AUC | ECE Acc AUC | ECE Acc AUC | ECE
ResNet + BBQ .000 .300 .094 .000 .680 154 .355 542 103
ViT + BBQ .000 .820 .000 .000 .880 .000 291 .699 .037
ResNetT + BBQ .000 510 .091 .000 .560 .091 .709 174 .093
ViTT+ BBQ .000 .840 .000 .000 400 .000 .755 811 .052
ResNet + ProtoNet + BBQ .000 .646 .000 .000 510 .000 .318 .583 .018
ViT + ProtoNet + BBQ .000 371 .000 .000 .520 .000 .364 547 .027
ResNetT + ProtoNet + BBQ (Proposed) | .000 .500 .091 .000 .500 .091 127 762 .103
ViTT+ ProtoNet + BBQ (Proposed) .000 764 .003 .000 .805 .003 764 .862 .029

* ViTT and ResNetT denote the backbone feature extractor after supervised fine-tuning

* The prediction performance for classes 4 and 5 is bad as these defect types were unseen by the trained model, see Table 4




Annual Conference of the Prognostics and Health Management Society 2025

vectors given by (left) original ViT backbone; (middle)
ViTt backbone after supervised fine-tuning. (right) ViT +
ProtoNet. The scatter plot is generated by the dimension
reduction algorithm UMAP.

The prediction performance for classes 4 and 5 in Table 7 is
not satisfactory so far, as these defect types were not
included in the offline training. In the online learning phase,
we will demonstrate improved performance in these two
classes by fine-tuning the ProtoNet using online training
samples. In the online phase, we assume that data is fed
sequentially to the deployed model. Samples with a
prediction confidence of < 90% will be flagged for human
labeling to support continual learning.

4.1.2. Online Phase: Continual Learning

After the offline Al model training, the online training set
(Table 4) is fed into the trained Al model for sample
selection. The prediction confidence scores, generated by
the ViTt+ProtoNet+BBQ model, are shown in Figure 6.
Samples with prediction confidence below 90% are selected
for human labeling, while those with confidence scores
equal to or above 90% are automatically labeled by the Al
model. Table 9 summarizes the prediction accuracy for both
groups. For the unselected samples (confidence > 90%), the
overall prediction accuracy reaches 98.35%, consistent with
the expectation that high-confidence predictions are reliable.
In contrast, the accuracy for the selected samples
(confidence < 90%) is 48.31%, providing clear evidence
that the model’s confidence score is a trustworthy indicator
of prediction reliability.
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Figure 6. Prediction confidence plot for the online training

set. The samples with confidence score <90% are selected
for human labeling.

Table 9. The prediction outcome on the online training set

Unselected Samples Selected Samples
(Confidence>=90%o) (Confidence<90%b)

121 out of 210 Al generated 89 out of 210 are selected
labels are accepted for human labelling

c1 c1| 15| 4
2 C2 18 2C2| 4
K =
O3 20 O3

(] [0

= F
=4 S cal 18| 2

cs| 2 cs|16 | 2

Cl C2 C3 C4 C5 Cl C2 C3 C4 C5

Predicted Class
Overall Accuracy 48.31%

Predicted Class
Overall Accuracy 98.35%

The selected samples and expert-provided labels in Table 9
are used to update the ProtoNet by introducing two new
classes, C4 and C5, into the label set. In the continual
learning setting, the feature encoder (ViTt or ResNett)
remains fixed, while only the ProtoNet is updated using the
training algorithm described in Table 2. Figure 7 illustrates
the improvement in prediction confidence before and after
continual learning. Since C4 and C5 were previously unseen
by the trained model, the initial confidence for these classes
was low. However, after continual learning, the prediction
confidence for C4 and C5 increases significantly,
demonstrating the effectiveness of the continual learning.

Table 8 highlights the performance improvements achieved
through continual learning. Compared to the best offline
model, ViTT+ProtoNet+BBQ, the prediction accuracy for
the newly introduced classes C4 and C5 has significantly
increased. As a result, the overall prediction accuracy
improved from 76.4% to 92.7%.

Table 8. The prediction accuracy on the validation set after online continual learning

Network Class 1 Class 2 Class 3
Acc | AUC | ECE Acc | AUC | ECE Acc | AUC | ECE
ResNetT+ProtoNet+BBQ+CL (Proposed) | .933 .985 .039 .900 .957 .090 .933 .983 .038
ViTT+ProtoNet+BBQ+CL (Proposed) .933 .960 .016 .967 .968 .011 .933 .960 .017
ViTT+RealtionNet+BBQ+CL .933 .919 140 .933 912 .103 .967 .959 .074
ViTT+BBQ (Baseline) .933 .890 074 .900 .970 .108 .933 .950 .079
Class 4 Class 5 Overall
Acc | AUC | ECE Acc | AUC | ECE Acc | AUC | ECE
ResNetT+ProtoNet+BBQ+CL (Proposed) | .700 .993 .034 .900 .998 .009 .900 .983 .038
ViTT+ProtoNet+BBQ+CL (Proposed) .900 .985 .006 .800 .970 .005 .927 .969 .011
ViTT+RealtionNet+BBQ+CL .800 914 .096 .667 911 .079 .860 .923 .050
ViTT+BBQ (Baseline) .000 .840 .000 .000 400 .000 .755 811 .052
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Figure 7. (a) The model prediction confidence on the
validation dataset (see Table 4) before continual learning.
Prediction confidence on C4 and C5 is low. (b) The model
prediction confidence after continual learning. The
prediction confidence in all classes is improved.

4.2. Case Study 2: Semi-Conductor Wafer Map

To validate repeatability and domain transfer displayed in
case study 1, the proposed framework is evaluated on the
WMB811-k wafer-map dataset using the same five-label data

structure: Healthy, Edge Ring, Center, Scratch, and Random.

To mirror similar factory conditions to the previous case
study, the dataset is intentionally imbalanced: common
defects are abundant in the offline training split, whereas
rare defects are absent offline and appear only in the online
pool, simulating “unseen-at-deployment” classes.

It was established in the previous case study that fine-tuned
VIT backbone outperforms its pretrained variant and ResNet
baselines. Therefore, in case study 2, we focus on three

configurations that directly test the claims of our framework:

1. ViT+ + BBQ (baseline): strong offline backbone;

2. ViT+ + ProtoNet + BBQ: adds a few-shot learner
without rare-class support;

3. ViT+ + ProtoNet + BBQ + CL: the online continual-
learning setting, where low-confidence/novel samples
are labeled and used in 3-way, 5-shot episodes to adapt
the few-shot learner while keeping the backbone fixed.

Table 10. WM811-k Data Description

Class Offlin-lf;ram”gnline Validation Total
None 2000 1000 550 3550
Edge Ring 2000 1000 550 3550
Center 2000 1000 550 3550
Scratch 0 500 225 725
Random 0 500 225 725
Total 6000 4000 2100 12100

Table 10 summarizes the WMB811-k data structure. The
offline split contains only the known classes (None, Edge
Ring, Center). The online split supplies the few-shot
supports for rare classes (Scratch, Random) during CL
episodes.

Reported in Table 11 are per-class and overall accuracy on
the validation data. As expected, ViT-+ + BBQ performs
strongly on the common classes but fails to correctly
classify the defective classes that were unseen offline. After
attaching the ProtoNet few-shot learner (ViT+ + ProtoNet
+ BBQ), performance on the common classes is maintained,
however, adaptation to the rare defective remains poor.
Once meta-learning is introduced (ViT 4 +ProtoNet
+BBQ+CL) and the few-shot learner is updated with low
confidence samples from the online training episode, rare-
class accuracy improves substantially while preserving
performance on common classes.

5. CONCLUSIONS

This paper presents a novel methodology for vision
backbone fine-tuning and continual learning in optical
inspection tasks. The approach is demonstrated through a
applications in liquid crystal film and semi-conductor wafer
map defect detection. A vision inspection testbed—
comprising a camera system, computational hardware, and a
human-machine interface—was developed to support the
inspection process. The proposed Al algorithms are
deployed to an industrial PC to enable automated data
processing. Through benchmarking various network
architectures, the study arrives at the following key findings:

1) Vision backbones can achieve high prediction accuracy
when fine-tuned with supervised learning. These models are
suitable for deployment on resource-constrained hardware.

2) Continual learning using few-shot learners (e.g.,
ProtoNet) is essential for adapting to unseen defect classes

Table 11. The prediction accuracy on the validation set for the WM-811K dataset

Accuracy
Network None | Edge Ring | Center Scratch Random | Overall
ViTT+BBQ (baseline) .980 .996 .969 .080 .000 .780
ViTH+ProtoNet +BBQ .989 .995 947 .000 .000 767
ViTT+ProtoNet +BBQ+CL (3-way 5-shot FSL) 933 .985 .936 733 .920 .925
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and mitigating performance degradation over time.

3) Calibration techniques are important for evaluating the
model reliability and prediction confidence. Human review
and annotation of low-confidence samples is crucial for
online model monitoring and performance maintenance.
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