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ABSTRACT 

This paper introduces a novel 3D sensing framework for 

real-time safety monitoring of Human-Robot Collaboration 

(HRC), aimed at injury risk reduction and enhancing worker 

safety. The framework uses data from a single RGB-D 

camera to generate a 3D human avatar. Human shape and 

pose are estimated using deep neural networks, which 

incorporate depth information and undergo 3D geometric 

transformations to determine accurate scale and translation. 

This process yields a reconstructed 3D mesh which captures 

the human’s pose, shape, size, and location. Following 3D 

Human Pose Estimation (HPE), both the human avatar and 

the robot’s digital twin are integrated into a shared virtual 

environment, enabling real-time monitoring of the HRC 

workspace. Results demonstrate effective reconstruction of 

3D human geometry within HRC settings. By combining 

the reconstructed human surface mesh and real-time robot 

state in a single virtual environment, the system enables 

continuous, real-time monitoring of both the robot and the 

human agents. 

1. INTRODUCTION 

Robots have emerged as indispensable manufacturing tools 

in modern industrial environments due to their precision, 

speed, and ability to operate continuously with few 

obstructions to their productivity. As robotic technology has 

advanced, their presence in shared workspaces with human 

operators has become increasingly common. However, 

despite their technical capabilities, industrial robots remain 

entirely unaware of their surroundings. They are typically 

programmed to perform fixed tasks within a defined 

workspace, with little to no understanding of the dynamic 

presence of nearby humans. This lack of spatial awareness 

poses significant safety risks, making it necessary to confine 

robots to fenced-off cells or designated zones to prevent 

collisions with human operators. While effective for 

ensuring safety, such physical separation limits the 

flexibility and efficiency of HRC. As manufacturing moves 

towards more adaptive and collaborative workflows, there is 

a growing need for robots that can operate safely and 

intelligently alongside humans in shared environments. 

For real-time monitoring of Human-Robot Interactions 

(HRI), machine vision represents the most viable and 

necessary technological direction. Vision-based systems, 

particularly those utilizing RGB-D cameras, offer a low-cost 

and easily deployable solution while retaining rich 

contextual information from the environment. Unlike other 

sensing modalities, visual data can be readily interpreted by 

safety engineers and data analysts, facilitating more 

informed assessments of safety risks. Traditional human 

monitoring methods, such as vision-based HPE, focus on 

estimating joint locations to construct 2D skeletal 

representations of humans (Fang et al., 2022; Sun et al., 

2019). State-of-the-art object detection models, such as 

YOLOv11 (You Only Look Once, version 11) (Jocher et al., 

2024), offer high-speed 2D human detection and are widely 

used for real-time perception tasks. However, these models 

provide only bounding boxes and coarse 2D localization. 

Some models extend this by ‘lifting’ 2D poses into 3D, 

leveraging mesh-based regressions to estimate 3D joint 

positions (Cao et al., 2019). While effective for basic 

activity recognition, these models are insufficient for 

applications requiring safety monitoring between robots and 

humans for three main reasons: 

(1) Skeletal outputs lack volumetric detail, making them 

unreliable for estimating proximity in collision detection. 

(2) 2D joints are predicted independently, resulting in a lack 

of kinematic regularization and, consequently, anatomically 

incorrect human poses. 
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(3) 3D joints are predicted in an arbitrary coordinate space, 

using a select joint (ex. mid-hip) as the origin. Without 

global translation, these poses lack real-world context, 

limiting their use in safety-critical applications. 

Some approaches aim for more precise human detection in 

collaborative workspaces. (Mohammed et al., 2017) capture 

3D point clouds with RGBD cameras and manually label 

human presence based on prior knowledge of the HRC 

workspace layout. (Kamezaki et al., 2024)  track human 

movement using a system of three calibrated laser range 

finders, while (Patalas-Maliszewska et al., 2024) identify 

human and robot body parts from a top-down view using 2D 

CNNs. Despite their improvements, these methods are often 

environment-specific, require manual setup, and can 

produce unrealistic human poses, limiting their applicability 

for flexible and adaptive monitoring. To address these 

limitations, a full-surface mesh is required—offering a 

detailed and physically realistic 3D representation of the 

human body while incorporating depth information to 

enable accurate spatial localization. 

Achieving human mesh reconstruction in real-time remains 

a significant challenge due to computational limitations in 

regularizing human kinematics. Several methods 

incorporate physics-based dynamic models for 

regularization, such as PhysMoP (Yufei Zhang et al., 2024) 

and PhysCap (Shimada et al., 2020) which enforce physics-

based environment constraints for motion prediction and 

collision handling. Other methods, such as DynaIP (Yu 

Zhang et al., 2024) propose models which regularize human 

motion with acceleration data captured from wearable 

Inertial Measurement Unit (IMU) sensors. While these 

approaches improve physical plausibility, they rely on 

computationally intensive optimization methods. This high 

computational cost limits their feasibility for real-time 

applications in industrial HRC work cells. 

The framework proposed in this paper is built entirely on a 

neural network architecture, enabling real-time performance 

without relying on computationally intensive physics-based 

models. This design enables fast and efficient inference 

suitable for industrial deployment. Unlike conventional 2D 

skeleton-based approaches, our method reconstructs the 

human as a full 3D surface mesh, capturing realistic body 

shape, size, and pose. Importantly, the reconstruction is 

expressed in real-world coordinates, enabling spatial 

reasoning with respect to other elements in the environment, 

including the robot. By integrating this representation with 

real-time data from the robot controller, the proposed 

framework creates a virtual model of the shared workspace. 

This allows continuous monitoring of HRI, including real-

time tracking of human motion trajectory and distance from 

the robot, both of which will later be demonstrated in our 

results. 

The rest of the paper is organized as follows. Section 2 

introduces the HRC safety problem. Section 3 details the 

proposed framework. Section 4 presents the results and a 

corresponding discussion, while Section 5 summarizes the 

main conclusions. 

2. PROBLEM STATEMENT AND RELATED WORKS 

According to International Federation of Robotics (IFR)-

World Robotics 2023, it is reported that there are nearly 4 

million industrial robots in operation worldwide, with 

approximately 10 percent of them being collaborative robots 

(cobots) (IFR, 2023).  A National Institute of Occupational 

Safety and Health (NIOSH) report highlighted 61 robot-

related fatalities between 1992 and 2015, with an 

expectation of further increase due to the increasing use of 

industrial robots and cobots in the US work environment 

(NIOSH, 2022).  A recent study in (Lee et al., 2021) delved 

into 355 robot accidents documented by Korea Occupational 

Safety and Health Agency (KOSHA) between 2009 and 

2019, revealing that 95% occurred in manufacturing 

businesses. Pinch and crush incidents accounted for 52% of 

the accidents, while impacts and collisions accounted for 

36%, and the remaining 12% involved falls, flying objects, 

trips/slips, cuts, burns, etc. These findings align with US 

data reported in (Jiang & Gainer Jr, 1987). In terms of 

human injuries, the majority (31%) affected the hands and 

fingers, followed by 24% in the head and face, 22% in the 

neck and chest, 9% in the abdomen and back, 7% in the legs 

and feet, and 7% in the arms.  

Power and Force Limit (PFL) and Speed and Separation 

Monitoring (SSM) are widely employed methods for 

mitigating collision injuries in HRI (Robla-Gómez et al., 

2017). PFL enhances safety by regulating the force and 

power exerted by the robots (Aivaliotis et al., 2019), 

ensuring compliance with safety standards (ISO, 2013), and 

conducting risk assessments before HRI deployment. Recent 

advancements in PFL also cover the utilization of force 

sensors for collision detection (Magrini et al., 2015) and the 

development of lightweight robots to reduce impact 

(Hirzinger et al., 2000). On the other hand, SSM focuses on 

preemptive safety measures by monitoring relative speeds 

and maintaining appropriate distances between humans and 

robots before potential collisions occur (Byner et al., 2019; 

Campomaggiore et al., 2019; Marvel & Norcross, 2017). 

Key components in an SSM solution include 3D vision for 

position and speed monitoring, evaluation of human-robot 

separation (or minimum distance checks), and collision 

avoidance strategies alongside adaptive robot control.  

To achieve SSM in HRC work cells, real-time estimation of 

the 3D human motion trajectory remains a challenge. While 

existing State of The Art (SoTA) deep learning methods can 

accurately predict 2D skeletons from traditional RGB 

images, accurate 3D motion trajectories still rely on 

expensive motion capture systems. This paper presents a 

cost-effective framework for SSM that estimates 3D human 

motion using a single RGB-D camera. It integrates 3D 
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vision technology with safety engineering principles and 

adaptive robot control to support collision detection and 

avoidance. 

3. PROPOSED METHODOLOGY 

3.1. SMPL 

The SMPL (Skinned Multi-Person Linear) model is a 

parametric 3D human body model that represents realistic 

and pose-dependent body shapes using a low-dimensional 

set of parameters(Loper et al., 2023). It is widely used in 

computer vision and graphics for tasks like human pose 

estimation, motion capture, and avatar creation due to its 

differentiable formulation and compatibility with 

optimization and deep learning frameworks. 

In SMPL, mapping a body from the rest pose  𝐓̅ ∈ 𝑅3×6890 

to a specific articulated pose involves a series of geometric 

transformations  𝑀(𝜃, 𝛽) ∈ 𝑅3×6890  that are parameterized 

by the pose parameter 𝜃 ∈ 𝑅72 which represents the rotation 

of 24 body joints in axis-angle format, and the shape 

parameter 𝛽 ∈ 𝑅10 . The geometric mapping process in 

SMPL involves two major steps.   

Step 1: applying the blend shapes to the rest pose: 

 𝐓𝑝(𝛽, 𝜃) = 𝐓̅ + 𝐵𝑆(𝛽) + 𝐵𝑃(𝜃) (1) 

Where 𝐵𝑆(𝛽) and 𝐵𝑃(𝜃) are linear operations that compute 

the offset from the template pose 𝐓̅. It gives a new set of 

6890 vertices that considers the shape and pose differences. 

Step 2: rotating the 𝐓𝑝vertices to represent the current pose 

 𝑀(𝛽, 𝜃) = 𝑊(𝐓𝑝, 𝜃, 𝛽) (2) 

Where 𝑊(⋅)  is a rotation matrix operation derived from 

Rodrigues’ formula.  

The mapped vertices from Eq.(2) represent the current pose 

of the human. Based on the mapped vertices, one can further 

obtain the 3D and 2D joint locations by using the following 

two equations.  

 𝑋̂ = 𝑀(𝜃, 𝛽) ⋅ 𝑤,  𝑋̂ ∈ 𝑅3×24 (3) 

𝑥̂ = 𝜋(𝑋) = 𝑠 ⋅ Π(𝑅𝑜𝑡 ⋅ 𝑋̂) + 𝑡 (4) 

Where 𝑋̂  is the 3D joints and 𝑥̂  is the 2D joints 

corresponding to a given image. The parameter 𝑤 in Eq. (3) 

is a pre-generated matrix. In Eq. (4),  𝑠  and 𝑡  denote the 

scaling and translation parameters needed to achieve the 

mapping. A graphical representation of these four mappings 

is illustrated in Figure 1. 

  

(a) (b) 

  
(c) (d) 

Figure 1. Intermediate geometric mappings of the SMPL 

model. (a) The template pose 𝐓̅; (b) The transformed pose 

𝑀(𝛽, 𝜃) using Eq.(1) and (2); (c) The 3D joints given by 

Eq.(3); (d) the 2D joints given by Eq.(4). 

3.2. Human Pose Estimation 

The proposed method for 3D HPE is outlined in Table 1. A 

single-view RGB-D camera is deployed to monitor the HRC 

work cell, recording video at 30 frames per second (FPS). 

At each time step, an RGB image 𝑰 and a corresponding 

depth map 𝑫 are captured for further processing. 

The data processing begins with estimating the SMPL 

model parameters using the pre-trained backbone network 

VIBE (Video Inference for human Body pose and shape 

Estimation) (Kocabas et al., 2020). It is a deep learning 

framework designed to estimate 3D human meshes from 

single-view RGB videos, leveraging temporal information 

across consecutive frames to produce more accurate and 

stable predictions compared to single-frame methods. VIBE 

uses a pre-trained pose detector to extract joint locations, 

which are then passed through a temporal convolutional 

network to regress the parameters of the SMPL model, 

including body shape 𝛽, body joint rotations 𝜃  and the 

scaling and translation factors 𝑠, 𝑡. In this study, we adopt 

the original backbone network without any fine-tuning. 
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Table 1. The proposed HPE algorithm. 

At each time 𝑡, given an RGB image 𝑰 and corresponding 

depth map 𝑫, the following steps are followed to obtain 3D 

human pose. 

1 

Estimate the SMPL model parameters 𝛽, 𝜃, 𝑠, 𝑡 

using a pre-trained backbone model named VIBE 

(Kocabas et al., 2020). The input of the deep 

network is the RGB image 𝐼 , the output is the 

SMPL model parameters.  

2 

Obtain the transformed vertices 𝑀(𝛽, 𝜃)  from 

Eq.(1) and (2), the 3D joints 𝑋̂ from Eq.(3), and the 

scaled 2D joints 𝑥̂ from  Eq.(4). 

3 

Augment the depth information to the scaled 2D 

joints 𝑥̂ (see Figure 1-d) and create a measured 3D 

body joint  𝑋̂𝑚 with proper scaling and location in 

the global coordinate system. 

4 

Estimate the scaling factor 𝑠′ ∈ 𝑅  and translation 

vector 𝑡′ ∈ 𝑅3  by aligning the measured 3D joints 

𝑋̂𝑚 and the unscaled 3D joints from SMPL 𝑋̂. 

5 
Apply the following transformation 𝑠′ ⋅ 𝑀(𝛽, 𝜃) +
𝑡′ to the transformed vertices in step 2. 

6 March to time 𝑡 + 1 and repeat steps 1~5. 

3.3. Robot Digital Twin Integration 

The setup for integrating the collected RGB-D data, real-

time robot controller data, and a computer to process and 

visualize the real-time monitoring is illustrated in Figure 3. 

An RGB-D sensor is used to capture human motion within a 

predefined work zone. The video data is transmitted to an 

industrial PC equipped with an NVIDIA GeForce RTX 

2060 GPU. Using the proposed method described in Table 

1, the video stream is processed into a 3D human avatar 

within a global coordinate system. Simultaneously, real-

time robot joint angles are streamed from the robot 

controller to generate a digital twin, enabling synchronized 

robot motion in the virtual environment. As the entire 

pipeline is based on deep neural network computations, the 

system operates in near real-time with minimal latency. 

 

Figure 3. The hardware configuration for real-time HRC 

monitoring and robot digital integration. 

 
Figure 2. (Top row) Select frames from the RGB-D video collected in case study 1; (Middle row) Estimated front view 

using the proposed method; (Bottom row) Corresponding top view using the proposed method. 

 

Fra e  Fra e    Fra e    Fra e    
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4. RESULTS AND DISCUSSIONS 

4.1. Case Study 1: Human Pose Estimation without 

Robot 

 

Figure 4. Experimental setup in case study 1.  

The first case study involves a human walking along a 

straight path while performing various poses at different 

locations along the path (Figure 4 illustrates the setup 

designed to perform this experiment). RGB-D data was 

collected at 30 FPS using an Intel RealSense D455. Unlike 

traditional HPE tasks, which typically annotate human poses 

using 2D joints or bounding boxes, this study aims to 

localize a 3D avatar within a global coordinate system and 

estimate body joint positions relative to that global frame. 

Since global coordinates are required, the depth information 

collected from the RGB-D camera is key to recovering the 

3D location of the human, and this task cannot be performed 

with RGB images alone. The framework processes only a 

small subset of the depth data—specifically, the pixels 

corresponding to the hu an’s key points—allowing for real-

time processing capable of matching the 30 FPS streaming 

rate. Median filtering is applied to this subset to remove 

outliers and improve the accuracy of the 3D localization. As 

the mesh vertices are regressed from a pre-generated human 

mesh template, they require no depth processing and 

undergo the same scale and translation transformations as 

the human key points. 

The proposed method was utilized to process the RGB-D 

data and resulted in successful 3D mesh reconstruction of 

the human. Figure 3 shows the temporal progression of 

human motion, with distinct poses performed across the 

four displayed frames. The top row visualizes the 2D joints 

overlayed onto the image for each frame, while the middle 

and bottom rows demonstrate that our proposed method 

effectively reconstructed the 3D mesh of the human with 

accurate poses as seen in the corresponding RGB images 

from the first row. Notably, this method relies on input from 

a single RGB-D camera, which captures data of the person 

from one view, showing their front side. Despite this 

limitation, the top-down view of the 3D avatar reveals that 

the proposed method can realistically construct the entire 

shape and pose of the human figure. 

To evaluate the accuracy of our proposed method, we 

compared the estimated human trajectory against the 

trajectory predicted by YOLOv11 (Jocher et al., 2024) as 

illustrated in Figure 5. Specifically, the YOLOv11n-pose 

model is used to predict the 2D human key points. The 

subsequent 2D-3D coordinate transformation occurs using 

the depth information and camera intrinsics, where the 

RGB-D sensor is modeled as a pinhole camera as in 

(Pascual-Hernández et al., 2022). Each trajectory is 

represented by the Z-axis position of the pelvis joint, which 

serves as the root joint within the 24-joint SMPL body 

model. Additionally, a reference path—constructed and 

labeled through physical measurements—was included to 

provide a ground-truth baseline for comparison. By 

visualizing all three trajectories, we observed a strong 

alignment between the proposed method, YOLOv11, and 

the reference path. This close agreement indicates that our 

method reliably estimates the human trajectory and 

performs comparably to YOLOv11 in this context. 

 

Figure 5. Pelvis motion trajectory comparison between the 

proposed method, YOLOv11, and the reference path. 

Another key advantage of the proposed method is its 

robustness to noisy depth data and imperfect neural network 

predictions, as shown in Figure 6. The dashed line 

represents the esti ated depth (distance along the ca era’s 

optical Z-axis) of the right-hand joint as predicted by 

YOLOv11. This depth estimate exhibits noticeable 

fluctuations and significant deviations from the expected 

value of ~ 2.0 m, as supported by Figure 5. In contrast, the 

same joint estimated using our proposed method produces a 

much smoother and more reliable depth trend, as illustrated 

by the solid line. 
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Figure 6. Comparison of right-hand depth estimates using 

the proposed method and YOLOv11. YOLOv11 results 

show significant errors at frames 45, 150, and 250 due to 

inaccurate right-hand identification. 

The 3D body joints predicted by YOLOv11 at frames 45, 

150, and 250, as shown in Figure 6, reveal larger estimation 

errors in the location of the right hand. In comparison, the 

results in Figure 7, generated using our proposed method, 

demonstrate a significant improvement in estimation 

robustness. This is achieved by rescaling and positioning the 

pre-computed 3D avatar  𝑀(𝛽, 𝜃)  within the global 

coordinate frame, effectively eliminating errors associated 

with individual body part identification.  

 

Figure 7. The estimated 3D human figure achieved by the 

proposed method. Significant improvement is observed 

compared to the YOLOv11 estimation in Figure 6. 

4.2. Case Study 2: Human Pose Estimation with Robot 

The second case study focuses on integrating the human and 

robot into a shared virtual environment to estimate their 

distance during workspace interaction. As shown in Figure 

9, a single RGB-D camera monitors the HRC environment 

which consists of the human, reference path, and a 

Neuromeka Indyrp2v2 cobot arm. A digital twin of the 

robot is generated by streaming real-time joint angles from 

the robot controller and visualized in RViz, the Robot 

Operating Syste ’s 3D visualization tool. This setup 

enables synchronized analysis of both human and robot 

digital twins within a unified 3D space. 

 

Figure 8. Experimental setup in case study 2. 

Like the first case study, this experiment involves a human 

walking along a predefined path. However, in this scenario, 

the path is positioned in close proximity to an active robot 

arm, including segments where the human walks directly in 

front of the robot, causing partial visual occlusion from the 

ca era’s perspective. Consistent with the previous setup, 

data was collected using a single, fixed RGB-D camera. The 

human avatar is reconstructed using the proposed method 

and consists of 6890 surface points distributed across the 

full body, while the robot is similarly represented by a mesh 

of 566 surface points. These dense surface representations 

facilitate precise computation of the minimum distance 

between the human and the robot at each time step. By 

continuously monitoring these distances, the system can be 

extended to include real-time alerts for collision avoidance, 

thereby enhancing the safety of the shared workspace. 

(a) 

 

(b) 

 

(c) 

 

Figure 9. The estimated human-robot distance at different 

time frames (a) t=2.0s (b) t=4.13s (c) t=9.57s. Estimated 

distances between the human and select robot points are 

represented by blue lines, with the minimum distance 

represented by a red line. 
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The estimated distances between the human and robot 

across different time frames are represented in Figure 10. In 

this study, we do not utilize an expensive motion capture 

system to obtain ground-truth distances between human 

body joints and the robot. Addressing this limitation is part 

of our future work. Nevertheless, the results shown in the 

right column of Figure 9 clearly illustrate that the estimated 

lines connecting each body joint to the robot surface are 

reasonable and consistent with the expected spatial 

relationships, considering the walking path analysis in 

Figure 11. Although the robot is occluded fro  the ca era’s 

view in Figure 9(c), the proposed method is still able to 

reliably estimate the distance between the human and the 

robot. To the authors’ knowledge, there is no existing 

backbone network capable of precise 3D body-part 

reconstruction. Therefore, the proposed method is currently 

the only known solution in literature capable of achieving 

accurate human-robot mesh estimation with localization. 

 

Figure 10. Pelvis motion trajectory comparison between the 

proposed method, YOLOv11, and the reference path. 

(a) 

 

(b) 

 

Figure 11 (a) an illustration of creating a reference distance 

between the human pelvis joint and the robot base. (b) 

comparison of the estimated distance using the proposed 

method against the reference. 

The estimated human-robot distance is further validated, as 

shown in Figure 11, by comparing it to a reference 

measurement based on the lateral distance 𝑑 from the robot 

base to the walking path and the hu an pelvis height ℎ. In 

this analysis, ℎ is assumed to be constant during movement 

and is measured prior to the experiment. The results shown 

in Figure 11(b) demonstrate that the distance estimates from 

the proposed method closely correspond to the calculated 

reference values. Building on the success of this preliminary 

experiment, we plan to quantitatively evaluate the 

estimation error using a calibrated motion capture system. 

This analysis will be addressed in future work. 

In terms of latency, the framework achieves real-time 

perfor ance in the  onitoring loop: the robot’s digital twin 

and human avatar are continuously updated in RViz at 30 

FPS. The primary source of computational overhead lies in 

the mesh reconstruction stage. Ongoing work focuses on 

optimizing the reconstruction stage and exploring 

lightweight vision backbones to further reduce latency while 

preserving the accuracy of human shape and pose estimation. 

5. CONCLUSIONS 

This paper presents a novel framework for 3D sensing in 

HRC work cells, focused on real-time safety monitoring. 

The system uses input from a single RGB-D camera, 

processed through a fully neural network-based architecture, 

followed by depth-informed geometric transformations to 

reconstruct a detailed 3D human mesh in global coordinates. 

This mesh is integrated into a virtual environment alongside 

a real-ti e robot  odel, updated using data fro  the robot’s 

controller. The setup enables continuous monitoring of 

human-robot interactions, including real-time distance 

measurement. Key contributions include: (1) accurate 3D 

reconstruction using depth data, (2) full mesh representation 

rather than a basic skeleton for improved safety, and (3) a 

neural network pipeline capable of real-time GPU 

deploy ent. Experi ental results confir  the syste ’s 

effectiveness, with precise 2D tracking of human walking 

paths and accurate 3D distance monitoring between the 
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human and robot, demonstrating the practical viability and 

reliability of the proposed method. 
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