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ABSTRACT

This paper introduces a novel 3D sensing framework for
real-time safety monitoring of Human-Robot Collaboration
(HRC), aimed at injury risk reduction and enhancing worker
safety. The framework uses data from a single RGB-D
camera to generate a 3D human avatar. Human shape and
pose are estimated using deep neural networks, which
incorporate depth information and undergo 3D geometric
transformations to determine accurate scale and translation.
This process yields a reconstructed 3D mesh which captures
the human’s pose, shape, size, and location. Following 3D
Human Pose Estimation (HPE), both the human avatar and
the robot’s digital twin are integrated into a shared virtual
environment, enabling real-time monitoring of the HRC
workspace. Results demonstrate effective reconstruction of
3D human geometry within HRC settings. By combining
the reconstructed human surface mesh and real-time robot
state in a single virtual environment, the system enables
continuous, real-time monitoring of both the robot and the
human agents.

1. INTRODUCTION

Robots have emerged as indispensable manufacturing tools
in modern industrial environments due to their precision,
speed, and ability to operate continuously with few
obstructions to their productivity. As robotic technology has
advanced, their presence in shared workspaces with human
operators has become increasingly common. However,
despite their technical capabilities, industrial robots remain
entirely unaware of their surroundings. They are typically
programmed to perform fixed tasks within a defined
workspace, with little to no understanding of the dynamic
presence of nearby humans. This lack of spatial awareness
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poses significant safety risks, making it necessary to confine
robots to fenced-off cells or designated zones to prevent
collisions with human operators. While effective for
ensuring safety, such physical separation limits the
flexibility and efficiency of HRC. As manufacturing moves
towards more adaptive and collaborative workflows, there is
a growing need for robots that can operate safely and
intelligently alongside humans in shared environments.

For real-time monitoring of Human-Robot Interactions
(HRI), machine vision represents the most viable and
necessary technological direction. Vision-based systems,
particularly those utilizing RGB-D cameras, offer a low-cost
and easily deployable solution while retaining rich
contextual information from the environment. Unlike other
sensing modalities, visual data can be readily interpreted by
safety engineers and data analysts, facilitating more
informed assessments of safety risks. Traditional human
monitoring methods, such as vision-based HPE, focus on
estimating joint locations to construct 2D skeletal
representations of humans (Fang et al., 2022; Sun et al,,
2019). State-of-the-art object detection models, such as
YOLOvVI11 (You Only Look Once, version 11) (Jocher et al.,
2024), offer high-speed 2D human detection and are widely
used for real-time perception tasks. However, these models
provide only bounding boxes and coarse 2D localization.
Some models extend this by °‘lifting’ 2D poses into 3D,
leveraging mesh-based regressions to estimate 3D joint
positions (Cao et al., 2019). While effective for basic
activity recognition, these models are insufficient for
applications requiring safety monitoring between robots and
humans for three main reasons:

(1) Skeletal outputs lack volumetric detail, making them
unreliable for estimating proximity in collision detection.

(2) 2D joints are predicted independently, resulting in a lack
of kinematic regularization and, consequently, anatomically
incorrect human poses.
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(3) 3D joints are predicted in an arbitrary coordinate space,
using a select joint (ex. mid-hip) as the origin. Without
global translation, these poses lack real-world context,
limiting their use in safety-critical applications.

Some approaches aim for more precise human detection in
collaborative workspaces. (Mohammed et al., 2017) capture
3D point clouds with RGBD cameras and manually label
human presence based on prior knowledge of the HRC
workspace layout. (Kamezaki et al., 2024) track human
movement using a system of three calibrated laser range
finders, while (Patalas-Maliszewska et al., 2024) identify
human and robot body parts from a top-down view using 2D
CNNs. Despite their improvements, these methods are often
environment-specific, require manual setup, and can
produce unrealistic human poses, limiting their applicability
for flexible and adaptive monitoring. To address these
limitations, a full-surface mesh is required—offering a
detailed and physically realistic 3D representation of the
human body while incorporating depth information to
enable accurate spatial localization.

Achieving human mesh reconstruction in real-time remains
a significant challenge due to computational limitations in
regularizing human  kinematics. Several = methods
incorporate  physics-based  dynamic  models  for
regularization, such as PhysMoP (Yufei Zhang et al., 2024)
and PhysCap (Shimada et al., 2020) which enforce physics-
based environment constraints for motion prediction and
collision handling. Other methods, such as DynalP (Yu
Zhang et al., 2024) propose models which regularize human
motion with acceleration data captured from wearable
Inertial Measurement Unit (IMU) sensors. While these
approaches improve physical plausibility, they rely on
computationally intensive optimization methods. This high
computational cost limits their feasibility for real-time
applications in industrial HRC work cells.

The framework proposed in this paper is built entirely on a
neural network architecture, enabling real-time performance
without relying on computationally intensive physics-based
models. This design enables fast and efficient inference
suitable for industrial deployment. Unlike conventional 2D
skeleton-based approaches, our method reconstructs the
human as a full 3D surface mesh, capturing realistic body
shape, size, and pose. Importantly, the reconstruction is
expressed in real-world coordinates, enabling spatial
reasoning with respect to other elements in the environment,
including the robot. By integrating this representation with
real-time data from the robot controller, the proposed
framework creates a virtual model of the shared workspace.
This allows continuous monitoring of HRI, including real-
time tracking of human motion trajectory and distance from
the robot, both of which will later be demonstrated in our
results.

The rest of the paper is organized as follows. Section 2
introduces the HRC safety problem. Section 3 details the

proposed framework. Section 4 presents the results and a
corresponding discussion, while Section 5 summarizes the
main conclusions.

2. PROBLEM STATEMENT AND RELATED WORKS

According to International Federation of Robotics (IFR)-
World Robotics 2023, it is reported that there are nearly 4
million industrial robots in operation worldwide, with
approximately 10 percent of them being collaborative robots
(cobots) (IFR, 2023). A National Institute of Occupational
Safety and Health (NIOSH) report highlighted 61 robot-
related fatalities between 1992 and 2015, with an
expectation of further increase due to the increasing use of
industrial robots and cobots in the US work environment
(NIOSH, 2022). A recent study in (Lee et al., 2021) delved
into 355 robot accidents documented by Korea Occupational
Safety and Health Agency (KOSHA) between 2009 and
2019, revealing that 95% occurred in manufacturing
businesses. Pinch and crush incidents accounted for 52% of
the accidents, while impacts and collisions accounted for
36%, and the remaining 12% involved falls, flying objects,
trips/slips, cuts, burns, etc. These findings align with US
data reported in (Jiang & Gainer Jr, 1987). In terms of
human injuries, the majority (31%) affected the hands and
fingers, followed by 24% in the head and face, 22% in the
neck and chest, 9% in the abdomen and back, 7% in the legs
and feet, and 7% in the arms.

Power and Force Limit (PFL) and Speed and Separation
Monitoring (SSM) are widely employed methods for
mitigating collision injuries in HRI (Robla-Gémez et al.,
2017). PFL enhances safety by regulating the force and
power exerted by the robots (Aivaliotis et al., 2019),
ensuring compliance with safety standards (ISO, 2013), and
conducting risk assessments before HRI deployment. Recent
advancements in PFL also cover the utilization of force
sensors for collision detection (Magrini et al., 2015) and the
development of lightweight robots to reduce impact
(Hirzinger et al., 2000). On the other hand, SSM focuses on
preemptive safety measures by monitoring relative speeds
and maintaining appropriate distances between humans and
robots before potential collisions occur (Byner et al., 2019;
Campomaggiore et al., 2019; Marvel & Norcross, 2017).
Key components in an SSM solution include 3D vision for
position and speed monitoring, evaluation of human-robot
separation (or minimum distance checks), and collision
avoidance strategies alongside adaptive robot control.

To achieve SSM in HRC work cells, real-time estimation of
the 3D human motion trajectory remains a challenge. While
existing State of The Art (SoTA) deep learning methods can
accurately predict 2D skeletons from traditional RGB
images, accurate 3D motion trajectories still rely on
expensive motion capture systems. This paper presents a
cost-effective framework for SSM that estimates 3D human
motion using a single RGB-D camera. It integrates 3D
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vision technology with safety engineering principles and
adaptive robot control to support collision detection and
avoidance.

3. PROPOSED METHODOLOGY
3.1. SMPL

The SMPL (Skinned Multi-Person Linear) model is a
parametric 3D human body model that represents realistic
and pose-dependent body shapes using a low-dimensional
set of parameters(Loper et al., 2023). It is widely used in
computer vision and graphics for tasks like human pose
estimation, motion capture, and avatar creation due to its
differentiable ~ formulation and compatibility — with
optimization and deep learning frameworks.

In SMPL, mapping a body from the rest pose T € R3*68%
to a specific articulated pose involves a series of geometric
transformations M (6, ) € R3*%8%0 that are parameterized
by the pose parameter 8 € R7? which represents the rotation
of 24 body joints in axis-angle format, and the shape
parameter 8 € R1® . The geometric mapping process in
SMPL involves two major steps.

Step 1: applying the blend shapes to the rest pose:
T,(8,6) =T + Bs(B) + Bp(6) )

Where Bg(B) and Bp(0) are linear operations that compute
the offset from the template pose T. It gives a new set of
6890 vertices that considers the shape and pose differences.

Step 2: rotating the T),vertices to represent the current pose
M(B,6) = W(Ty,0,p) @)

Where W(-) is a rotation matrix operation derived from
Rodrigues’ formula.

The mapped vertices from Eq.(2) represent the current pose
of the human. Based on the mapped vertices, one can further
obtain the 3D and 2D joint locations by using the following
two equations.

X=M(@,B) w, X €R3>?* 3)
£=nX)=s-M(Rot-X)+t 4)

Where X is the 3D joints and £ is the 2D joints
corresponding to a given image. The parameter w in Eq. (3)
is a pre-generated matrix. In Eq. (4), s and t denote the
scaling and translation parameters needed to achieve the
mapping. A graphical representation of these four mappings
is illustrated in Figure 1.

() (d)
Figure 1. Intermediate geometric mappings of the SMPL
model. (a) The template pose T; (b) The transformed pose
M (B, 6) using Eq.(1) and (2); (¢) The 3D joints given by
Eq.(3); (d) the 2D joints given by Eq.(4).

3.2. Human Pose Estimation

The proposed method for 3D HPE is outlined in Table 1. A
single-view RGB-D camera is deployed to monitor the HRC
work cell, recording video at 30 frames per second (FPS).
At each time step, an RGB image I and a corresponding
depth map D are captured for further processing.

The data processing begins with estimating the SMPL
model parameters using the pre-trained backbone network
VIBE (Video Inference for human Body pose and shape
Estimation) (Kocabas et al., 2020). It is a deep learning
framework designed to estimate 3D human meshes from
single-view RGB videos, leveraging temporal information
across consecutive frames to produce more accurate and
stable predictions compared to single-frame methods. VIBE
uses a pre-trained pose detector to extract joint locations,
which are then passed through a temporal convolutional
network to regress the parameters of the SMPL model,
including body shape f, body joint rotations 6 and the
scaling and translation factors s, t. In this study, we adopt
the original backbone network without any fine-tuning.
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Table 1. The proposed HPE algorithm.

At each time t, given an RGB image I and corresponding
depth map D, the following steps are followed to obtain 3D
human pose.

Estimate the SMPL model parameters f3,0,s,t
using a pre-trained backbone model named VIBE
1 (Kocabas et al., 2020). The input of the deep
network is the RGB image I, the output is the
SMPL model parameters.

Obtain the transformed vertices M(B,6) from
2 Eq.(1) and (2), the 3D joints X from Eq.(3), and the
scaled 2D joints X from Eq.(4).

Augment the depth information to the scaled 2D
joints X (see Figure 1-d) and create a measured 3D
body joint X, with proper scaling and location in
the global coordinate system.

Estimate the scaling factor s’ € R and translation
4 vector t' € R3 by aligning the measured 3D joints
X, and the unscaled 3D joints from SMPL X.

Apply the following transformation s’ - M(g3,8) +
t' to the transformed vertices in step 2.

6 March to time t + 1 and repeat steps 1~5.
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3.3. Robot Digital Twin Integration

The setup for integrating the collected RGB-D data, real-
time robot controller data, and a computer to process and
visualize the real-time monitoring is illustrated in Figure 3.
An RGB-D sensor is used to capture human motion within a
predefined work zone. The video data is transmitted to an
industrial PC equipped with an NVIDIA GeForce RTX
2060 GPU. Using the proposed method described in Table
1, the video stream is processed into a 3D human avatar
within a global coordinate system. Simultaneously, real-
time robot joint angles are streamed from the robot
controller to generate a digital twin, enabling synchronized
robot motion in the virtual environment. As the entire
pipeline is based on deep neural network computations, the
system operates in near real-time with minimal latency.

Yo

Joint Position

Robot Controller

Proposed o s
Al Method *“5

Human Motion &

‘ Industrial PC

RGB-D Camera

Cobot
Figure 3. The hardware configuration for real-time HRC
monitoring and robot digital integration.

Frame 214

-

Figure 2. (Top row) Select frames from the RGB-D video collected in case study 1; (Middle row) Estimated front view
using the proposed method; (Bottom row) Corresponding top view using the proposed method.
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4. RESULTS AND DISCUSSIONS

4.1. Case Study 1: Human Pose Estimation without
Robot

Figure 4. Experimental setup in case study 1.

The first case study involves a human walking along a
straight path while performing various poses at different
locations along the path (Figure 4 illustrates the setup
designed to perform this experiment). RGB-D data was
collected at 30 FPS using an Intel RealSense D455. Unlike
traditional HPE tasks, which typically annotate human poses
using 2D joints or bounding boxes, this study aims to
localize a 3D avatar within a global coordinate system and
estimate body joint positions relative to that global frame.
Since global coordinates are required, the depth information
collected from the RGB-D camera is key to recovering the
3D location of the human, and this task cannot be performed
with RGB images alone. The framework processes only a
small subset of the depth data—specifically, the pixels
corresponding to the human’s key points—allowing for real-
time processing capable of matching the 30 FPS streaming
rate. Median filtering is applied to this subset to remove
outliers and improve the accuracy of the 3D localization. As
the mesh vertices are regressed from a pre-generated human
mesh template, they require no depth processing and
undergo the same scale and translation transformations as
the human key points.

The proposed method was utilized to process the RGB-D
data and resulted in successful 3D mesh reconstruction of
the human. Figure 3 shows the temporal progression of
human motion, with distinct poses performed across the
four displayed frames. The top row visualizes the 2D joints
overlayed onto the image for each frame, while the middle
and bottom rows demonstrate that our proposed method
effectively reconstructed the 3D mesh of the human with
accurate poses as seen in the corresponding RGB images
from the first row. Notably, this method relies on input from
a single RGB-D camera, which captures data of the person
from one view, showing their front side. Despite this
limitation, the top-down view of the 3D avatar reveals that
the proposed method can realistically construct the entire
shape and pose of the human figure.

To evaluate the accuracy of our proposed method, we
compared the estimated human trajectory against the
trajectory predicted by YOLOv11 (Jocher et al., 2024) as
illustrated in Figure 5. Specifically, the YOLOvVIIn-pose
model is used to predict the 2D human key points. The
subsequent 2D-3D coordinate transformation occurs using
the depth information and camera intrinsics, where the
RGB-D sensor is modeled as a pinhole camera as in
(Pascual-Hernandez et al., 2022). Each trajectory is
represented by the Z-axis position of the pelvis joint, which
serves as the root joint within the 24-joint SMPL body
model. Additionally, a reference path—constructed and
labeled through physical measurements—was included to
provide a ground-truth baseline for comparison. By
visualizing all three trajectories, we observed a strong
alignment between the proposed method, YOLOvl11, and
the reference path. This close agreement indicates that our
method reliably estimates the human trajectory and
performs comparably to YOLOv11 in this context.

3 -
Proposed method
....... YOLOVll
2.5 = = Reference

Z (m)

2| o= TPt aT = —0

1.5 :
-1.2 -0.6

0 0.6 1.2
X (m)
Figure 5. Pelvis motion trajectory comparison between the
proposed method, YOLOvV11, and the reference path.

Another key advantage of the proposed method is its
robustness to noisy depth data and imperfect neural network
predictions, as shown in Figure 6. The dashed line
represents the estimated depth (distance along the camera’s
optical Z-axis) of the right-hand joint as predicted by
YOLOvI1. This depth estimate exhibits noticeable
fluctuations and significant deviations from the expected
value of ~ 2.0 m, as supported by Figure 5. In contrast, the
same joint estimated using our proposed method produces a
much smoother and more reliable depth trend, as illustrated
by the solid line.

-==YOLOvl1l

g - — ProposedMethod “f
A A
Es XN -, ¥
< } i ~|‘:’
o, " ;-.
g 4 R T T IR
¥ ot 8 W ie . i .".::z
et (R R
2 4 6 8
Time (s)



Annual Conference of the Prognostics and Health Management Society 2025

Figure 6. Comparison of right-hand depth estimates using
the proposed method and YOLOvI1l. YOLOvI11 results
show significant errors at frames 45, 150, and 250 due to
inaccurate right-hand identification.

The 3D body joints predicted by YOLOv11 at frames 45,
150, and 250, as shown in Figure 6, reveal larger estimation
errors in the location of the right hand. In comparison, the
results in Figure 7, generated using our proposed method,
demonstrate a significant improvement in estimation
robustness. This is achieved by rescaling and positioning the
pre-computed 3D avatar M(B,0) within the global
coordinate frame, effectively eliminating errors associated
with individual body part identification.

Frame 45

Frame 150 Frame 250

Figure 7. The estimated 3D human figure achieved by the
proposed method. Significant improvement is observed
compared to the YOLOv11 estimation in Figure 6.

4.2. Case Study 2: Human Pose Estimation with Robot

The second case study focuses on integrating the human and
robot into a shared virtual environment to estimate their
distance during workspace interaction. As shown in Figure
9, a single RGB-D camera monitors the HRC environment
which consists of the human, reference path, and a
Neuromeka Indyrp2v2 cobot arm. A digital twin of the
robot is generated by streaming real-time joint angles from
the robot controller and visualized in RViz, the Robot
Operating System’s 3D visualization tool. This setup
enables synchronized analysis of both human and robot
digital twins within a unified 3D space.

3.46 M

;IIIIII--.I:.---

*

Figure 8. Experimental setup in case study 2.

Like the first case study, this experiment involves a human
walking along a predefined path. However, in this scenario,
the path is positioned in close proximity to an active robot
arm, including segments where the human walks directly in
front of the robot, causing partial visual occlusion from the
camera’s perspective. Consistent with the previous setup,
data was collected using a single, fixed RGB-D camera. The
human avatar is reconstructed using the proposed method
and consists of 6890 surface points distributed across the
full body, while the robot is similarly represented by a mesh
of 566 surface points. These dense surface representations
facilitate precise computation of the minimum distance
between the human and the robot at each time step. By
continuously monitoring these distances, the system can be
extended to include real-time alerts for collision avoidance,
thereby enhancing the safety of the shared workspace.

£
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4 %%5'7%
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Figure 9. The estimated human-robot distance at different
time frames (a) t=2.0s (b) t=4.13s (c) t=9.57s. Estimated
distances between the human and select robot points are
represented by blue lines, with the minimum distance
represented by a red line.
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The estimated distances between the human and robot
across different time frames are represented in Figure 10. In
this study, we do not utilize an expensive motion capture
system to obtain ground-truth distances between human
body joints and the robot. Addressing this limitation is part
of our future work. Nevertheless, the results shown in the
right column of Figure 9 clearly illustrate that the estimated
lines connecting each body joint to the robot surface are
reasonable and consistent with the expected spatial
relationships, considering the walking path analysis in
Figure 11. Although the robot is occluded from the camera’s
view in Figure 9(c), the proposed method is still able to
reliably estimate the distance between the human and the
robot. To the authors’ knowledge, there is no existing
backbone network capable of precise 3D body-part
reconstruction. Therefore, the proposed method is currently
the only known solution in literature capable of achieving
accurate human-robot mesh estimation with localization.
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Figure 10. Pelvis motion trajectory comparison between the
proposed method, YOLOV11, and the reference path.
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Figure 11 (a) an illustration of creating a reference distance
between the human pelvis joint and the robot base. (b)
comparison of the estimated distance using the proposed
method against the reference.

The estimated human-robot distance is further validated, as
shown in Figure 11, by comparing it to a reference
measurement based on the lateral distance d from the robot
base to the walking path and the human pelvis height 4. In
this analysis, /4 is assumed to be constant during movement
and is measured prior to the experiment. The results shown
in Figure 11(b) demonstrate that the distance estimates from
the proposed method closely correspond to the calculated
reference values. Building on the success of this preliminary
experiment, we plan to quantitatively evaluate the
estimation error using a calibrated motion capture system.
This analysis will be addressed in future work.

In terms of latency, the framework achieves real-time
performance in the monitoring loop: the robot’s digital twin
and human avatar are continuously updated in RViz at 30
FPS. The primary source of computational overhead lies in
the mesh reconstruction stage. Ongoing work focuses on
optimizing the reconstruction stage and exploring
lightweight vision backbones to further reduce latency while
preserving the accuracy of human shape and pose estimation.

5. CONCLUSIONS

This paper presents a novel framework for 3D sensing in
HRC work cells, focused on real-time safety monitoring.
The system uses input from a single RGB-D camera,
processed through a fully neural network-based architecture,
followed by depth-informed geometric transformations to
reconstruct a detailed 3D human mesh in global coordinates.
This mesh is integrated into a virtual environment alongside
a real-time robot model, updated using data from the robot’s
controller. The setup enables continuous monitoring of
human-robot interactions, including real-time distance
measurement. Key contributions include: (1) accurate 3D
reconstruction using depth data, (2) full mesh representation
rather than a basic skeleton for improved safety, and (3) a
neural network pipeline capable of real-time GPU
deployment. Experimental results confirm the system’s
effectiveness, with precise 2D tracking of human walking
paths and accurate 3D distance monitoring between the
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human and robot, demonstrating the practical viability and
reliability of the proposed method.
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