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ABSTRACT 

The predictive maintenance alert lifecycle is a critical topic 

in the aviation industry. Stakeholders, including operators, 

suppliers, and Original Equipment Manufacturers (OEMs), 

require effective frameworks to support the value proposition 

of predictive maintenance products and services. However, 

defining alert effectiveness is challenging due to the lack of 

industry standards for the end-to-end lifecycle of predictive 

maintenance alerts. Adding to the challenge, different 

stakeholders may want to optimize on different objectives.  

Often, alert performance is measured prematurely or not at 

all. To ensure high-quality alerts, all alerts should be 

managed through their entire lifecycle until obsolescence. 

This whitepaper outlines a clear conceptual framework for 

the predictive maintenance alert lifecycle and best practices 

alert lifecycle management. Future work will expand upon 

the qualitative benefits discussed herein with quantitative 

results achieved from applying this framework to assess alert 

effectiveness at scale within the Boeing alert catalog. 

1. ALERT LIFECYCLE DEFINITION 

The alert lifecycle consists of three phases illustrated in 

Figure 1. 

 

Figure 1. Alert Lifecycle Major Phases 

 

The maturation level of an aircraft program through its own 

product lifecycle dictates the type of data available for 

predictive maintenance alert development at the initialization 

phase. Aircraft Condition Monitoring System (ACMS) and 

Aircraft Condition Monitoring Function (ACMF) data have 

been a cornerstone of prognostics and health management in 

commercial aviation for many years. ACMS and ACMF data 

are recorded onboard and transmitted in-flight via satellite 

communications enabling near “real-time” alerting. This is 

often referred to as “snapshot” data and is typically the most 

limited dataset when compared to other data sources. Newer 

aircraft like the 737 MAX have systems such as Aircraft 

Health Management Onboard (AHMO), which is similarly 

captured onboard but is capable of selective high-resolution 

data capture. AHMO has an equivalent parameter set to full-

flight data and has the benefit of being updated wirelessly in 

a matter of days or weeks. This capability enables rapid 

discovery and updates which ACMS or ACMF are not 

capable of as they rely on a more labor-intensive software 

update process. Full-flight data sources such as Quick Access 

Recorder (QAR) and Continuous Parameter Logging (CPL) 

data capture a subset of all available parameters at a typical 

sampling rate of 1 Hertz (Hz). The entire flight recording is 

transmitted on ground where it can then be translated from 

raw binary into engineering units. QAR and CPL data are the 

central focus of prognostics research in commercial aviation 

but are not capable of “real-time” alerting due to the 

transmission lag induced by the large file size. The last 

standard dataset is flight test port (FT-P) data. FT-P data is 

ultra-high resolution with some parameters being recorded at 

a rate of 100 Hz. All possible parameters are recorded, and 

the result is a high-fidelity view of normal operational 

behavior of the aircraft. FT-P data helps predictive 

maintenance engineers to create better hypotheses by 

understanding what normal behavior is without impacts of 

under sampling.  

Alert lifecycle awareness and management helps predictive 

maintenance teams be intentional when using these various 

data sources to develop alerts. The initialization phase should 

use the highest fidelity data available such as flight test port 

data and QAR/CPL data to enable alert research. These high-

fidelity datasets are transmitted for offboard parsing, 

offboard feature engineering, and offboard alerting. 
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Transmitting, processing, and analyzing these large datasets 

can lead to several hours, or days, of “lead time” prior to 

triggering an alert. Alerts implemented through lower fidelity 

datasets such as ACMF or AHMO benefit from onboard 

parsing and onboard feature engineering prior to transmission 

to enable real-time alerting. Throughout the Service Life and 

Optimization of an alert, the data capture of alerting features 

should migrate to onboard parsing and feature engineering 

systems, such as ACMF or AHMO. This harmonization 

should occur well before an alert reaches its obsolescence and 

understanding the end-to-end alert lifecycle will help 

predictive maintenance teams determine when this 

harmonization should occur. 

2. RELATED WORK 

The alert lifecycle framework presented herein is specifically 

designed to manage an alert catalog containing thousands of 

alerts across various aircraft types and components. The 

framework is intended to supplement accepted end-to-end 

condition monitoring processes and data mining processes 

such as those described in ISO (2003) and Chapman et. al 

(2000), respectively. The referenced processes are sufficient 

for developing predictive maintenance alerts but do not 

adequately address practices to manage alerts throughout 

their service life. One of the primary recommendations of this 

work is to limit the scope of alert effectiveness frameworks 

to focus specifically on the steady-state period of the alert 

service life. Industry standards published by SAE (2020) and 

IEEE (2016) provide greater detail on accepted alert 

performance metrics that can be calculated to measure alert 

effectiveness. The definitions of such metrics are 

straightforward, but such standards do not fully consider the 

practicality of such calculations using in-service data. This 

paper compliments such standards by overlaying key 

performance metrics onto the applicable lifecycle phases to 

ease the management of an alert effectiveness framework.  

3. ALERT LIFECYCLE PHASES 

The typical lifecycle progression of an alert as measured by 

alert rate and alert utilization rate through the major lifecycle 

phases is shown in Figure 2. The alert rate is defined as the 

number of alerts per fleet flight cycles flown and the 

utilization rate is the number of alerts actioned per fleet flight 

cycles flown. 

Figure 2. Lifecycle Progression of Alert Rate and Utilization 

3.1. Alert Initialization 

Alert Initialization involves developing a new predictive alert 

from the initial request to production deployment. A 

structured process is essential, including phases for ingestion, 

engineering understanding, research and development, and 

solution delivery. Boeing’s Predictive Maintenance Content 

Team (PMCT) process exemplifies this structured approach 

and is outlined in Figure 3. 

 

Figure 3. Predictive Maintenance Content Team Process 

 

The Ingestion phase should assess existing solutions, 

deployment strategies, and project prioritization to put the 

operator experience at the forefront of any alert design to 

follow. Stakeholders must evaluate the suitability of current 

prognostic environments and the completeness of 

maintenance procedures. Experienced teams can forecast the 

complexity of an alert algorithm based on project proposals, 

ensuring that necessary changes to production environments 

or supporting maintenance procedures are initiated promptly. 

The Understanding phase aims to build a knowledge base 

before extensive data science work begins. A structured 

engineering package summarizing Boeing’s knowledge of 

the target failure mode is crucial for guiding the project.  

Key outcomes should include:  

1. A visual representation of operational norms, both 

at the system and component levels. 

2. Identification methods for relevant target failure 

events. 

3. Cost-based minimum alert performance 

requirements. 

4. Recommendations for the most viable alert 

techniques to meet performance requirements.  

The Research and Development process follows a typical 

data science process framework such as the cross-industry 

standard process for data mining (CRISP-DM). A critical 

milestone to be highlighted is the initial “beta” testing which 

marks the transition from historical data analysis to real-time 

detection. This testing is vital for identifying potential 

confirmation bias and verifying its usability to the personnel 

who are going to receive it.  

Alert Solution Delivery is the final quality assurance phase 

that facilitates a smooth transition from early-adopter alert 

testing to fleet-wide operations. End-user training, fleet 

communications, and proper documentation updates are the 
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most important deliverables to support a healthy service life 

for a new alert.  

3.2. Alert Service Life and Optimization 

The alert service life spans from initial solution delivery to 

obsolescence. The progression of an alert through its service 

life and optimization cycle is illustrated in Figure 4 with 

recommended performance measures important to each 

phase. 

 

Figure 4. Recommended Alert Performance Measures 

 

Alert effectiveness metrics measure how well an alert is 

preventing the target events while alert utilization metrics 

measure how often an alert is actioned by a customer. A 

measurement framework should ensure that deployed alerts 

meet minimum performance requirements for alert 

effectiveness and alert utilization, with an allowed “burn-in” 

period before formal performance reporting. During the 

“burn-in” period, it is important to identify whether the alert 

is under-alerting or over-alerting compared to expectations 

which can be measured by alert rate (e.g. # of alerts per fleet 

flight cycles). Operators will need time to digest alerts during 

the “burn-in” phase and may not start utilizing alerts right 

away. The allowed “burn-in” period should be defined by the 

expected frequency of both target events and alerts. An uptick 

in utilization of an alert signals the start of the “optimization” 

period. Feedback on a particular alert will start to come in 

from operators and opportunities for optimization will start to 

be identified. Measures of “lead time” and “computational 

complexity” can be used to determine when onboard 

harmonization may be appropriate, if not already 

accomplished. The optimization period ends when onboard 

data collection is implemented and alert utilization rate by 

operators has stabilized. In addition to metrics captured 

during “burn-in” and “optimization,” the “steady state” 

period is where alert effectiveness metrics can be measured 

most efficiently and where alert performance should be most 

predictable. The “stagnation” period begins once a significant 

decrease in alert rate and/or utilization rate compared to the 

steady-state period is identified. If an obsolescence trigger 

such as a reliability modification is not yet known, then the 

alert should be reviewed against the obsolescence criteria in 

this paper to determine whether the alert is becoming 

obsolete.  

Alert performance measurements throughout its service life 

can be difficult to do efficiently and effectively depending on 

the availability of component removal and logbook data. The 

alert performance measurement metrics must accommodate 

large variations in the intended use of the alert, the target 

users, customer operational norms, and the overlap of alerts 

with similar failure targets that some users may have access 

to.   

1. Intended Use: the intended use of an alert that aids 

in diagnosing a complex set of airplane faults is different 

from an alert that predicts a specific component failure, and, 

if established incompletely, the performance metrics 

designed around predictive alerts may look poor for a very 

successful diagnostic alert. 

2. Target users: alerts that are exposed to users in a 

variety of roles may provide high value for a user in a 

predictive maintenance engineering role, and low value for a 

user in a maintenance controller role. Some target alert users 

may be choosing between alerts that target similar failure 

modes depending on the tools and data they have access to. 

3. Alert target overlap: for a target user that has access 

to multiple alerts targeting the same failure mode, an 

individual alert may have a lower value than for an operator 

that only has access to one alert option for that failure mode. 

That access can vary depending on the tools and data 

available to that user.   

An effective alert performance measurement system must 

recognize this complexity and enable relevant evaluation of 

that alert throughout its lifecycle. A scalable engagement-

based alert performance framework can be created based on 

alert utilization. An engagement-based framework assumes 

that alerts with a high expiration and rejection rate are low-

performing and that alerts with a high completion and 

acceptance rate are high-performing (Figure 5). However, 

there must also be an evaluation for potential extenuating 

circumstances that may unfairly be penalizing alert 

effectiveness, such as data dropouts, inventory shortages, etc.  

The lowest performing alerts are then evaluated in more 

detail where other metrics which require more effort to 

accurately assess are calculated, such as precision and recall. 
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Figure 5. Desirable (Top) and Undesirable (Bottom) 

Workflow Progressions 

 

Minor adjustments to the understanding of the target failure 

mode or alert methodology can occur throughout the service 

life without initiating obsolescence. However, significant 

negative performance should prompt a review for potential 

obsolescence if no minor adjustments can recover 

performance. Additionally, especially with machine learning 

based alerts, model drift would be expected over time and 

allowable thresholds should be established early and 

monitored. Changes to component design, system 

configurations, or integrated vehicle health management 

(IVHM) aspects should trigger a review of the alert's 

relevance. 

3.3. Alert Obsolescence 

Obsolescence is the final phase of the alert lifecycle and is 

crucial for maintaining a healthy predictive maintenance alert 

catalog. It can be challenging to determine when to retire an 

alert but avoiding obsolescence altogether can lead to 

operator fatigue and distrust in alert content. Alerts may 

become obsolete after reaching significant milestones, such 

as:  

1. Minimum performance requirements did not meet 

the following defined maturation period.  

2. Incorporation of a Service Bulletin or other design 

change that addresses the target failure mode.  

3. Updates to onboard IVHM software expanding 

monitoring capabilities.  

4. Obsolescence of features in the selected prognostics 

environment.  

Predictive maintenance engineers should proactively drive 

alert obsolescence for offboard alerts by making updates to 

onboard alerting capabilities. Delaying or avoiding the 

harmonization of onboard alerting will ultimately diminish 

the total value capture of an alert. A technical review process 

should guide obsolescence decisions, involving a board 

representing predictive maintenance strategy, alert execution, 

and maintenance execution. Documenting obsolescence 

reasons is vital for knowledge transfer, ensuring future teams 

do not repeat fruitless ingestion and understanding activities, 

or recreate obsolete alerts. Whenever possible, relevant 

Design Practices should be updated to assist in this 

knowledge transfer.   

3.4. Alert Lifecycle Example 

In practice, the alert lifecycle when framed from the 

operational issue it is trying to address is not as linear as 

presented here. The lifecycle of one alert iteration is likely to 

branch into related alert content lifecycles for either the same 

failure mode target or other adjacent problems.  

The 737 MAX Fan Air Modulating Valve (FAMV) 

prognostic alert lifecycle is exemplary of the natural lifecycle 

of predictive maintenance alert content. The FAMV controls 

cooling air to the cold side of the precooler heat exchanger 

and regulates the temperature of the engine bleed air supply 

to be below 390 degrees Fahrenheit. The lifecycle of alert 

content for the 737 MAX FAMV was seeded by the design 

of the IVHM system and initial in-service data collection. 

The 737 MAX Fan Air Modulating Valve IVHM System 

elements are: 

1. Sensors installed for bleed pressures, bleed 

temperatures, and FAMV position 

2. Integrated Air System Controller (IASC) captures 

sensor data and sends it to the Digital Flight Data Acquisition 

Unit (DFDAU) via an ARINC 429 connection protocol 

3. 737 MAX equipped with multiple data recording 

formats for health management data including Quick Access 

Recorder (QAR), AHMO, and Aircraft Condition Monitoring 

System (ACMS)  

4. 737 MAX equipped with multiple data transmission 

system options including via Aircraft Communications 

Addressing and Reporting System (ACARS) satellite, WiFi, 

or Cellular connections 
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The 737 MAX Fan Air Modulating Valve In-Service Data 

Collection findings which led to the alert research were: 

1. MAINT LIGHT related to FAMV Maintenance 

Messages became a top driver for schedule interruptions for 

the worldwide 737 MAX fleet 

2. Component root cause investigation at the supplier 

determined the primary failure mode to be an actuator seal 

tear 

The end-to-end alert lifecycle for the FAMV alerts is shown 

in Figure 6. 

 

Figure 6. 737 MAX FAMV Alert Lifecycle 

 

The first prognostic alert developed for the FAMV used QAR 

data and offboard logic to identify when the actuator seal was 

starting to tear and likely to drive a MAINT LIGHT. Due to 

the typical time delay of 1-2 days for QAR data transmission 

& processing, the success of the offboard QAR alert branched 

off into an AHMO alert which was capable of the same 

prognostic detection with the advantage of real-time alerting. 

Additionally, an ACMS report is in the process of being 

created that mimics the AHMO report to enable a parallel 

alert for operators who do not have the AHMO option. The 

FAMV supplier has introduced a modification to the FAMV 

which mitigates the actuator seal tear and significantly 

reduces FAMV failures. The QAR, AHMO, and ACMS-

based alerts are rendered obsolete on modified FAMVs, and 

Boeing is in the process of suppressing any FAMV alerts for 

operators who have reported that they have incorporated the 

FAMV modification. The number of FAMVs requiring 

modification was significant and the obsolescence period has 

taken many years and is still ongoing. 

Operators are now requesting prognostic alerts for the 

modified FAMV, but failure modes are not as clear as with 

the actuator seal tear on the original FAMV. The supplier is 

modifying the IASC to transmit bleed valve torque motor 

currents to the DFDAU which will make these values 

available for prognostic alerting. The availability of the 

torque motor currents in the future is expected to be the key 

to prognostic alerting on the modified FAMV and will lead 

to a new lifecycle of yet another 737 MAX FAMV alert 

variant. 

4. CONCLUSION 

Establishing a standardized lifecycle for predictive 

maintenance alerts is essential for enhancing the 

effectiveness and reliability of these critical systems within 

Boeing's operations. The conceptual structure of the alert 

lifecycle established by the paper takes a step towards a 

scalable alert effectiveness framework that can be repeated 

by predictive maintenance providers throughout the industry. 

The 737 MAX FAMV prognostic example discussed 

illustrates the complexity of alert lifecycles in practice and 

underscores the need for responsible lifecycle management. 

Future work will focus on quantitative measures that further 

prove the alert lifecycle model and demonstrate the success 

of lifecycle management best practices recommended herein. 

As we move forward, continuous refinement of this lifecycle 

will be vital to content curation in Boeing’s predictive 

maintenance products, ultimately leading to improved 

operational efficiency for all stakeholders involved.  
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