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ABSTRACT

With the ongoing digitization of global activities, the num-
ber of predictive maintenance datasets has been steadily grow-
ing. These datasets are often manually classified in literature
review papers to assess their relevance for predictive main-
tenance applications. However, this manual approach is in-
creasingly unsustainable, as it is time-intensive and prone to
errors. The accelerating pace at which new datasets emerge
in both scientific and industrial contexts makes this problem
even worse. To overcome these challenges, there is a grow-
ing need for automated solutions to curate, analyze, and cat-
egorize (tag) datasets in the literature. To this end, we pro-
pose and evaluate MAINTAG (Multi-Agent-based Predictive
Maintenance Dataset Tagging System), a novel multi-agent
system designed to automate the classification of predictive
maintenance datasets. MAINTAG is compatible with any
criteria-based taxonomy and is assessed by benchmarking its
tagging accuracy against recent state-of-the-art literature.

MAINTAG uses multiple AI agents built on large language
models. Different agents handle different parts of the clas-
sification process. One agent identifies the application do-
main. Another determines the task type. A third figures out
the supervision approach. The last one classifies the learn-
ing algorithm. Each agent uses GPT-based models to read
through dataset documentation. They provide their classi-
fications along with confidence scores. We evaluate MAIN-
TAG on historical PHM challenge datasets (2008-2017). Re-
sults matched expert classifications with high correspondence
across most categories. This shows that automated tagging
can be as reliable as human experts. Our approach offers a
practical way to manage the flood of new datasets in predic-
tive maintenance. It maintains quality while keeping up with
the rapid pace of predictive maintenance data creation.

O. BEKTASH et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Rapid growth of Industry 4.0 has expanded the volume and
diversity of datasets available for predictive maintenance (PdM).
Operational data now comes from various domains such as
vibration and temperature measurements in manufacturing to
flight-recorder streams in aerospace. All of these information
provides comprehensive inputs for Prognostics and Health
Management (PHM) systems. This expansion is also visible
in a broader trend in CM/PdM research due to the increasing
system complexity, adoption of AI/ML, IoT, and high-speed
communication technologies like 5G/6G. Accordingly, there
is an exponential growth in both academic and industrial ef-
forts (Nguyen et al., 2021; Pimenov et al., 2023).

Historically, maintenance strategies began with reactive re-
pairs (A. Heng et al., 2009) and scheduled preventive tasks
(A. S. Y. Heng, 2009; Bohlin et al., 2010). The field then
shifted toward to data-driven strategies like Condition-Based
Maintenance (CBM) and PdM. These frameworks make use
of real-time sensor data to reduce unnecessary interventions
(Jardine et al., 2006). PdM extends them with predictive an-
alytics for early failure detection (Brotherton et al., 2000;
Byington et al., 2008). Still, a core challenge is using com-
plex condition monitoring (CM) data for fault detection, di-
agnostics, and prognostics (Tsui et al., 2019). In the past,
synthetic data offered some value for maintenance applica-
tions (N. H. Eklund, 2006). However, for real world cases,
standard datasets remain essential for reliable model devel-
opment (Zhao et al., 2021). Until recently, the lack of pub-
licly accessible datasets has been blocking progress (Sarker
et al., 2022; Ramasso & Saxena, 2014). As a result, early
studies highlighted the need for shared databases to enable
benchmarking and facilitate innovation (Kans & Ingwald,
2008; Simões et al., 2011; Uusipaavalniemi & Juga, 2008).

However, despite growing dataset availability, dataset selec-
tion remains largely manual. It still relies on time-consuming
literature reviews and surveys that struggle to keep pace with
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the increasing rate of new releases across public and propri-
etary sources. In response to these, we introduce MAIN-
TAG, a multi-agent system for automated dataset tagging in
PHM applications. MAINTAG features modular agents for
tasks such as term extraction, semantic indexing, web-based
enrichment, and domain-specific evaluation based on PHM
frameworks.

2. RELATED WORK

PHM field keeps expanding through the integration of data-
driven methodologies. The field also reshapes how com-
plex systems monitor health, predict failures, and optimize
maintenance strategies. Annual challenge datasets released
through the annual PHM Competitions have have a notable
impact in this progress. However, the manual curation and
classification of these datasets —along with many others on
platforms such as Kaggle, Zenodo, and similar repositories—
remain labor-intensive and error-prone, despite repeated calls
for scalable and intelligent alternatives.

2.1. PHM Data Competitions

PHM data challenges from 2008 to 2017 demonstrated a
various applications in PHM tasks, moving from RUL pre-
diction to diagnostic and regression problems. PHM 2008
challenge established a baseline with multivariate time-series
data for RUL prediction in turbofan engines (Saxena & Goebel,
2008). In 2009, the new challenge shifted to fault detection
and magnitude estimation for information about bearing ge-
ometry (N. Eklund & Bechhoefer, 2009). 2010 introduced
a RUL estimation task multi-sensor inputs for high-speed
CNC milling machine cutters(N. Eklund et al., 2010).

Following challenges targeted fault detection (2011, wind
anemometer data) (N. Eklund & Kessler, 2011), and RUL
prediction under accelerated degradation (2012, rolling bear-
ings) (Nectoux et al., 2012). In 2013 and 2014, the chal-
lenges explored diagnostics and health assessment & fault
detection tasks, respectively (N. Eklund & Kessler, 2013;
Garvey & Wigny, 2014).

In 2015, the focus returned to fault classification and prog-
nosis across multiple industrial plants using labeled opera-
tional data (Rosca et al., 2015), followed by 2016’s health
state tracking task of components within a wafer chemical-
mechanical planarisation system (Propes & Rosca, 2016).
Finally, 2017 emphasized on the combination of physics-
based modeling and statistical approaches for prediction (Propes
et al., 2017).

These benchmark datasets show methodological variations.
Tasks include time series based RUL estimation to complex,
multi-dimensional tasks involving event logs, hybrid mod-
els, and semi-supervised settings. Together, they provide a
reliable data source for automated systems like MAINTAG
to standardize dataset classification in the PHM domain.

These datasets have been reviewed by several influential stud-

ies. Jia et al. (2018) provided one of the most comprehensive
state of art across the 2008–2017 data challenges. Similarly,
Huang et al. (2017) provided an in-depth examination of data
characteristics, challenge objectives, and algorithmic frame-
works. Su & Lee (2023) further extended these by propos-
ing an extended work based on open-source PHM challenges
from 2018–2023. They also identify common limitations
in PHM data challenge competitions by emphasizing data-
related and model-related issues. PHM challenges. Now,
there is a growing number of benchmark datasets emerging
from community-driven platforms such as Kaggle and Zen-
odo. This further diversifies data modalities and experimen-
tal setups. These sources introduce new challenges in stan-
dardization, benchmarking consistency, and cross-domain gen-
eralizability.

2.2. MAINTAG: Toward Automated Dataset Tagging

Our work addresses these challenges through the develop-
ment of MAINTAG, a multi-agent system designed to auto-
mate the tagging and classification of predictive maintenance
datasets. MAINTAG supports any criteria-based taxonomy
and is evaluated against the historical PHM challenges sum-
marized above. Unlike earlier efforts, MAINTAG:

• Divides tagging into sub-tasks with parallel agents;
• Computes interpretable confidence scores for each tag-

ging decision;
• Benchmarks classification performance against human

experts and literature reviews.

Through this system, we show that automated tagging is both
feasible and accurate. This offers an automated alternative to
traditional literature-based curation.

Beyond PHM surveys, researchers in related domains have
also explored automated metadata tagging and ontology-driven
labeling. For instance, Mishra et al. Mishra et al. (2020) pro-
posed a unified architecture for tagging Building Automation
System metadata. Similarly, Lutz et al. Lutz et al. (2023)
applied text classification to extract KPIs from unstructured
wind turbine work orders. In the scientific data community,
Gonçalves et al. Gonçalves et al. (2019) aligned biomedical
metadata fields with ontologies using clustering and embed-
dings, and Dumschott et al. Dumschott et al. (2023) demon-
strated how ontologies enhance FAIRness in plant research
datasets. These works demonstrate the widespread impact of
ontology-aware curation. However, MAINTAG is the first to
apply such principles for PHM dataset tagging.

Our work is the first to bridge the review-based synthesis
of Jia et al. (2018) with an automated solution that directly
tackles the challenges of dataset curation and classification
in PHM. While they provided a foundational framework for
evaluating PHM datasets by categorizing datasets by system
type, task, supervision, and learning method (see Table 1),
their approach relied entirely on manual effort. Our work
advances this by operationalization of their evaluation crite-
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Dataset System Type PHM Task Supervision Type Learning Algorithm

PHM2008 Aircraft Engine Prognosis Supervised Classification, Regression,
Time Series

PHM2009 Gearbox Fault Detection & Diagnosis Supervised Clustering

PHM2010 Milling Cutter Assessment Supervised Regression

PHM2011 Anemometer Fault Detection Unsupervised Anomaly Detection (Statistics
and Residual- and
Distance-Based)

PHM2012 Bearing Prognosis Supervised Regression & Time Series

PHM2013 Unknown Diagnosis Supervised Classification

PHM2014 Unknown Assessment & Fault Detection Unsupervised Anomaly Detection / Statistics

PHM2015 Power Plant Fault Detection & Diagnosis Supervised Classification

PHM2016 CMP Other — —

PHM2017 Bogie Fault Detection & Diagnosis Supervised Anomaly Detection (Residual-
and Distance-Based)

Table 1. PHM Datasets Classified by System, Task, Supervision Type and Learning Algorithm Jia et al. (2018)

ria within a modular multi-agent system. These agents han-
dle tasks such as terminology extraction, semantic indexing,
and relevance scoring across diverse data sources. In do-
ing so, we eliminate much of the manual burden. While
large language models have been applied in generic classifi-
cation tasks, MAINTAG is novel in operationalizing dataset
taxonomy through a multi-agent pipeline tailored to PHM.
In contrast to adjacent metadata-tagging efforts in domains,
our approach is the first to target PHM datasets with explain-
able, confidence-aware aggregation. This integration points
an important shift from static, manually maintained reviews
to a dynamic and automated tagging framework capable of
evolving with the predictive maintenance data landscape.

3. METHODOLOGY AND MAINTAG SYSTEM DESIGN

This section provides the design of the MAINTAG system
and details the research architecture, data sources, and com-
putational procedures for automated dataset tagging. MAIN-
TAG leverages a multi-agent architecture capable of classify-
ing PHM datasets based on predefined taxonomic attributes
using AI agents. The system consists of several specialized
agent. Each powered by different GPT model variants de-
pending on their computational requirements. MAINTAG
orchestrator agent uses GPT-4 for coordination. On the other
hand, sub-agents employ GPT-4-mini for efficiency in fo-
cused classification tasks.

3.1. Research Design

We formalize the task of PHM dataset tagging within a multi-
agent framework and also provide interpretable outputs and
confidence-aware aggregation that can be directly applied in

practice. The research follows a methodology comprising
three phases: system conceptualization, multi-agent frame-
work development, and evaluation against expert baselines
and historical PHM datasets.

MAINTAG is built upon a hierarchical agent-based system.
Each agent is specialized in extracting and reasoning over
one of the four core tagging indicators (see Table: 2):

• Domain Type (D): Identifies the application field: Aerospace
(A), Energy (E), Transportation (T), Manufacturing (M),
Semiconductors (S).

• Usage Type (U): Categorizes the dataset by its primary
analytical function — Fault Detection (FD), Diagnosis,
Assessment, Prognosis.

• Supervision Type (S): Determines if learning is super-
vised (S) or unsupervised (U).

• Algorithm Type (A): Tags the dominant modeling paradigms:
Regression, Classification (C), Time Series (T), etc.

Each agent returns a decision as a categorical label with an
associated confidence score pi ∈ [0, 1], where i ∈ {D,U, S,A}.
The final structured output is:

TagMAINTAG = {(i, ŷi, pi)}4i=1 (1)

where ŷi is the predicted label for indicator i, and pi is the
confidence score derived from softmax-normalized heuris-
tics and LLM scoring.
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Indicator Description and Options
Domain Type Describes the broad industrial or operational context from which the dataset originates. Helps determine its relevance

to real-world use cases and facilitates domain-aware benchmarking.
• Aerospace and Aviation (A) – e.g., aircraft engines, UAVs, satellites
• Energy and Power Systems (E) – e.g., fuel cells, turbines, generators
• Transportation and Mobility (T) – e.g., railway bogies, vehicle suspension
• Manufacturing and Industrial Machinery (M) – e.g., milling machines, gearboxes
• Electronics and Semiconductors (S) – e.g., CMP, circuit systems

Usage Captures the dataset’s primary objective within PHM workflows. This classification is key for selecting datasets aligned
with specific modeling goals.

• Detection – Identify whether a fault has occurred (binary outcome)
• Diagnosis – Determine the specific root cause of a failure
• Assessment – Quantify current health or risk state
• Prognosis – Predict future degradation or remaining useful life (RUL)

Nature of
Supervision

Indicates the level of label availability in the training data, which constrains the type of applicable learning algorithms.

• Supervised – Fully labeled data for fault types or degradation levels
• Unsupervised – No labels; typically used for anomaly detection or clustering

Learning
Algorithm

Describes the analytical technique or machine learning paradigm used to model the dataset. Useful for benchmarking,
model selection, and reproducibility.

• Regression – Predict continuous outcomes (e.g., RUL, wear)
• Classification – Categorize conditions (e.g., fault/no fault, fault types)
• Time Series Prediction – Forecast future sensor values or trends

Table 2. Expanded definitions and options for key indicators used in MAINTAG.

3.2. Data Collection

We evaluated MAINTAG on all publicly available PHM chal-
lenge datasets from 2008–2017 (see Section 2.1). These
datasets come from diverse domains and represent real-world
diagnostics and prognostics tasks, including RUL prediction,
anomaly detection, and component-level classification.

The system also incorporates contextual metadata extracted
via a WebSearchAgent to supplement sparse datasets. Each
dataset was parsed for:

• Metadata (sensor types, time granularity, labels)
• Task structure (prediction vs. classification)
• Domain clues (nomenclature, source links)

Expert labels from Table: 1 served as the ground truth for
benchmarking model performance.

3.3. Analysis Methods

MAINTAG’s core processing pipeline consists of three lay-
ers:

1. Intent Parsing: An OrganizerAgent receives input meta-
data or user queries and routes the request to domain-
specific agents.

2. Inference and Classification: Each indicator agent per-
forms a rule-guided LLM inference using prompt engi-
neering templates. The agents return a prediction ŷi, a

justification string, and a confidence score pi.

3. Aggregation and Output: The Runner aggregates agent
outputs into a structured JSON result. If discrepancies
or conflicts arise, a resolver heuristic recalculates scores
using confidence-weighted majority voting.

Mathematically, the aggregation step uses a decision func-
tion:

ŷi = argmax
c∈Ci

p(c | agenti, input)

where Ci is the class set for indicator i, and p(c) is esti-
mated from the LLM’s logit distribution, normalized using a
temperature-controlled softmax:

p(c) =
exp(zc/τ)∑

c′∈Ci
exp(zc′/τ)

where τ is a tunable temperature parameter (default τ = 1)
and zc is the logit score from the agent’s response structure.

Evaluation metrics included:

• Accuracy against expert-annotated labels for all 10 PHM
datasets.

• Cross-consistency between domain type and algorithm
choice (e.g., RUL tasks requiring regression in aerospace).

4



Annual Conference of the Prognostics and Health Management Society 2025

• Execution time and agent agreement levels (confidence
entropy).

Table 3. MAINTAG accuracy per indicator across PHM
challenges (2008–2017).

Indicator Accuracy
Domain Type 0.80 (8/10)
Usage Type 0.90 (9/10)
Supervision 0.90 (9/10)
Algorithm 0.60 (6/10)

4. EVALUATION AND FINDINGS

We evaluated MAINTAG’s classification fidelity in relation
to the benchmark taxonomies articulated by Jia et al. Jia et
al. (2018), see (Figure ). Our findings are structured around
taxonomy alignment, agent confidence, and observed mis-
matches.

4.1. Key Findings

MAINTAG performed multi-label classification across all 10
major PHM data challenges (2008–2017), with most pre-
dicted tags aligning with the high-level taxonomy proposed
by Jia et al. Jia et al. (2018), and at least one meaningful
match per dataset. The classification was based on four in-
dicators: Domain Type (DT), Usage Type (U), Nature of Su-
pervision (NS), and Learning Algorithm (LA). Table 4 sum-
marizes MAINTAG’s automated decisions.

Key findings are:

• Domain Identification (DT) was mostly consistent across
all datasets, with agreement in 8/10 cases. As requested,
MAINTAG mapped turbofan engines to aerospace, gear-
boxes to manufacturing, and CMP systems to semicon-
ductor manufacturing. The different cases were PHM13
and PHM-4, respectively. Both datasets lack detailed
descriptions due to confidentiality, but they reference a
common issue in industrial remote monitoring and di-
agnostics. As a result, Maintag labeled them under the
”Manufacturing and Industrial Machinery” domain.

• Usage Type (U) was correctly predicted in 9/10 datasets,
with nuanced interpretation for dual-purpose challenges
(e.g., PHM17, which involved both diagnostics and prog-
nostics data evaluation). The only differing case was
PHM-2010, which was labeled as assessment in Table
1, yet its description clearly refers to remaining useful
life estimation. Therefore, Maintag assigned it a prog-
nosis tag.

• Supervision Type (NS) agreement was high in labeled
datasets (9/10)

• Learning Algorithm (LA) predictions followed chal-
lenge structures, with mapping to regression for RUL
tasks and classification or time series. The performance
dropped for datasets lacking explicit labels. This indica-
tor showed slightly lower performance, which was ex-

pected, as such learning algorithms are less frequently
mentioned in the README files.

5. INSIGHTS AND DISCUSSION

MAINTAG delivered strong results when tested on past PHM
datasets. The system matched human experts mostly in Do-
main Type tasks. It also performed well in Algorithm Type
and Usage Type categories. The most striking finding was
how closely it matched expert decisions. This happened with-
out any direct training from humans. The system worked
purely from text descriptions and data patterns.

The reduced agreement in Supervision Type highlights an
inherent ambiguity in challenge documentation, which oc-
casionally omits labeling strategies or blends methodologies
(e.g., hybrid physical-statistical models). MAINTAG’s con-
fidence scoring, however, provides a mechanism for users to
identify low-certainty outputs, which is a critical improve-
ment over deterministic classifiers.

The deployment of MAINTAG can significantly streamline
the dataset curation process in both academic and industrial
settings. Potential implications include:

• Faster Research Progress: Scientists can find the right
datasets for their work without ant explicit effort. Clear
tags can make scientific data searching much practical
than before.

• Standardization: MAINTAG can help different labs
and contests use the same classification methods. This
can cut down on confusing or conflicting dataset de-
scriptions by different researchers.

• Building Block in PHM: Automated tagging can set the
stage for smarter PHM workflows. Real-world factories
need systems that can handle data, label it, and put mod-
els to work without delays.
Also, MAINTAG lays the groundwork for benchmark-
ing future datasets released beyond 2017 and supports
alignment with FAIR data principles (Findable, Acces-
sible, Interoperable, Reusable).
While promising, the current version of MAINTAG has
limitations discussed below, that we plan to address in
future work):

– Dataset Sparsity: MAINTAG depends on suffi-
cient descriptive text. In cases where minimal doc-
umentation exists, its inference capabilities degrade
significantly.

– Ontology Rigidity: MAINTAG currently assumes
a static four-indicator taxonomy. Extending to multi-
label or hierarchical ontologies would enhance flex-
ibility but introduces complexity.

– Absence of Continuous Learning: The system
does not currently adapt or fine-tune based on hu-
man feedback, though this could be integrated in
future reinforcement learning phases.
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Class. Rationale Conf.

PH
M

08

DT: A The dataset involves turbofan engines, which are core components of aircraft. The prognostics challenge focuses on predicting
the Remaining Useful Life (RUL) of these engines.

H

U: P The primary aim is to estimate the Remaining Useful Life (RUL) of the engines, which is a prognostic task. H
NS: S The dataset provides a training set with labeled RUL values, enabling the training of models in a supervised manner. H
LA: T The data consists of multivariate time series from engine sensors, ideal for time series prediction models to forecast future

performance and remaining life.
H

PH
M

09

DT: M The dataset focuses on fault detection and magnitude estimation in gear systems, which are key components in industrial
machinery.

M

U: FD,D The competition was centered around detecting faults and estimating their magnitude, requiring participants to identify fault
types and locations.

H

NS: S,U The dataset began as unlabeled, but was later complemented with labels, allowing for both unsupervised and supervised
learning approaches.

M

LA: C,T Algorithms were developed to classify fault types and predict fault progression over time, utilizing both classification and
time series prediction models.

M

PH
M

10

DT: M The challenge focuses on CNC milling machine cutters. M
U: P The task is to estimate the Remaining Useful Life (RUL) of the equipment. M
NS: S Training and test data are provided, allowing for model development and validation. M
LA: T Estimating RUL involves predicting future states based on historical sensor data. M

PH
M

11

DT: E The challenge involves fault detection in anemometers, which are key in the wind power industry. H
U: FD The main task is anemometer fault detection, indicating the usage is focused on detecting faults. H
NS: NA The description does not specify if the data is labeled, so the nature of supervision remains unclear. –
LA: NA Without specific details on the learning algorithm used, such as supervised models like classification or unsupervised like

clustering, it remains unknown.
–

PH
M

12

DT: M The challenge focuses on the life estimation of bearings, which is a critical component in industrial machinery. M
U: P The primary focus of the challenge is on the estimation of the remaining useful life (RUL) of bearings, indicating a focus on

prognosis.
H

NS: S The challenge included labeled data (run-to-failure datasets) provided to participants for building models, which implies a
supervised learning context.

H

LA: T Participants were tasked with estimating the RUL, which involves time series predictions from operational and failure data. H

PH
M

13

DT: M The task involves maintenance action recommendation in an industrial context. H
U: D The focus is on recognizing confirmed issues and avoiding false alarms (nuisance cases). M
NS: S Requires labeled data for recommending problem types vs. nuisance cases, based on typical methodologies. M
LA: C Teams used methods like Bayesian approach, decision trees, and ensembles to classify cases into problems or non-problems. H

PH
M

14

DT: M The task involves industrial remote monitoring and diagnostics of assets. H
U: FD,A The task focuses on monitoring to identify assets as high or low risk of failure. M
NS: S,U Mixed approaches may be involved in segmenting health scores into risk categories. M
LA: Cl,R Health score generation likely involves both classification and regression techniques. H

PH
M

15

DT: M The dataset focuses on fault detection and prognostics within industrial plant settings. M
U: D,P The dataset aims to detect faults and predict future failure events in plant operations. H
NS: S The task involves predicting missing faults from provided training data, indicating supervised learning. H
LA: T,C The use of time series data to predict future faults aligns with time series prediction, and identifying fault types aligns with

classification.
H

PH
M

16

DT: M The task involves predicting removal rates in CMP tools, typically used in manufacturing processes, particularly in semicon-
ductors.

H

U: NA The classification for usage could not be determined based on the given information. –
NS: NA The supervision type isn’t clear from the description provided. –
LA: NA The specific learning algorithms were not detailed in the available information. –

PH
M

17

DT: T The dataset focuses on tracking the health state of components within a train car, necessitating diagnostics specific to trans-
portation systems.

H

U: D,P The task involves predicting faulty regimes (Prognosis) and detecting faults (Detection) in train components. H
NS: S The dataset likely involves labeled training data to predict and diagnose faults. H
LA: S The task involves predicting health states and faults using statistical and physics-based modeling. H

Table 4. PHM Dataset Classification Summary (Acronyms for Indicators; rationales unchanged) NA:Not Available
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6. CONCLUSION
This study introduces MAINTAG as an automated sys-
tem designed to automatically apply descriptive tags to
datasets in PHM. Essentially, MAINTAG is a multi-agent
system consists of several independent AI ”agents”. Each
agent is designed as an expert in a specific task and they
allows the system to categorize datasets as intended.
The paper proposed a two-part evaluation to validate
the model performance. First, it was tested against a
collection of historical PHM data challenges. Second,
we used the expert taxonomy from Jia et al. (2018)
as our standard. This comparison showed how closely
MAINTAG’s classifications matched human expert de-
cisions. Specifically, it achieved a high degree of align-
ment when identifying key dataset characteristics, such
as the domain , the usage context , and nature of super-
vision.
While MAINTAG has proven to be an effective approach
for expert-aligned classification, its architecture can pro-
vide a foundation for several advancements.Our future
work will focus on evolving MAINTAG from a static
tagging system into a more dynamic one. Therefore, the
future research intends to explore

– Incorporation of Semantic Retrieval: Use of embedding-
based similarity measures to classify datasets with
minimal metadata.a

– Online Learning: Incorporation of user feedback
and expert corrections into a loop to refine agent
outputs.

– Ontology Expansion: Transition from fixed tags
to hierarchical structures to support cross-domain
mapping.
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