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ABSTRACT

The predictive maintenance alert lifecycle is a critical topic
in the aviation industry. Stakeholders, including operators,
suppliers, and Original Equipment Manufacturers (OEMs),
require effective frameworks to support the value proposition
of predictive maintenance products and services. However,
defining alert effectiveness is challenging due to the lack of
industry standards for the end-to-end lifecycle of predictive
maintenance alerts. Adding to the challenge, different
stakeholders may want to optimize on different objectives.
Often, alert performance is measured prematurely or not at
all. To ensure high-quality alerts, all alerts should be
managed through their entire lifecycle until obsolescence.
This whitepaper outlines a clear conceptual framework for
the predictive maintenance alert lifecycle and best practices
alert lifecycle management. Future work will expand upon
the qualitative benefits discussed herein with quantitative
results achieved from applying this framework to assess alert
effectiveness at scale within the Boeing alert catalog.

1. ALERT LIFECYCLE DEFINITION

The alert lifecycle consists of three phases illustrated in
Figure 1.
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Figure 1. Alert Lifecycle Major Phases

The maturation level of an aircraft program through its own
product lifecycle dictates the type of data available for
predictive maintenance alert development at the initialization
phase. Aircraft Condition Monitoring System (ACMS) and
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Aircraft Condition Monitoring Function (ACMF) data have
been a cornerstone of prognostics and health management in
commercial aviation for many years. ACMS and ACMF data
are recorded onboard and transmitted in-flight via satellite
communications enabling near “real-time” alerting. This is
often referred to as “snapshot” data and is typically the most
limited dataset when compared to other data sources. Newer
aircraft like the 737 MAX have systems such as Aircraft
Health Management Onboard (AHMO), which is similarly
captured onboard but is capable of selective high-resolution
data capture. AHMO has an equivalent parameter set to full-
flight data and has the benefit of being updated wirelessly in
a matter of days or weeks. This capability enables rapid
discovery and updates which ACMS or ACMF are not
capable of as they rely on a more labor-intensive software
update process. Full-flight data sources such as Quick Access
Recorder (QAR) and Continuous Parameter Logging (CPL)
data capture a subset of all available parameters at a typical
sampling rate of 1 Hertz (Hz). The entire flight recording is
transmitted on ground where it can then be translated from
raw binary into engineering units. QAR and CPL data are the
central focus of prognostics research in commercial aviation
but are not capable of “real-time” alerting due to the
transmission lag induced by the large file size. The last
standard dataset is flight test port (FT-P) data. FT-P data is
ultra-high resolution with some parameters being recorded at
a rate of 100 Hz. All possible parameters are recorded, and
the result is a high-fidelity view of normal operational
behavior of the aircraft. FT-P data helps predictive
maintenance engineers to create better hypotheses by
understanding what normal behavior is without impacts of
under sampling.

Alert lifecycle awareness and management helps predictive
maintenance teams be intentional when using these various
data sources to develop alerts. The initialization phase should
use the highest fidelity data available such as flight test port
data and QAR/CPL data to enable alert research. These high-
fidelity datasets are transmitted for offboard parsing,
offboard feature engineering, and offboard alerting.
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Transmitting, processing, and analyzing these large datasets
can lead to several hours, or days, of “lead time” prior to
triggering an alert. Alerts implemented through lower fidelity
datasets such as ACMF or AHMO benefit from onboard
parsing and onboard feature engineering prior to transmission
to enable real-time alerting. Throughout the Service Life and
Optimization of an alert, the data capture of alerting features
should migrate to onboard parsing and feature engineering
systems, such as ACMF or AHMO. This harmonization
should occur well before an alert reaches its obsolescence and
understanding the end-to-end alert lifecycle will help
predictive maintenance teams determine when this
harmonization should occur.

2. RELATED WORK

The alert lifecycle framework presented herein is specifically
designed to manage an alert catalog containing thousands of
alerts across various aircraft types and components. The
framework is intended to supplement accepted end-to-end
condition monitoring processes and data mining processes
such as those described in ISO (2003) and Chapman et. al
(2000), respectively. The referenced processes are sufficient
for developing predictive maintenance alerts but do not
adequately address practices to manage alerts throughout
their service life. One of the primary recommendations of this
work is to limit the scope of alert effectiveness frameworks
to focus specifically on the steady-state period of the alert
service life. Industry standards published by SAE (2020) and
IEEE (2016) provide greater detail on accepted alert
performance metrics that can be calculated to measure alert
effectiveness. The definitions of such metrics are
straightforward, but such standards do not fully consider the
practicality of such calculations using in-service data. This
paper compliments such standards by overlaying key
performance metrics onto the applicable lifecycle phases to
ease the management of an alert effectiveness framework.

3. ALERT LIFECYCLE PHASES

The typical lifecycle progression of an alert as measured by
alert rate and alert utilization rate through the major lifecycle
phases is shown in Figure 2. The alert rate is defined as the
number of alerts per fleet flight cycles flown and the
utilization rate is the number of alerts actioned per fleet flight
cycles flown.
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Figure 2. Lifecycle Progression of Alert Rate and Utilization

3.1. Alert Initialization

Alert Initialization involves developing a new predictive alert
from the initial request to production deployment. A
structured process is essential, including phases for ingestion,
engineering understanding, research and development, and
solution delivery. Boeing’s Predictive Maintenance Content
Team (PMCT) process exemplifies this structured approach
and is outlined in Figure 3.
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Figure 3. Predictive Maintenance Content Team Process
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The Ingestion phase should assess existing solutions,
deployment strategies, and project prioritization to put the
operator experience at the forefront of any alert design to
follow. Stakeholders must evaluate the suitability of current
prognostic environments and the completeness of
maintenance procedures. Experienced teams can forecast the
complexity of an alert algorithm based on project proposals,
ensuring that necessary changes to production environments
or supporting maintenance procedures are initiated promptly.

The Understanding phase aims to build a knowledge base
before extensive data science work begins. A structured
engineering package summarizing Boeing’s knowledge of
the target failure mode is crucial for guiding the project.

Key outcomes should include:

1. A visual representation of operational norms, both
at the system and component levels.

2. Identification methods for relevant target failure
events.

3. Cost-based ~ minimum alert  performance
requirements.

4. Recommendations for the most viable alert

techniques to meet performance requirements.

The Research and Development process follows a typical
data science process framework such as the cross-industry
standard process for data mining (CRISP-DM). A critical
milestone to be highlighted is the initial “beta” testing which
marks the transition from historical data analysis to real-time
detection. This testing is vital for identifying potential
confirmation bias and verifying its usability to the personnel
who are going to receive it.

Alert Solution Delivery is the final quality assurance phase
that facilitates a smooth transition from early-adopter alert
testing to fleet-wide operations. End-user training, fleet
communications, and proper documentation updates are the
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most important deliverables to support a healthy service life
for a new alert.

3.2. Alert Service Life and Optimization

The alert service life spans from initial solution delivery to
obsolescence. The progression of an alert through its service
life and optimization cycle is illustrated in Figure 4 with
recommended performance measures important to each

phase.
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Figure 4. Recommended Alert Performance Measures

Alert effectiveness metrics measure how well an alert is
preventing the target events while alert utilization metrics
measure how often an alert is actioned by a customer. A
measurement framework should ensure that deployed alerts
meet minimum performance requirements for alert
effectiveness and alert utilization, with an allowed “burn-in”
period before formal performance reporting. During the
“burn-in” period, it is important to identify whether the alert
is under-alerting or over-alerting compared to expectations
which can be measured by alert rate (e.g. # of alerts per fleet
flight cycles). Operators will need time to digest alerts during
the “burn-in” phase and may not start utilizing alerts right
away. The allowed “burn-in” period should be defined by the
expected frequency of both target events and alerts. An uptick
in utilization of an alert signals the start of the “optimization”
period. Feedback on a particular alert will start to come in
from operators and opportunities for optimization will start to
be identified. Measures of “lead time” and “computational
complexity” can be used to determine when onboard
harmonization may be appropriate, if not already
accomplished. The optimization period ends when onboard
data collection is implemented and alert utilization rate by
operators has stabilized. In addition to metrics captured
during “burn-in” and “optimization,” the “steady state”
period is where alert effectiveness metrics can be measured
most efficiently and where alert performance should be most
predictable. The “stagnation” period begins once a significant
decrease in alert rate and/or utilization rate compared to the
steady-state period is identified. If an obsolescence trigger
such as a reliability modification is not yet known, then the
alert should be reviewed against the obsolescence criteria in
this paper to determine whether the alert is becoming
obsolete.

Alert performance measurements throughout its service life
can be difficult to do efficiently and effectively depending on
the availability of component removal and logbook data. The

alert performance measurement metrics must accommodate
large variations in the intended use of the alert, the target
users, customer operational norms, and the overlap of alerts
with similar failure targets that some users may have access
to.

1. Intended Use: the intended use of an alert that aids
in diagnosing a complex set of airplane faults is different
from an alert that predicts a specific component failure, and,
if established incompletely, the performance metrics
designed around predictive alerts may look poor for a very
successful diagnostic alert.

2. Target users: alerts that are exposed to users in a
variety of roles may provide high value for a user in a
predictive maintenance engineering role, and low value for a
user in a maintenance controller role. Some target alert users
may be choosing between alerts that target similar failure
modes depending on the tools and data they have access to.

3. Alert target overlap: for a target user that has access
to multiple alerts targeting the same failure mode, an
individual alert may have a lower value than for an operator
that only has access to one alert option for that failure mode.
That access can vary depending on the tools and data
available to that user.

An effective alert performance measurement system must
recognize this complexity and enable relevant evaluation of
that alert throughout its lifecycle. A scalable engagement-
based alert performance framework can be created based on
alert utilization. An engagement-based framework assumes
that alerts with a high expiration and rejection rate are low-
performing and that alerts with a high completion and
acceptance rate are high-performing (Figure 5). However,
there must also be an evaluation for potential extenuating
circumstances that may unfairly be penalizing alert
effectiveness, such as data dropouts, inventory shortages, etc.
The lowest performing alerts are then evaluated in more
detail where other metrics which require more effort to
accurately assess are calculated, such as precision and recall.
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Figure 5. Desirable (Top) and Undesirable (Bottom)
Workflow Progressions

Minor adjustments to the understanding of the target failure
mode or alert methodology can occur throughout the service
life without initiating obsolescence. However, significant
negative performance should prompt a review for potential
obsolescence if no minor adjustments can recover
performance. Additionally, especially with machine learning
based alerts, model drift would be expected over time and
allowable thresholds should be established early and
monitored. Changes to component design, system
configurations, or integrated vehicle health management
(IVHM) aspects should trigger a review of the alert's
relevance.

3.3. Alert Obsolescence

Obsolescence is the final phase of the alert lifecycle and is
crucial for maintaining a healthy predictive maintenance alert
catalog. It can be challenging to determine when to retire an
alert but avoiding obsolescence altogether can lead to
operator fatigue and distrust in alert content. Alerts may
become obsolete after reaching significant milestones, such
as:

1. Minimum performance requirements did not meet
the following defined maturation period.

2. Incorporation of a Service Bulletin or other design
change that addresses the target failure mode.

3. Updates to onboard IVHM software expanding
monitoring capabilities.

4. Obsolescence of features in the selected prognostics
environment.

Predictive maintenance engineers should proactively drive
alert obsolescence for offboard alerts by making updates to
onboard alerting capabilities. Delaying or avoiding the
harmonization of onboard alerting will ultimately diminish
the total value capture of an alert. A technical review process
should guide obsolescence decisions, involving a board
representing predictive maintenance strategy, alert execution,
and maintenance execution. Documenting obsolescence
reasons is vital for knowledge transfer, ensuring future teams
do not repeat fruitless ingestion and understanding activities,
or recreate obsolete alerts. Whenever possible, relevant
Design Practices should be updated to assist in this
knowledge transfer.

3.4. Alert Lifecycle Example

In practice, the alert lifecycle when framed from the
operational issue it is trying to address is not as linear as
presented here. The lifecycle of one alert iteration is likely to
branch into related alert content lifecycles for either the same
failure mode target or other adjacent problems.

The 737 MAX Fan Air Modulating Valve (FAMV)
prognostic alert lifecycle is exemplary of the natural lifecycle
of predictive maintenance alert content. The FAMYV controls
cooling air to the cold side of the precooler heat exchanger
and regulates the temperature of the engine bleed air supply
to be below 390 degrees Fahrenheit. The lifecycle of alert
content for the 737 MAX FAMYV was seeded by the design
of the IVHM system and initial in-service data collection.

The 737 MAX Fan Air Modulating Valve IVHM System
elements are:

1. Sensors installed for bleed pressures, bleed
temperatures, and FAMYV position
2. Integrated Air System Controller (IASC) captures

sensor data and sends it to the Digital Flight Data Acquisition
Unit (DFDAU) via an ARINC 429 connection protocol

3. 737 MAX equipped with multiple data recording
formats for health management data including Quick Access
Recorder (QAR), AHMO, and Aircraft Condition Monitoring
System (ACMS)

4, 737 MAX equipped with multiple data transmission
system options including via Aircraft Communications
Addressing and Reporting System (ACARS) satellite, WiFi,
or Cellular connections
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The 737 MAX Fan Air Modulating Valve In-Service Data
Collection findings which led to the alert research were:

1. MAINT LIGHT related to FAMV Maintenance
Messages became a top driver for schedule interruptions for
the worldwide 737 MAX fleet

2. Component root cause investigation at the supplier
determined the primary failure mode to be an actuator seal
tear

The end-to-end alert lifecycle for the FAMYV alerts is shown
in Figure 6.

FAMV Alert Service Life & Optimization
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Figure 6. 737 MAX FAMV Alert Lifecycle

The first prognostic alert developed for the FAMV used QAR
data and offboard logic to identify when the actuator seal was
starting to tear and likely to drive a MAINT LIGHT. Due to
the typical time delay of 1-2 days for QAR data transmission
& processing, the success of the offboard QAR alert branched
off into an AHMO alert which was capable of the same
prognostic detection with the advantage of real-time alerting.
Additionally, an ACMS report is in the process of being
created that mimics the AHMO report to enable a parallel
alert for operators who do not have the AHMO option. The
FAMYV supplier has introduced a modification to the FAMV
which mitigates the actuator seal tear and significantly
reduces FAMYV failures. The QAR, AHMO, and ACMS-
based alerts are rendered obsolete on modified FAMVs, and
Boeing is in the process of suppressing any FAMV alerts for
operators who have reported that they have incorporated the
FAMV modification. The number of FAMVs requiring
modification was significant and the obsolescence period has
taken many years and is still ongoing.

Operators are now requesting prognostic alerts for the
modified FAMYV, but failure modes are not as clear as with
the actuator seal tear on the original FAMV. The supplier is
modifying the IASC to transmit bleed valve torque motor
currents to the DFDAU which will make these values
available for prognostic alerting. The availability of the
torque motor currents in the future is expected to be the key
to prognostic alerting on the modified FAMV and will lead
to a new lifecycle of yet another 737 MAX FAMV alert
variant.

4. CONCLUSION

Establishing a standardized lifecycle for predictive
maintenance alerts is essential for enhancing the
effectiveness and reliability of these critical systems within
Boeing's operations. The conceptual structure of the alert
lifecycle established by the paper takes a step towards a
scalable alert effectiveness framework that can be repeated
by predictive maintenance providers throughout the industry.
The 737 MAX FAMV prognostic example discussed
illustrates the complexity of alert lifecycles in practice and
underscores the need for responsible lifecycle management.
Future work will focus on quantitative measures that further
prove the alert lifecycle model and demonstrate the success
of lifecycle management best practices recommended herein.
As we move forward, continuous refinement of this lifecycle
will be vital to content curation in Boeing’s predictive
maintenance products, ultimately leading to improved
operational efficiency for all stakeholders involved.
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