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ABSTRACT 

This paper presents a novel methodology for fine-tuning 

vision backbones (or foundation models) and enabling 

continual learning to ensure reliable prediction performance 

after AI model deployment. The proposed network 

architecture is designed to adapt to new and previously 

unseen defect classes through few-shot learning. The 

methodology is demonstrated using two practical optical 

inspection applications: 1) Liquid crystal films produced on 

a high-throughput roll-to-roll manufacturing line and 2) 

Wafer map images from real-world semi-conductor 

manufacturing process. Experimental results show that the 

model achieves high prediction accuracy at test time and is 

capable of continuously learning from new data. 

Additionally, the model provides calibration scores, offering 

insights into prediction uncertainty. In summary, the 

proposed framework delivers a practical AI-based solution 

for optical inspection, combining high accuracy, 

interpretability, and continual learning. It eliminates the 

need for handcrafted image features and significantly 

reduces human intervention in defect detection and labeling. 

1. INTRODUCTION 

Optical inspection with automatic data handling plays a 

critical role in modern manufacturing by enabling rapid, 

accurate, and non-contact evaluation of product quality. It 

significantly enhances production efficiency by accurately 

detecting surface defects, dimensional inaccuracies, and 

assembly errors. Integrating automated data handling in 

optical inspection further streamlines the process by 

organizing and analyzing vast amounts of inspection data 

instantly, allowing for predictive maintenance, process 

optimization, and quality assurance. This not only reduces 

human error and inspection time but also supports data-

driven decision-making, ultimately leading to higher 

product reliability, lower defect rates, and reduced 

manufacturing costs. 

Traditional pattern recognition algorithms have been widely 

used in optical inspection systems for defect identification 

(Lo & Lin, 2024). These methods typically rely on 

handcrafted features extracted from image data, such as 

edges, textures, shapes, or statistical properties, using 

techniques like Sobel filters, Gabor wavelets, histogram of 

oriented gradients (HOG), and Hough transformation 

(Gonzales & Woods, 2002). Once features are extracted, 

classifiers such as k-nearest neighbors (KNN), support 

vector machines (SVM), and decision trees are employed to 

categorize image regions as defective or non-defective. 

While these algorithms are computationally efficient and 

interpretable, their performance is often limited by their 

dependence on domain-specific feature engineering and 

sensitivity to variations in lighting, scale, and orientation. 

As a result, although effective in controlled environments, 

traditional methods often struggle with generalizing to 

complex, real-world inspection tasks (Zhu et al., 2021) 

(Shih et al., 2023). 

Recent breakthroughs in deep learning, particularly the 

emergence of pre-trained foundation models, have 

significantly advanced AI applications in optical inspection. 

These models, such as Vision Transformers (ViT) (Vaswani 

et al., 2017) or ResNet50 (Koonce, 2021), trained on 

massive and diverse datasets, provide powerful feature 

representations that can be adapted to various defect 

detection tasks with minimal labeled data. Their versatility 

enables robust performance across different materials, 

lighting conditions, and defect types, making AI-driven 

inspection more scalable and accessible. This shift 
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significantly reduces the need for extensive dataset curation 

and domain-specific training.  

Despite recent advances, several technical challenges 

remain in leveraging AI for optical inspection tasks(Cui & 

Wang, 2022). One major issue is data shift, particularly 

covariate shift, where the input distribution 𝑝(𝑥) changes 

between training and deployment, potentially degrading 

model performance if the inference model 𝑝(𝑦/𝑥)  fixed. 

Another critical challenge is open-set recognition, where 

previously unseen defect types or new classes appear during 

testing, making it difficult for traditional models to 

generalize. Addressing these challenges requires robust 

domain adaptation techniques and models capable of 

detecting and adapting to novel or out-of-distribution inputs. 

 

Figure 1. The overall prediction accuracy in case study 1 

given by different deep neural network design. The ViT is 

the pre-trained foundation model without any fine-tuning. 

The ViT┼ is the updated backbone network by using 

supervised fine tuning.  ProtoNet is a few-shot learner that is 

included to learning from new data continuously and adapt 

to unseen label classes.  The results indicates that the 

proposed Backbone + Few-Shot Learner + Continual 

Learning method yield the best prediction performance. 

 

To address data shifts in optical inspection, this paper 

proposes a novel methodology that integrates AI model 

fine-tuning during an offline phase and online learning after 

deployment. In the offline phase, the approach involves 

supervised fine-tuning (SFT) of a pre-trained backbone 

network, a few-shot learner to enable adaptation to new 

defect classes, along with a model calibration strategy to 

evaluate the reliability of the model’s predicted probabilities 

across classes. During the online phase, prediction 

confidence is used to identify uncertain predictions, which 

are flagged for expert review and labeling. The newly 

labeled samples are then used to monitor model 

performance degradation and update the few-shot learner 

accordingly. This framework ensures the model can 

maintain high prediction accuracy while adapting to novel 

and unseen defects. Furthermore, the use of calibration 

scores enhances the interpretability of the AI system by 

indicating when predictions can be trusted. A new optical 

inspection application is utilized to test the proposed method, 

and the prediction results are shown in Figure 1. 

The rest of the paper is organized as follows. Section 2 

describes the inspection problem and the related works. 

Section 3 elaborates on the proposed methodology. Section 

4 shows the results and discussions. Conclusions are given 

in Section 5. 

2. PROBLEM STATEMENT AND RELATED WORKS 

2.1. Problem Statement 

The objective of this study is to develop an AI-powered 

optical inspection system capable of automatically 

identifying part defects in Figure 2. Currently, human 

inspectors are required due to challenges related to lighting 

and complex data processing. Specifically, defective areas 

often occupy less than 2% of the entire part, making them 

difficult for AI algorithms to detect. Additionally, 

reflections and ambient light further complicate the 

detection of such small defects. Automating this inspection 

process is critical, as liquid crystal film products in Figure 2 

are produced through high-volume roll-to-roll 

manufacturing, making it impractical to manually inspect 

every part. According to the manufacturer, the accuracy of 

human inspectors is approximately 80%, primarily due to 

fatigue and visual strain. Additionally, while classes 2 and 3 

in Figure 2 illustrate common defects, there are also rare 

defect types in Table 1 that must be incorporated into the 

model. However, image data for these rare defects is 

extremely limited, presenting a challenge for effective 

training. Due to the disclosure restrictions, the images for 

those rare defects cannot be provided. 

 

Figure 2. Defect classes on liquid crystal films 

Table 1 The prediction class labels for this research task 

Class 1 Healthy 

Class 2 Common Defects (included in the training set) 

Class 3 Common Defects (included in the training set) 

Class 4 Rare Defects (Unseen to the training set) 

Class 5 Rare Defects (Unseen to the training set) 

 

To address these technical challenges, this study developed 

a machine vision system incorporating a state-of-the-art 

deep neural network architecture with the following 

capabilities. 1) Fine-grained sub-region scanning to 
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accurately identify small defective areas; 2) Adaptability to 

new and previously unseen defect classes, enabling the 

system to incorporate emerging defect types into the 

detection model—while classes 2 and 3 represent common 

defects, it is essential to account for novel classes that may 

appear during production; 3) Sustained prediction accuracy 

through online learning, allowing the model to continually 

improve and adapt in real time. 

2.2. Literature Review 

Backbone network retraining and fine-tuning are 

foundational strategies used for adapting pretrained vision 

models to application-specific tasks. Previous studies have 

shown that full backbone retraining performs well when 

large amounts of labeled data are available, especially in 

complex settings such as manufacturing (Kornblith et al., 

2019). As an alternative, supervised fine-tuning (SFT) 

focuses on selectively updating specific layers or parameters 

of pretrained models to improve efficiency and avoid 

overfitting. This approach has gained popularity in recent 

literature, especially for tasks with limited data or 

deployment constraints. Layer-wise learning rate decay 

(LLRD) is a common approach, where earlier layers receive 

smaller gradient updates while deeper layers adapt more 

aggressively to the target task (Clark et al., 2020). 

Discriminative fine-tuning extends this idea by assigning 

different learning rates to different layers based on their 

sematic relevance to the downstream task (Howard & Ruder, 

2018). Additional SFT methods such as BitFiT (Zaken et al., 

2021) and LoRA (Low-Rank Adaptation) (Hu et al., 2022) 

have shown promising results in resource-constrained 

environments. Vision backbones including ViT-B/16 

(Dosovitskiy et al., 2020), MobileNetv3 (Howard et al., 

2019), and EfficientNet (Tan & Le, 2019) have been utilized 

in these settings due to their balance of accuracy and 

deployment efficiency. Collectively, these techniques have 

become state-of-the-art for deploying foundation models on 

application specific tasks with minimal overfitting and high 

generalization (Elharrouss et al., 2024). 

Few-Shot Learning (FSL) has concurrently become an 

essential method to address novel class generalization with 

limited labeled samples. Prototypical networks remains a 

foundational component of FSL by computing class 

centroids in an embedding space and classifying queries via 

distance metrics (Snell et al., 2017). Matching Networks 

builds upon this by employing a learned attention 

mechanism over the support set, producing query-dependent 

embeddings through context-aware matching (Vinyals et al., 

2016). Relation Networks introduce a learnable non-linear 

comparator that models interactions between support-query 

pairs, improving performance on more complex visual tasks 

(Sung et al., 2018). Gradient-based meta-learning methods 

such as Model-Agnostic Meta-Learning (MAML) take a 

different approach, training models through inner-loop 

optimization so they can quickly adapt to new tasks with 

just a few gradient steps (Finn et al., 2017). Variants like 

ANIL (Almost No Inner Loop) (Raghu et al., 2019) and 

Meta-SGD (Li et al., 2017) refine this framework by 

adjusting which layers or learning rates are trainable during 

the inner loop. More recent methods include Meta-Baseline, 

which applies a straightforward yet effective normalization 

and linear classifier strategy on top of a pretrained backbone 

(Chen et al., 2020), and FEAT (Few-shot Embedding 

Adaptation with Transformer), which uses self-attention to 

dynamically adapt the supper-query relationship in the 

embedding space (Ye et al., 2020). When integrated with a 

fine-tuned backbone, FSL methods benefit from more 

semantically aligned features, improving both accuracy and 

robustness in few-shot classification tasks under real-world 

constraints  (Triantafillou et al., 2019). 

In vision-based classification, modern deep neural networks 

often produce mis-calibrated probability estimates (Wenger 

et al., 2020) Standard post-hoc fixes apply simple 

parametric mappings. For example, Platt scaling (Böken, 

2021) uses logistic regression on model scores and Guo et al. 

showed that a single ‘temperature’ scalar on the softmax 

scores can greatly improve calibration on vision tasks (Guo 

et al., 2017). These methods are easy to implement but are 

limited by their fixed functional forms. Bayesian Binning 

into Quantiles (BBQ) (Naeini et al., 2015) is a non-

parametric Bayesian calibration approach. BBQ creates 

multiple equal frequency histogram-binning models of the 

classifier’s scores and scores each binning using a Bayesian 

likelihood. It then averages the calibrated probabilities from 

all these models according to their posterior weights. By 

marginalizing over bin configurations, BBQ produces a 

flexible calibration map that is not constrained to a sigmoid 

or scalar-temperature shape. 

In prognostics and health monitoring tasks, new fault 

classes typically appear infrequently, and models must adapt 

on edge devices with very limited memory and compute. 

Under these constraints, conventional continual learning 

methods struggle. Replay-based methods become 

impractical due to storage, privacy, and scalability limits, 

and parameter-isolation approaches incur large model 

overhead and assume clear task delineation. Moreover, 

gradient-based fine-tuning for a few layers can impose 

nontrivial computation, making it poorly suited for real-time 

edge use (Chen et al., 2025). Accordingly, recent work 

favors a frozen-backbone strategy with lightweight adapters 

or small task-specific heads. For example, one can freeze a 

pretrained backbone and insert compact adapter modules or 

additive weight updates that are trained on the few new 

examples (Stein et al., 2025). This parameter-efficient 

design achieves near full-finetuning performance while 

keeping the bulk of the network fixed. In practice, it 

preserves the generic features of the backbone and adds only 

minimal new parameters, enabling few-shot adaptation of 

rare classes without overwriting previous knowledge. 
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3. PROPOSED METHODOLOGY 

3.1. Overview of the Proposed Methodology 

 

Figure 3. The proposed methodology 

An overview of the proposed methodology is shown in 

Figure 3. The proposed methodology has an offline phase 

and an online phase. The offline phase focuses on getting a 

good prediction model using historical data. The online 

phase retains the model's performance after deployment by 

continuous learning from new data.  

In the offline phase, the proposed network architecture 

consists of a pre-trained backbone, a few-shot learner, and a 

model calibration module. The pre-trained image backbone 

serves as a general-purpose feature encoder that transforms 

input images into compact feature vectors. In this study, we 

adopted the Vision Transformer (ViT) backbone, pre-trained 

on ImageNet. Depending on the computational environment 

(e.g., a server or an IoT device), the model size can be 

adjusted accordingly. Given that our model runs on an 

industrial PC with limited RAM and computational 

resources, we adopt the ViT-B/16 backbone, a variant of 

ViT with approximately 86M network parameters (330MB). 

Supervised fine-tuning (SFT) can be applied to adapt the 

general-purpose backbone to a specific task. Once fine-

tuned, the backbone can remain fixed during the online 

phase to ensure stable and consistent feature extraction. In 

the authors’ experience, SFT is essential when using a 

lightweight backbone, as it significantly enhances prediction 

accuracy. However, for traditional backbones pre-trained on 

extremely large datasets, SFT can often be omitted, as few-

shot learners offer sufficient adaptability to tailor the 

backbone to specific tasks. 

The few-shot learning module is crucial for enabling the 

model to adapt to new defect classes and maintain 

performance after deployment. It is common for new defect 

types to emerge as inspection continues, or new product 

variants are introduced. In this work, we implement 

Prototypical Networks (ProtoNet) to support few-shot 

learning. 

The model calibration module serves as a post-processing 

component for the classification head. It adjusts the 

prediction probabilities to improve the reliability and 

interpretability of the model’s outputs. In this study, the 

Bayesian Binning into Quantiles (BBQ) model calibration 

method is utilized. The approach involves dividing the 

predicted probability space into quantile-based bins and 

fitting a Bayesian model to estimate the true likelihood of 

correctness within each bin. By capturing uncertainty, BBQ 

produces well-calibrated probabilities even when data is 

sparse or imbalanced. 

During the online phase, the trained model is deployed to 

identify part defects from a given image 𝐼 . To evaluate 

model performance, we apply the BBQ calibration method, 

which adjusts predicted probabilities to better reflect true 

likelihoods under uncertainty. For confidence estimation, 

we use the distance between a sample’s embedding and its 

nearest prototype in the feature space. Based on this 

confidence measure, a decision is made on whether the 

image requires human review. In this study, we set 90% 

confidence as a threshold for sample selection. If so, a 

human inspector will label the image and annotate the 

defective region. The labeled image is then added to the 

training set to support continual online learning and improve 

future model performance. Once enough labeled images are 

collected (e.g., 10 images), the data is used to update the 

few-shot learner. During the online phase, the fine-tuned 

backbone remains fixed to ensure consistent feature 

representation, while only the few-shot learner is updated to 

incorporate the new data and adapt to emerging defect 

classes. 

3.2. Few-Shot Learning (FSL) 

The FSL is the key to accommodating new defects and 

maintaining model prediction accuracy after the model is 

deployed. Given an input image 𝑰, the fine-tuned backbone 

(or feature encoder) extracts a feature vector 𝑽 ∈ 𝑹𝑫 from 

the input 𝑰. The FSL in this study further maps the feature 

vector 𝑽 to a task-specific feature vector 𝑪 ∈ 𝑹𝒅. The FSL 

establish a mapping 𝒇𝝓: 𝑹𝑫 → 𝑹𝒅 by using neural networks. 

In this study, the Prototypical Network (ProtoNet) (Snell et 

al., 2017) is utilized to build the few-shot learner.  

Given a labelled dataset 𝑆 = {(𝐱𝑖 , 𝑦𝑖)}𝑖=1,…,𝑁 where 𝐱𝑖 ∈ 𝑅𝐷 

represents the feature vector given by the feature encoder 

(or fine-turned backbone) and 𝑦 ∈ {1,2, … , 𝐾} is the class 

labels. 𝑆𝑘 denotes the subset of samples belonging to class 

𝑘. The loss function for ProtoNet can be written as follows. 

𝐜𝑘 =
1

|𝑆𝑘|
∑ 𝑓𝜙(𝐱𝑖)

(𝐱𝑖,𝑦𝑖)∈𝑆𝑘

 
(1) 

𝐿(𝐱) =
exp[−𝑑(𝑓𝜙(𝐱), 𝐜𝑘)]

∑ exp[−𝑑(𝑓𝜙(𝐱), 𝐜𝑘′)]𝑘′

 
(2) 

 

Where 𝐜𝑘 in Eq. (1) is the centroid of class 𝑘. The distance 

function 𝑑(⋅,⋅) measures the distance between the 

embedding of a sample and the class centroid. By 

minimizing the loss function, the neural network learns a 

new feature mapping in which examples are close to their 

class prototype but far from other classes. 
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In this study, FSL is leveraged for three main purposes: (1) 

tailoring the network to specific classification tasks during 

the offline phase; (2) maintaining model performance 

through continual learning from new samples; (3) 

accommodating new defect classes with minimal 

supervision. The training procedure of the ProtoNet is as 

follows: 

Table 2. The ProtoNet training algorithm using 3-way 5-

shot learning as an example. 

ProtoNet Training Algorithm (3-Way 5-Shot): 

1 Initialization: Training set 𝑆 = {(𝐱𝑖, 𝑦𝑖)}𝑖=1,…,𝑁, where 

𝑦𝑖 ∈ {1,2, … , 𝐾}. 
2 Building Data Episode:  

2.1 Randomly select 3 subclasses (3-Way) from all 𝐾 

classes. 

2.2 Randomly select 15 samples from the training set to 

build the Support Set. The support set has 5 samples 

for each selected subclass (5-Shot). 

2.3 Randomly select samples from the training set to 

build the Query Set.  The Query Set has no overlapping 

with the Support Set. 

3 Minimizing the loss function: 

3.1 Compute the prototype from the Support Set based 

on Eq. (1).  

3.2 Minimize the loss function Eq. (2) by using the 

Query Set. 

4 Repeat step 2 and 3 until the network is fully trained.  

3.3. Model Calibration and Model Performance Metrics 

Model calibration aims to adjust a model’s predicted 

probabilities so that they better reflect the true likelihood of 

prediction outcomes. In quality inspection applications, 

understanding model calibration is as important as the 

prediction itself. Common calibration methods include 

Histogram Binning (or Hist), which divides the predicted 

probabilities into fixed width bins and adjusts the prediction 

for each bin based on the observed frequency of correct 

predictions, providing a simple yet effective way to reduce 

miscalibration. Platt Scaling (or Platt), which fits a logistic 

regression model to the model’s output probabilities; 

Isotonic Regression (IsoReg), a non-parametric method that 

fits a piecewise-constant function; and Bayesian Binning 

into Quantiles (BBQ), which combines quantile binning 

with Bayesian inference to improve robustness. Calibration 

is typically performed on a validation dataset after model 

training and is particularly useful for deep learning models, 

which are often overconfident in their predictions. Proper 

calibration enhances model interpretability, supports better 

decision-making and model reliability. 

Model performance evaluation in classification tasks often 

involves multiple metrics to comprehensively assess both 

accuracy and reliability. Accuracy and Area Under the 

Curve (AUC) measure how well a model classifies data, 

with accuracy focusing on overall correctness and AUC 

assessing the model’s ability to distinguish between classes. 

However, these metrics do not evaluate how reliable the 

predicted probabilities are. Expected Calibration Error 

(ECE) and Maximum Calibration Error (MCE) address this 

by evaluating the alignment between predicted probability 

and actual outcomes. While ECE captures the average 

calibration error across bins, MCE highlights the worst-case 

miscalibration. 

Expected Calibration Error (ECE) quantifies the average 

difference between predicted probabilities and actual 

outcomes across all predictions, capturing how well the 

probability scores reflect true likelihoods. Maximum 

Calibration Error (MCE) complements this by reporting the 

worst-case deviation among all prediction bins, highlighting 

the most severe miscalibration. These metrics are written as 

follows: 

𝐸𝐶𝐸 = ∑
|𝐵𝑚|

𝑁

𝑀

𝑚=1

|𝑎𝑐𝑐(𝐵𝑚) − 𝑐𝑜𝑛𝑓(𝐵𝑚)| 
(3) 

𝑀𝐶𝐸 =  max
𝑚∈{1,…,𝑀}

|𝑎𝑐𝑐(𝐵𝑚) − 𝑐𝑜𝑛𝑓(𝐵𝑚)| (4) 

 

Where 𝑁 is the total number of samples, 𝑀 is the number of 

bins. 𝐵𝑚  is the set of sampls falls in the bin 𝑚, 𝑎𝑐𝑐(𝐵𝑚) 

shows the average prediction accuracy in sample bin 𝐵𝑚 and 

𝑐𝑜𝑛𝑓(𝐵𝑚) is the average uncalibrated prediction probability 

given by the classification head of the deep neural network. 

Normally, uncalibrated probability is a real number 𝑐 ∈
[0,1]. To evaluate calibration performance, the range of ccc 

is often discretized into 𝑀 = 10 equal-width bins, which are 

then used to construct a reliability diagram that visually 

compares predicted probability with actual accuracy. 

3.4. Online Learning 

During the online phase, model performance is tracked 

regularly (e.g., hourly or daily) and the model parameters 

for the few-shot learner are updated when the prediction 

accuracy drops below 95% or when a new class is identified.  

First, model performance tracking is conducted by randomly 

selecting a subset of AI-labeled images with prediction 

confidence ≤ 90% for human inspection during each 

monitoring period. These low-confidence images are 

reviewed and re-labeled by human experts. The validated 

images, along with their expert annotations, are then added 

to the training set to update the few-shot learner. The 

backbone feature encoder remains unchanged during this 

update. 

Second, the few-shot learner is updated according to the 

training algorithm outlined in Table 2. The triggering 

condition for the model parameter update is prediction 

accuracy ≤ 95% or a new class is identified. In this study, a 

new defect class is added if more than 10 samples of that 
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class are observed. This augmented class will be utilized for 

few-shot training.  

To emphasize the importance of newly added images during 

model updates, higher weights are assigned to these samples 

to increase their likelihood of being selected for the support 

set and query set in the training algorithm. 

3.5. Hardware Setup and Data Description 

 

Figure 4. The hardware setup for the optical inspection. 

Figure 4 illustrates the hardware setup for the inspection 

task. The vision system consists of a camera, optical lens, 

power supply, and a camera controller with built-in image 

processing capabilities. Due to hardware constraints on the 

camera controller, a moderately sized model is required.  

Table 3. Hardware Specifications 

Operating System Windows 7 Embedded  

CPU Intel Celeron, dual core 

Memory 8 GB RAM, 32 GB ROM 

 

Table 3 summarizes the hardware platform used for optical-

inspection data acquisition and on-device deployment. The 

selected industrial controller-class PC lacked a discrete 

GPU; consequently, all inference was executed on the CPU. 

Within these constraints, the Vision Transformer base 

model with 16-pixel patches (ViT-B/16) was adopted as the 

backbone because it offers a favorable balance between 

representational capacity and computational efficiency for 

resource-limited environments. ViT-B/16 comprises 12 

transformer encoder layers with multi-head self-attention, 

yielding reliable accuracy without exceeding the compute 

and memory budgets of a CPU-only system. To further 

minimize overhead during online adaptation, the 

Prototypical Network (ProtoNet) adapter was implemented 

as a lightweight module containing a single transformer 

block, preserving real-time responsiveness while enabling 

class-prototype refinement. 

The number of data samples used for model training and 

validation is summarized in Table 4. During the offline 

phase, the training data contains only three classes, with 

class 1 representing the healthy condition. In contrast, the 

online phase includes data from a total of five classes, two 

of which (Classes 4 and 5) are previously unseen by the 

trained neural network. To simulate a real-world operating 

environment, the online training samples are fed 

sequentially to the model as a data stream. The objective is 

to adapt the pre-trained network to these unseen classes 

using FSL.  

Table 4. Flex Electronics Data Description 

Class 
Training 

Validation Total 
Offline Online 

1(Healthy) 800 100 30 930 

2 500 50 30 580 

3 500 20 30 550 

4 N/A 20 10 30 

5 N/A 20 10 30 

Total 1800 210 110 2120 

4. RESULTS AND DISCUSSIONS 

4.1. Case Study 1: Flex Electronics 

4.1.1. Offline Phase: Model Training 

The ResNet50 (Koonce, 2021) and ViT-B/16 (Vaswani et 

al., 2017) that are pre-trained on ImageNet-1k are utilized as 

a backbone feature encoder. The supervised fine-tuning for 

the pretrained backbone is attempted. The detailed model 

prediction performance for the ViT-B/16 after SFT (or 

ViT┼) are provided in Table 6 and the benchmarking 

between the two models can be found in Table 7. All the 

results in this subsection are generated by using the training 

(offline) and validation set in Table 4Error! Reference 

source not found.. Table 5 shows the SFT training 

parameters for ViT┼. 

Table 5. SFT training parameters 

Learning Rate 1e-4 

Optimizer AdamW 

Number of Epochs 10 

Image Size 224x224 

Batch Size 64 

Patch Size 16 

Trainable ViT Layers 7 

Table 6 compares four model calibration methods: 

Histogram Binning (Hist), Platt Scaling (Platt) (Böken, 

2021), Isotonic Regression (IsoReg) (Zadrozny & Elkan, 

2002), and Bayesian Binning into Quantiles (BBQ) (Naeini 

et al., 2015). The evaluation is based on four performance 

metrics: class prediction accuracy (Acc), Area Under the 

Curve (AUC), Expected Calibration Error (ECE), and 

Maximum Calibration Error (MCE). The backbone network 

used in this study is ViT-B/16, a variant of the Vision 
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Transformer (ViT) architecture introduced by Meta AI for 

image classification tasks. It consists of 12 Transformer 

encoder blocks, among which 7 blocks are made tunable for 

supervised fine-tuning (SFT). 

Table 6. The model performance for ViT┼ 

Class 1 

 Hist Platt IsoReg BBQ 

Acc .900 .930 .870 .930 

AUC .890 .890 .910 .860 

ECE .056 .074 .071 .064 

MCE .618 .189 .841 .136 

Class 2 

 Hist Platt IsoReg BBQ 

Acc .970 .900 .900 .900 

AUC .970 .970 .980 .970 

ECE .025 .108 .034 .021 

MCE .171 .656 .517 .065 

Class 3 

 Hist Platt IsoReg BBQ 

Acc .930 .930 .930 .930 

AUC .950 .950 .970 .950 

ECE .046 .079 .041 .054 

MCE .268 .290 .478 .202 

The results in Table 6 demonstrate promising performance 

from ViT┼, with all three classes achieving satisfactory 

prediction accuracy. Among the four calibration methods, 

all yielded comparable results. For subsequent analysis, we 

adopt BBQ as the post-processing method, given its strong 

balance between robustness and predictive performance. 

Table 7 shows more comprehensive benchmarking among 

different model architectures. Comparison between the 

untuned backbone feature encoder (i.e., ResNet+BBQ and 

ViT+BBQ) with the fine-tuned backbone (ResNet┼+BBQ 

and ViT┼+BBQ) clearly indicates the SFT can significantly 

improve the model performance. This is because the 

backbone feature encoder is fairly lightweight and the 

training data in this inspection is significantly different with 

ImageNet. Therefore, the SFT is a necessary step in this 

analysis. Further comparison of the untuned backbone and 

fine-tuned backbone with ProtoNet indicate that the SFT is 

required to improve the prediction accuracy in this task even 

with the ProtoNet concatenated to the backbone.  

Comparison between the ViT┼+BBQ and the 

ViT┼+ProtoNet+BBQ shows quite similar model prediction 

performance. This is because a large number of training 

samples for class 1,2, and 3 are available and the merits of 

ProtoNet are not fully demonstrated. Moreover, the 

separability of these classes is not so difficult. This is 

supported by the feature embedding distribution in Figure 5. 

The middle figure already shows great separability among 

the class 1-3 after backbone SFT.  

   

 
Figure 5. A visualization of scatter plots for the feature 

Table 7. The benchmarking of different network design for the offline AI model training 

Network 
Class 1 Class 2 Class 3 

Acc AUC ECE Acc AUC ECE Acc AUC ECE 

ResNet + BBQ .800 .690 .090 .370 .650 .075 .133 .400 .102 

ViT + BBQ .230 .420 .045 .000 .640 .035 .833 .730 .104 

ResNet┼ + BBQ .867 .950 .081 .870 .900 .155 .867 .940 .048 

ViT┼ + BBQ .933 .890 .074 .900 .970 .108 .933 .950 .079 

ResNet + ProtoNet + BBQ .033 .672 .067 .233 .551 .005 .900 .537 .020 

ViT + ProtoNet + BBQ .000 .516 .056 .433 .717 .042 .900 .611 .030 

ResNet┼ + ProtoNet + BBQ (Proposed) .900 .940 .108 .900 .918 .187 .867 .954 .037 

ViT┼ + ProtoNet + BBQ (Proposed) .933 .847 .065 .933 .947 .022 .933 .946 .051 

 Class 4 Class 5 Overall 

Acc AUC ECE Acc AUC ECE Acc AUC ECE 

ResNet + BBQ .000 .300 .094 .000 .680 .154 .355 .542 .103 

ViT + BBQ .000 .820 .000 .000 .880 .000 .291 .699 .037 

ResNet┼ + BBQ .000 .510 .091 .000 .560 .091 .709 .774 .093 

ViT┼ + BBQ .000 .840 .000 .000 .400 .000 .755 .811 .052 

ResNet + ProtoNet + BBQ .000 .646 .000 .000 .510 .000 .318 .583 .018 

ViT + ProtoNet + BBQ .000 .371 .000 .000 .520 .000 .364 .547 .027 

ResNet┼ + ProtoNet + BBQ (Proposed) .000 .500 .091 .000 .500 .091 .727 .762 .103 

ViT┼ + ProtoNet + BBQ (Proposed) .000 .764 .003 .000 .805 .003 .764 .862 .029 
* ViT┼ and ResNet┼ denote the backbone feature extractor after supervised fine-tuning 

* The prediction performance for classes 4 and 5 is bad as these defect types were unseen by the trained model, see Table 4 
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vectors given by (left) original ViT backbone; (middle) 

ViT┼ backbone after supervised fine-tuning. (right) ViT + 

ProtoNet. The scatter plot is generated by the dimension 

reduction algorithm UMAP. 

The prediction performance for classes 4 and 5 in Table 7 is 

not satisfactory so far, as these defect types were not 

included in the offline training. In the online learning phase, 

we will demonstrate improved performance in these two 

classes by fine-tuning the ProtoNet using online training 

samples. In the online phase, we assume that data is fed 

sequentially to the deployed model. Samples with a 

prediction confidence of ≤ 90% will be flagged for human 

labeling to support continual learning. 

4.1.2. Online Phase: Continual Learning 

After the offline AI model training, the online training set 

(Table 4) is fed into the trained AI model for sample 

selection. The prediction confidence scores, generated by 

the ViT┼+ProtoNet+BBQ model, are shown in Figure 6. 

Samples with prediction confidence below 90% are selected 

for human labeling, while those with confidence scores 

equal to or above 90% are automatically labeled by the AI 

model. Table 9 summarizes the prediction accuracy for both 

groups. For the unselected samples (confidence ≥ 90%), the 

overall prediction accuracy reaches 98.35%, consistent with 

the expectation that high-confidence predictions are reliable. 

In contrast, the accuracy for the selected samples 

(confidence < 90%) is 48.31%, providing clear evidence 

that the model’s confidence score is a trustworthy indicator 

of prediction reliability. 

 

Figure 6. Prediction confidence plot for the online training 

set. The samples with confidence score <90% are selected 

for human labeling. 

Table 9. The prediction outcome on the online training set 

Unselected Samples 

(Confidence>=90%) 

Selected Samples 

(Confidence<90%) 

121 out of 210 AI generated 

labels are accepted 

89 out of 210 are selected 

for human labelling 

 
Overall Accuracy 98.35% 

 
Overall Accuracy 48.31% 

The selected samples and expert-provided labels in Table 9 

are used to update the ProtoNet by introducing two new 

classes, C4 and C5, into the label set. In the continual 

learning setting, the feature encoder (ViT┼ or ResNet┼) 

remains fixed, while only the ProtoNet is updated using the 

training algorithm described in Table 2. Figure 7 illustrates 

the improvement in prediction confidence before and after 

continual learning. Since C4 and C5 were previously unseen 

by the trained model, the initial confidence for these classes 

was low. However, after continual learning, the prediction 

confidence for C4 and C5 increases significantly, 

demonstrating the effectiveness of the continual learning. 

Table 8 highlights the performance improvements achieved 

through continual learning. Compared to the best offline 

model, ViT┼+ProtoNet+BBQ, the prediction accuracy for 

the newly introduced classes C4 and C5 has significantly 

increased. As a result, the overall prediction accuracy 

improved from 76.4% to 92.7%. 

Table 8. The prediction accuracy on the validation set after online continual learning 

Network 
Class 1 Class 2 Class 3 

Acc AUC ECE Acc AUC ECE Acc AUC ECE 

ResNet┼+ProtoNet+BBQ+CL (Proposed) .933 .985 .039 .900 .957 .090 .933 .983 .038 

ViT┼+ProtoNet+BBQ+CL (Proposed) .933 .960 .016 .967 .968 .011 .933 .960 .017 

ViT┼+RealtionNet+BBQ+CL  .933 .919 .140 .933 .912 .103 .967 .959 .074 

ViT┼+BBQ (Baseline) .933 .890 .074 .900 .970 .108 .933 .950 .079 

 Class 4 Class 5 Overall 

Acc AUC ECE Acc AUC ECE Acc AUC ECE 

ResNet┼+ProtoNet+BBQ+CL (Proposed) .700 .993 .034 .900 .998 .009 .900 .983 .038 

ViT┼+ProtoNet+BBQ+CL (Proposed) .900 .985 .006 .800 .970 .005 .927 .969 .011 

ViT┼+RealtionNet+BBQ+CL  .800 .914 .096 .667 .911 .079 .860 .923 .050 

ViT┼+BBQ (Baseline) .000 .840 .000 .000 .400 .000 .755 .811 .052 
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(a) 

 

(b) 

 
Figure 7. (a) The model prediction confidence on the 

validation dataset (see Table 4) before continual learning. 

Prediction confidence on C4 and C5 is low. (b) The model 

prediction confidence after continual learning. The 

prediction confidence in all classes is improved.  

4.2. Case Study 2: Semi-Conductor Wafer Map 

To validate repeatability and domain transfer displayed in 

case study 1, the proposed framework is evaluated on the 

WM811-k wafer-map dataset using the same five-label data 

structure: Healthy, Edge Ring, Center, Scratch, and Random. 

To mirror similar factory conditions to the previous case 

study, the dataset is intentionally imbalanced: common 

defects are abundant in the offline training split, whereas 

rare defects are absent offline and appear only in the online 

pool, simulating “unseen-at-deployment” classes. 

It was established in the previous case study that fine-tuned 

ViT backbone outperforms its pretrained variant and ResNet 

baselines. Therefore, in case study 2, we focus on three 

configurations that directly test the claims of our framework: 

1. ViT┼ + BBQ (baseline): strong offline backbone; 

2. ViT┼  + ProtoNet + BBQ: adds a few-shot learner 

without rare-class support; 

3. ViT┼ + ProtoNet + BBQ + CL: the online continual-

learning setting, where low-confidence/novel samples 

are labeled and used in 3-way, 5-shot episodes to adapt 

the few-shot learner while keeping the backbone fixed. 

Table 10. WM811-k Data Description 

Class 
Training 

Validation Total 
Offline Online 

None 2000 1000 550 3550 

Edge Ring 2000 1000 550 3550 

Center 2000 1000 550 3550 

Scratch 0 500 225 725 

Random 0 500 225 725 

Total 6000 4000 2100 12100 

Table 10 summarizes the WM811-k data structure. The 

offline split contains only the known classes (None, Edge 

Ring, Center). The online split supplies the few-shot 

supports for rare classes (Scratch, Random) during CL 

episodes. 

Reported in Table 11 are per-class and overall accuracy on 

the validation data. As expected, ViT┼ + BBQ performs 

strongly on the common classes but fails to correctly 

classify the defective classes that were unseen offline. After 

attaching the ProtoNet few-shot learner (ViT┼ + ProtoNet 

+ BBQ), performance on the common classes is maintained, 

however, adaptation to the rare defective remains poor. 

Once meta-learning is introduced (ViT ┼ +ProtoNet 

+BBQ+CL) and the few-shot learner is updated with low 

confidence samples from the online training episode, rare-

class accuracy improves substantially while preserving 

performance on common classes. 

5. CONCLUSIONS 

This paper presents a novel methodology for vision 

backbone fine-tuning and continual learning in optical 

inspection tasks. The approach is demonstrated through a 

applications in liquid crystal film and semi-conductor wafer 

map defect detection. A vision inspection testbed—

comprising a camera system, computational hardware, and a 

human–machine interface—was developed to support the 

inspection process. The proposed AI algorithms are 

deployed to an industrial PC to enable automated data 

processing. Through benchmarking various network 

architectures, the study arrives at the following key findings: 

1) Vision backbones can achieve high prediction accuracy 

when fine-tuned with supervised learning. These models are 

suitable for deployment on resource-constrained hardware.  

2) Continual learning using few-shot learners (e.g., 

ProtoNet) is essential for adapting to unseen defect classes 

Table 11. The prediction accuracy on the validation set for the WM-811K dataset 

Network 
Accuracy 

None Edge Ring Center Scratch Random Overall 

ViT┼+BBQ (baseline) .980 .996 .969 .080 .000 .780 

ViT┼+ProtoNet +BBQ .989 .995 .947 .000 .000 .767 

ViT┼+ProtoNet +BBQ+CL (3-way 5-shot FSL) .933 .985 .936 .733 .920 .925 
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and mitigating performance degradation over time.  

3) Calibration techniques are important for evaluating the 

model reliability and prediction confidence. Human review 

and annotation of low-confidence samples is crucial for 

online model monitoring and performance maintenance. 
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